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A new image processing machine learning algorithm for droplet detection in
liquid–liquid systems is here introduced. The method combines three key
numerical tools—YOLOv5 for object detection, Blender for synthetic image
generation, and CycleGAN for image texturing—and was named “BYG-Drop
for Blender-YOLO-CycleGAn” droplet detection. BYG-Drop outperforms
traditional image processing techniques in both accuracy and number of
droplets detected in digital test cases. When applied to experimental images,
it remains consistent with established techniques such as laser diffraction while
outperforming other image processing techniques in droplet detection accuracy.
The use of synthetic images for training also provides advantages such as training
on a large labeled dataset, which prevents false detections. CycleGAN’s texturing
also allows quick adaptation to different fluid systems, increasing the versatility of
image processing in drop size distribution measurement. Finally, the processing
time per image is significantly faster with this approach.
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1 Introduction

Liquid flows and emulsions play a significant role in various industrial processes across
sectors such as food, pharmaceuticals, cosmetics, and energy. In such applications,
characterization of droplet size is essential as it strongly influences product quality,
stability, and performance (Treybal, 1980). Accurate and efficient measurement of
droplet size is therefore of paramount importance for optimizing process conditions,
formulation design, and quality control. Different techniques, either offline, inline, or in
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situ, are available to determine droplet size distributions (DSD).
Offline techniques, such as granulometry (based on laser diffraction)
have been adapted for a wide range of droplet size, but require
significant sample dilution, and the emulsion should be stable
against coalescence during the measurement. In applications
where no stabilizers are used or where coalescence is rapid, in
situ measurements are required. Among these, direct droplet
imaging techniques are the most frequently used. Their
implementation requires both an optical device (Khalil et al.,
2010) to take images of the dispersion and an efficient image
processing algorithm to extract droplet boundaries and determine
their size distribution (Emmerich et al., 2019). This image
processing step is usually done after acquisition and can be time-
consuming. Today, this type of equipment is widely used in R&D
laboratories and industry and is even available as “turnkey” tools
from private companies.

Considering such a device, one of the key factors for accurately
measuring the dispersed phase size distribution is the performance
of image processing, and there are still developments to be made in
this field. Image processing algorithms are generally classified into
two categories: non-parametric methods, also known as
“segmentation methods”, and parametric methods, also known as
“shape recognition methods”. Depending on whether they are
parametric or non-parametric, they use a priori features of the
objects to be detected. Among the most commonly used parametric
methods are the Hough transform (Hough, 1962) and its extensions
for detecting circles/discs (Illingworth and Kittler, 1988) or ellipses
(Yonghong and Qiang, 2002; Bian et al., 2013), and some dedicated
approaches based on specific image pre-processing and pattern-
matching (Maaß et al., 2012).

Non-parametric methods, on the other hand, exploit tools
derived from mathematical morphology and segmentation
operations, particularly those that combine distance transform
and watershed segmentation (Soille, 2004; Beucher and Meyer,
2019). Due to the difficulty of capturing and, above all,
processing images, imaging methods are generally limited to
diluted dispersions of spheroidal shaped particles in a transparent
fluid (Clift and Grace, 1999). This, however, applies to a limited
number of configurations because, in the majority of cases, images
consist of highly overlapping objects of complex shapes (ellipses,
spherical caps, clusters, etc.). The processing of this type of image is
mainly deployed for bubbly flows, where bubbles often have an
ellipsoidal shape, but is increasingly applied to liquid–liquid
extraction as processes become more complex (Roehl et al.,
2019). The algorithms used are often sophisticated and involve
several consecutive steps (Honkanen et al., 2005; Zhang et al.,
2012; De Langlard et al., 2017).

Recently, machine learning (ML) and, more specifically, deep
learning approaches have been replacing conventional algorithmic
methods to overcome the difficulties encountered in processing
complex media. In this regard, the most commonly used neural
networks are those belonging to the families of convolutional neural
networks (CNNs) and generative adversarial networks (GANs).

For geometric characterization, CNNs can be used in two types
of architecture: object detectors, including Faster-RCNN (Region-
based CNN), Mask R-CNN, Single Shot Multi Box Detector, and the
YOLO family (“you only look once”). The latter has found
numerous applications in detecting various types of objects (Kim

and Park, 2021). CNNs are also used for semantic segmentation,
which involves classifying each pixel of an image into a label, with
the most common architecture being UNET (de Cerqueira et al.,
2023). It is crucial to create a database of labeled objects (e.g.,
droplets, bubbles) to train these networks for droplet detection.
Several approaches have been explored in the literature based on
deterministic algorithms or even manual annotation. For example,
Patil et al. (2022) used the circular Hough transform (CHT)
combined with a filtering algorithm to detect droplets in images,
with manual intervention to correct missed detection. Cui et al,
(2022) relied on complete manual annotation, which allowed them
to label a base of barely 100 bubble images, sufficient to train a first
R-CNN mask dedicated to detection and classification. In both
cases, the manual annotation of images remains tedious and is
limited to small datasets. Another possibility is labeling the images
based on results obtained from another measurement technique.
Pieloth et al. (2023) trained a CNN to directly predict the DSDs from
a dataset of 2,500 spray images labeled with DSDs obtained by laser
diffraction with a mean error less than 1.5%. Recently, in the field of
liquid–liquid solvent extraction, research has been conducted by
Neuendorf et al. (2023) on the resolution of droplet population
balances in a R&D stirred column based on artificial intelligence.
The authors used a transfer learning approach on a Mask R-CNN to
evaluate droplet size. The learning dataset was composed of
150 images showing different operating conditions taken at
various stirrer speeds and load states; in every image,
30–40 accurately visible droplets were manually labeled using
image annotation software.

Generative adversarial networks (GANs) are generative
models in which two networks compete against each other.
The first is the generator, which generates a sample
resembling a training dataset (e.g., an image), while its
opponent, the discriminator, tries to detect whether a sample
is real or results from the generator. Thus, the generator is trained
with the goal of deceiving the discriminator, and thus becomes
capable of generating highly realistic images with precisely
controlled characteristics (such as dispersed phase fraction,
size distribution) [32]. This type of tool facilitates the
generation of large labeled training datasets suitable for ML
and image processing. For example, Haas et al. (2020)
employed a Faster R-CNN to detect bubbles in images of
gas–liquid flows. They created a database of experimental
images and used classical image processing methods along
with synthetic images generated using BubGAN, a conditional
GAN introduced by Fu and Liu (2019), to label the bubbles on
their images and train the network.

AlthoughMLmethods can outperform traditional techniques
in spherical particle detection (Ilonen et al., 2018), significant
challenges persist in creating labeled databases for extracting
DSD from images. Manual annotation is tedious and impractical,
especially for industrial systems with possibly varying operating
conditions resulting in a wide variety of images. Traditional
methods like Hough transform or Watershed also fall short in
creating accurate databases due to the potential of
incorrect labeling.

In this study, an original method is proposed and tested to
detect droplets in emulsion images and to measure their size
distribution. It takes advantage of the capabilities of two families
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of networks. The first is a CNN-type from the YOLO family
(Jiang et al., 2022; Diwan et al., 2023). It was chosen for object
detection. To overcome the limitations imposed by the size and
labeling of the learning dataset, it was necessary to train a second
family of networks using Blender, a 3D modeling software to
generate realistic scenes. Blender can easily create a large number
of geometrically realistic 3D scenes which are then transformed
into images. In a second phase, these images are combined with
real image texture transfer thanks to a second ML network,
CycleGAN (Zhu et al., 2017), to make it as realistic as
possible. Combining these three numerical tools provides a
versatile and effective method for detecting droplets in
emulsions in any kind of liquid–liquid flow. This new method
was named “BYG-Drop”, an acronym for “Blender-YOLO-
CycleGAN droplet detection”.

The paper is structured as follows. Section 2 outlines the
proposed method. Section 3 describes the metrics chosen to
measure the performance of the network and the impact of

main parameters such as the dataset size or the quality of
texturing. The results obtained for experimental liquid–liquid
system images are presented in Section 4, where they are
compared with alternative drop-size measurement techniques.

2 Description of the proposed method

The main flowchart of the proposed methodology is
summarized in Figure 1. It is based on three main steps.

1. Creation of a base of synthetic emulsion images containing
drops whose geometric parameters and sharpness are perfectly
known and controlled (Figure 1A).

2. Acquisition of typical images of the liquid–liquid system for
texture learning and texturing the synthetic base (Figure 1B).

3. Training the object detector on the textured image
database (Figure 1C).

FIGURE 1
Main flowchart of the proposed algorithm. In this study, experimental images are taken by an endoscopic probe (SOPAT GmbH) immersed in a
stirred tank containing a water–oil dispersion generated by agitation.
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The main network used for droplet detection is the YOLO object
detector network in its V5 release. Its architecture is complex and is
detailed in Jocher (2020). YOLO object detectors are part of the CNN
family. Their primary application is real-time object detection and
classification of images. Given an input image, they predict bounding
boxes that encompass the detected objects. For a trained network, these
bounding boxes are positioned at the center of the objects, and they
encompass them as tangentially as possible; they can thus be used to
measure their size in the case of basic shapes. YOLO networks use
rectangular bounding frames that allow measurement of the two main
dimensions of the encompassed object. Hence, in the case of spherical
droplets, the size of the bounding squares provides information on the
diameter of the droplets. It can also be used to measure the flatness if
relevant. Moreover, a detection probability is associated with each
detected object which allows tuning the detection performance. Based
on this probability, YOLO can therefore discriminate blurred objects

from sharp objects according to a numerical focusing criterion. For the
case study of Figure 1B, where images were taken by an endoscopic
probe, it is possible to detect the objects present in the focal plane of the
probe using a threshold to reject blurred objects. Finally, by applying the
same criterion, it is possible to distinguish between objects of varying
nature and size within a single image. This allows for differentiation
between droplets and bubbles, such as in-air entrainment.

Allowing these features, the training of such detection networks
usually requires a dataset containing several thousand images with
labeled objects, which can be a problem. To address this, we took
advantage of synthetic images in order to build a large training base of
labeled images containing both sharp and blurred droplets. Images were
generated from modeling software with 3D rendering: the free and
open-source Blender software 3.0.1 Community (2018). The use of
synthetic images enables complete control of the distribution of
diameters of the spherical objects and ensures that they obey a

FIGURE 2
(A) Typical image of droplets relevant for solvent extraction applications produced by Blender software. (B) Results obtained after CycleGan
texturing for liquid–liquid systemmade of transparent fluids. (C) Results obtained after CycleGan texturing for opaque particles dispersed in a transparent
continuous phase.

TABLE 1 Computing resources and time required for the main steps of the method - Conf. 1: 32 AMDMilan processor cores +1 NVIDIA A 100 graphics card
80GB ram - Conf. 2: 128 AMDMilan processor cores +4NVIDIA A 100 graphics card 80GB ram - Conf. 3: 8-core Intel(R) Xeon(R) Gold 6334 CPU@3.60 GHz
+1 NVIDIA A 100 graphics card 80 GB ram.

Step Operation Network Duration (H) Computing resources

Simulation of 1,500 images in Blender and acquisition 1,500 real
images

Generation CycleGAN 230 Conf. 1

Texture learning Training CycleGAN 31 Conf. 2

Simulation of 2,000 images in Blender Generation YOLO 315 Conf. 1

Texturing of 2,000 computer-generated images Generation YOLO 0.5 Conf. 1

YOLO training (750 epochs) Training YOLO 43 Conf. 3

TABLE 2 Detection metrics calculated on 2 × 1,000 synthetic test images with, respectively, light (no parenthesis) and dark (in parenthesis) textures using
three detection algorithms trained on three databases of synthetic images with no, light, and dark textures, respectively. Numbers in bold indicate highest
value.

Train-set texturation No texture Light texture Dark texture

Precision (confidence threshold = 0.95) 1 (1) 1 (0.971) 1(1)

Recall (confidence threshold = 0.95) 0.003 (0.135) 0.762 (0.672) 0.730 (0.758)
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controlled probability law of size and occurrence in the picture, as
required for the training of the CNN. Blender 3.0.1 is set up to create a
3D scene divided into three volumes of equal sizes located in front of a
virtual camera. In this way, 3D scenes mimic camera acquisition as
closely as possible, with blurred objects in the background, a median
zone of sharpness corresponding to the camera’s depth of field, and
blurred objects in the foreground. The code randomly positions a user-
defined number of spheres in the three volumes. To ensure this
randomness, the Blender images were generated using Python
scripts. During this process, if two spheres intersect, one is kept and
a new position is randomly drawn until a location where this sphere will
intersect with no others can be found. In addition, it is possible to adjust
the depth of the various volumes, especially Volume 1 to match the
depth of field of any optical acquisition system. Finally, the code
performs a projection of the 3D spheres in the 2D plane of the
virtual camera, possibly taking into account some features of the
virtual scene such as the light and optical properties of the objects
(refractive index) to produce a “realistic” 2D image (Community, 2018;
Hess, 2010), see Figure 2A. The final image, an example of which is
shown in Figure 2A, has a size of 1024 × 1280 squared pixels,
corresponding to that of the camera used for acquisition. It can be
cropped to meet any CNN input requirement.

Dividing the measurement volume in three zones allows us to
distinguish three families of objects.

• Volume 1: Sharp objects randomly distributed in the focus
zone of the virtual camera (cf. mark one in Figure 2A),

• Volume 2: “Blurred” objects randomly distributed outside the
focus zone in front of the virtual camera (cf. mark two
in Figure 2A),

• Volume 3: “Very blurred” objects randomly distributed in the
sub-volume furthest from the camera’s point of view which
contribute to the formation of a realistic background in the
image (cf. mark three in Figure 2A).

It is therefore possible to use Blender to define the geometric
characteristics (3Dposition in space, diameter) of the droplets located in
the focus zone, that is, in the first volume. This allows the generation of a
label file containing the dimensions and positions of the annotated
bounding boxes for each image. For example, in the case of a sharp
droplet with diameter d, the corresponding annotated bounding box is
centered on the droplet and its dimension is d × d. Thus, only the
objects belonging to the first zone are labeled, which then guides the
network to detect, after training, only sharp droplets in the real image
without having to consider a sharpness metric that is always hard to
define. However, despite this zonal partition of space, images produced
by Blendermight be too coarse and not sufficiently realistic with regards
to the experimental images due to factors such as fluid concentration
gradients, effective depth of field, and inhomogeneous light intensity. In
particular, the texture of the synthetic droplets remains quite unrealistic
at this stage, especially for fluid systems with a dark dispersed phase; it
thus becomes imperative to use real images in a subsequent stage in
order to texture the synthetic droplets created by Blender.

To address this issue and in order to reinforce the learning
process, a texture transfer from real to synthetic images was
performed using a second network from the GANs family
(Goodfellow et al., 2014). This type of network is very useful for
transferring texture between images thanks to non-paired data.
From two distinct database images of same size, respectively
originating from the synthetic images database and a real image

FIGURE 3
Evolution of the mean average precision mAP@0.5 (in green) and the learning process duration (in purple) with the size of the training database.
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database, the network learns the statistical properties of the textures
of the real images and applies them to the synthetic images.
Conversely, it learns the statistical properties of the textures of the
synthetic images, hence its name “CycleGANs” Zhu et al., (2017). In
the considered application of droplet detection in multiphase flows,
texture transfer is particularly relevant as it allows switching from any
fluid system to another, even with colored fluids, by simply changing

the texture of the same synthetic image dataset (cf. Figure 2), assuming
that the droplet size range remains the same. Moreover, CycleGAN
can fine-tune the droplet size distribution of synthetic images to that of
real images by adjusting their sharpness during the texture transfer
process, resulting in an extremely realistic image dataset with fully
known parameters. Consequently, some of the labeled droplets in
Volume 1 may become blurred, making them less visible in the

FIGURE 4
Droplets detected in an image by YOLOv5 trained on (A) 20 images, (B) 100 images, (C) 200 images, (D) 500 images, (E) 1,000 images, or (F)
2,000 images. The red boxes indicate previously detected droplets (i.e., in the smaller database); the black boxes indicate new detections (i.e., thanks to
the consecutive increase in the database.).
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resulting image, forcing the YOLO object detector to also learn
how to measure them, thereby increasing its performance
after training.

Based on the concept of transfer learning, our YOLO network was
trained starting from initial weights learned from a MS COCO
(Microsoft Common Objects in Context) image dataset (Lin et al.,
2015) to benefit from the network’s prior learning. The time required
for the different steps and the computing resources used are indicated in
Table 1, considering a dataset of 2,000 images. One epoch corresponds
to a complete presentation of the training dataset to the algorithm. In
this study, two textures were taken into account, one corresponding to
transparent fluids and the other to opaque fluids. Thus, the work of

training the YOLO network and texturing the dataset was carried out
twice and the calculation of the learning base only once.

3 Performance evaluation by
numerical study

The method’s performance was first evaluated by performing a
sensitivity study on a test dataset of 1,000 simulated images. Two
characteristics affecting the quality of the training were considered:
the effect of the texturing and the effect of the dataset size. The
efficiency of the proposed methodology is measured in terms of both
precision, P, and recall, R—two common evaluation metrics often used
together to assess the overall performance of an object detection model.
“High precision” indicates that when the model makes a positive
prediction, it is usually correct, while “high recall” indicates that the
model is efficient at finding most of the relevant objects in the image.
Achieving a good balance betweenP andR is important, as there is often
a trade-off between them.

To calculate these metrics, it is assumed that there is only one
class of objects (drops) and that they have been annotated for
each image in the test dataset. As specified in Section 2, for each

FIGURE 5
Example of droplet detection results on a synthetic image: (A) Ground truth, (B) CHT, (C) SOPAT algorithm, (D) BYG-Drop.

TABLE 3 Respective detection performance of circular Hough transform,
SOPAT algorithm, and BYG-Drop algorithm in terms of precision and recall
calculated on a 1,000 synthetic image dataset.

Algorithm P R

CHT 0.579 0.265

SOPAT algorithm 0.995 0.361

BYG-Drop algorithm 0.997 0.944
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image the network predicts some bounding boxes to which it
associates a confidence threshold between 0 and 1. This scalar
value may be apprehended as some kind of trust or probability
that the predicted bounding box contains an object. Only
predicted bounding boxes with a confidence score greater than
0.7 are here considered as positive predictions (PP) and retained
for further analysis.

Before defining precision and recall, we need to recall the
concept of intersection over union, (IoU), or the “Jaccard
index”. IoU is a positive value that evaluates the overlap
between the predicted bounding box and the ground truth
bounding box of an object. It is calculated as the ratio
between the area of intersection and the area of the union of
the two bounding boxes. Considering two objects, O1 and O2,
IoU can be written as follows:

IoU � O1 ∩ O2| |/ O1 ∪ O2| |
where |O1 ∩ O2| represents the area of the intersection between the
bounding boxes ofO1 andO2 and |O1 ∪ O2| represents the area of the
union of the bounding boxes of O1 and O2—the total area covered by
the two bounding boxes. The IoU value ranges from 0 to 1, with

• IoU � 0 indicating that O1 and O2 have no overlap, meaning
that they are completely separated.

• IoU � 1 indicates that O1 and O2 perfectly overlap, meaning
that they are identical.

Usually, correct detection or true positive detection, TP, is
considered when the predicted bounding box has an IoU greater
or equal to 0.5 with the corresponding ground truth bounding box.

FIGURE 6
Histograms in numbers of total droplets detected by the three considered algorithms.

FIGURE 7
Experimental setup, including, 1- stirrer motor, 2- in situ imaging
SOPAT Probe, and 3- stirred tank.
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Precision, P, measures the accuracy of the positive predictions
made by the model. It quantifies the ratio between TP and the total
number of positive predictions, PP, and is written as:

P � TP

PP

Higher precision indicates fewer false positive predictions and that
the model can more correctly identify relevant objects among the
predicted positive instances. Here, precision is a measure of how
many retrieved droplets are relevant. Note that below a confidence
score of 0.7, P decreases drastically, explaining the frequent choice of
such a threshold by YOLO users.

Similarly, recall, R, measures the ability of a model to identify all
relevant objects in the dataset. It quantifies the ratio between true positive
detections and the total number of ground truth objects, I and iswritten as:

R � TP

I

A higher recall indicates that the model can identify a larger
proportion of actual positive instances, reducing the number of
undetected objects (false negatives). In this context, R is a measure of
how many relevant drops are retrieved by the model.

Logically, recall and precision are affected by the IoU thresholds. As
the IoU threshold increases, requiring a higher degree of overlap
between predicted and ground truth bounding boxes, the number of
true positive detections decreases, affecting both recall and precision.

The last metric used in this study is mAP@0.5, where “mAP”
stands for “mean Average Precision”. mAP@0.5 is an evaluation
metric commonly used to quantify the overall performance of object
detectionmodels such as YOLO. It is calculated by first computing the
average precision, AP, for each class of objects detected by the model
at a specific IoU threshold of 0.5 following the next three steps:

• compute precision and recall values by varying the confidence
score for the predictions;

• construct a precision–recall curve by plotting precision values
against recall values;

• calculate the area under the precision–recall curve (AP) for
that specific class.

mAP is therefore the average of the AP scores for all object
classes in the dataset, and in the case of a single object class, AP is
equal to mAP.

FIGURE 8
Typical results obtained on a real experimentally acquired image: (A) raw image, (B) detection results with CHT, (C) detection with SOPAT algorithm,
and (D) detection with proposed algorithm.
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3.1 Impact of CycleGAN texturing

The first effect investigated was the impact of the texturing on
drop detection performance. For this purpose, a database of

2,000 images was first created and then textured using the
CycleGan network with either light or dark textures (based on
real images) in order to obtain two additional sets of images. The
three datasets of images, no texture, light-textured, and dark-

FIGURE 9
DSD retrieved from laser diffraction granulometer and the three different image processing at (A) t0+400s, (B) t0+1,200s, (C) at t0+2,000s, and
(D) t0+4,000s.
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textured, are geometrically identical but exhibit different
appearances (Figure 2). Then, the detection network was
trained similarly and independently on each of these datasets.
In a second step, an additional dataset of 1,000 test images with
no texture was generated and textured with both dark and
light textures.

The three YOLO networks trained previously were then
used to perform detections on each of the two textured test sets.
The precision and recall were calculated with a confidence
level greater than or equal to 0.95 to only detect those objects
considered by YOLO to be droplets with a high level of
confidence (Table 2).

Based on these results, it can be observed that regardless of
the texture considered, only a negligible number of detected
objects do not correspond to droplets. This is reflected in the
precision value, which approach a perfect detection (R � 1) in
almost all scenarios. The only slightly failing scenario is the
detection of dark droplets with a network trained on the light
texture database. This is an expected result since there is only
one type of object to detect. It follows that the texture of the
image database here has little impact on precision.

Conversely, the texture is observed to have a more
significant impact on the recall. The neural network trained
on non-textured synthetic images achieved nearly zero recall
when applied to light textured images and exhibited a low recall
on dark textured images. This is because non-textured
synthetic images show a greater visual resemblance with
dark images than with light ones (cf. Figure 2). In the other
two cases, logically, the network trained with the right texture
is the one with the best recall, highlighting the substantial
impact of image texturing.

In conclusion, the application of CycleGAN for texture transfer
has a substantial impact on recall and is fundamental to ensuring
correct and efficient object detection.

3.2 Effect of the size of the training database

The network only needs to learn to detect a single class of objects
corresponding to the droplets within the measurement volume.
Therefore, it should be possible to achieve this learning task with
a limited number of images, resulting in reduced training time. To
assess the sensitivity of the detection network’s performance on the
size of the training database, we conducted several training sessions
using image sets of increasing sizes. The study was performed in the
case of synthetic images containing a single class of objects to detect,
characterize, and simulate droplets. Training datasets of 30, 100,
200, 500, 1,000, and 2,000 images were used, with each image
containing around 52 labeled droplets. In each case, the sample
images were randomly taken in the same pool of 2,000 synthetic
textured images. The training was performed with the same number
of epochs (750) and the performance was then assessed from the
same test image set using mean average precision at an IoU
threshold of 0.5.

Figure 3 shows the evolution of both the mAP@0.5 and the
training duration as a function of the size of the training dataset.
This clearly highlights the substantial improvement of the learning
process when the number of images in the training set includes more
than 100 images. The training duration logically increases linearly
with the number of images. Consequently, we can conclude that the
optimal dataset size is around 100 images.

Figure 4 provides a more in-depth analysis of the detected
droplet count evolution. It illustrates that a minimum of
2,000 training images is required to ensure that the detected
proportions of “small” and “large” droplets are representative of
the studied population. Indeed, in this case, the network learns to
detect small objects only for training datasets larger than 500 images
which are, for example, essential in most multiphase flow processes
to accurately predict the contact area between the dispersed and
continuous phases.

FIGURE 10
(A) Typical acquisition of fluids with a dark dispersed phase. (B) Histograms in numbers of total droplets detected by CHT and BYG-Drop.
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3.3 Comparison with two deterministic
algorithms: the circular Hough transform
and a commercial pattern
recognition algorithm

To compare the performance of the algorithm with the current
state of the art, we implemented a benchmark with the circular
Hough transform (CHT) and the SOPAT GmbH algorithm, two
widely used circle recognition algorithms. The case study was a set of
1,000 synthetic images with the light texturing of the experimental
case studied in Section 4.

The CHT implements the following main steps (Illingworth and
Kittler, 1988):

• identifies edges in the image, often using techniques like the
canny edge detector;

• creates an accumulator array where edge points vote for
potential circle centers and radii based on their spatial
relationships;

• accumulates votes to find potential circle parameters with
higher votes, indicating possible circles;

• identifies local peaks in the accumulator array, representing
potential circle centers and radii;

• retrieves circle parameters from the local maxima and defining
the detected circles in the image.

Before applying the CHT, a two-step image processing is
performed to improve the contrast of the droplets against the
background. It consists of flat histogram equalization followed by
noise removal using a trained neural network specialized in blind
denoising (Zhang et al., 2023).

In the framework of this paper, the release (V1-4-42) of the SOPAT
image processing ensures robust and accurate drop detection by pre-
filtering the series of images to remove irrelevant and misleading
information. This is achieved by subtracting an integrated sequence.
The noise in the pictures is then reduced using the self-quotient image
method Gopalan and Jacobs (2010), which normalizes the intensity of
every local pixel based on the local environment. This is done by
dividing the processed image by a smoothed version of itself. Drop
recognition is then achieved through a three-step process: (i) pattern
recognition by correlating pre-filtered gradients with search samples; (ii)
pre-selecting plausible circle coordinates; (iii) classifying each of those
circles through an exact edge examination. The software uses a
normalized cross-correlation procedure to evaluate possible drop
matches. This automated image analysis algorithm is one of the
fastest and most efficient; it overcomes typical limitations of image
processing such as circular shape overlapping. More technical details
and results about this algorithm can be found inMaaß et al. (2012) and
Panckow, Robert P. et al. (2017).

A typical result of three-images processing is presented in Figure 5.
For this example, the processing time on a laptop (Intel® Core™ i7-
11850H) is of 48, 5.6, and 2.3 s for the CHT, SOPAT, and BYG-Drop
algorithms, respectively. In this case, for a total of 53 annotated drops in
the image, CHT detects 19 drops, 13 correct and 6 incorrect, and the
commercial algorithm only 15 correct (no incorrect), while BYG-Drop
detects 41 correct (no incorrect).

The results integrated for the entire sequence of 1,000 images are
shown in Table 3. Again, with twice the recall of the other two

techniques, BYG-Drop detects significantly more relevant droplets.
The commercial algorithm maintains high precision, ensuring that
only relevant drops are detected. The circular Hough transform fails
on both metrics.

A numerical analysis of the histograms (Figure 6) provides a
more detailed analysis of the performance of the different
algorithms. Once again, CHT fails to achieve the correct size
distribution. The commercial algorithm, on the other hand, finds
a distribution consistent with the ground truth but with a much
lower number of droplets detected than the ML approach. A bias is
also evident in the middle classes, around a size of 100 pixels. The
proposed algorithm correctly recovers the distribution of the
shape and number of drops, except for the very smallest classes
(less than 6 pixels) which is intrinsic to the object detection
algorithm used (YOLO-v5) but also corresponds to the detection
limit imposed by the optical setup.

4 Benchmark on experimental data

Finally, for comparison purposes on a real test case, an
experimental study of the formation of an oil-in-water
emulsion was conducted using both an in situ endoscopic
probe to record images of the droplets in the dispersion and
offline analysis of emulsion samples using a laser diffraction
granulometer (Mastersizer 3,000 from Malvern) that directly
provides the DSD.

4.1 Material and methods

The fluids used were ultrapure water (viscosity of 1 mPa.s−1) and
silicone oil (viscosity of 200 mPa.s−1). The mass fraction of oil was
2.5%. Added in the water was 0.3 % wt of Polysorbate 20 (Tween® 20,
Sigma-Aldrich, Germany) to stabilize the emulsion and prevent
droplet coalescence during its transport and analysis in the laser
granulometer. The experiments were performed at room
temperature.

The setup is shown in Figure 7, consisting of a 1-L glass vessel
equipped with a 3-blade Mixel TT impeller and 4 baffles to avoid
vortex formation. Emulsion formation was achieved by adjusting the
amounts of the aqueous and organic phases to give a hold-up of
2.5%. Water and surfactant were first mixed by vigorous stirring at
maximum speed, which was then set at 600 rpm, and oil was then
added 2 minutes before starting the image acquisitions. The fluids
were weighed using a balance from Mettler (PM6000) with a
precision of ±0.1 g.

The images were acquired using a commercial endoscopic probe
from SOPAT GmbH. The probe was used in reflection mode with a
white Teflon reflector and a 6 mm gap. The first image acquisition
took place 2 min after adding the oil (to ensure uniformity in the
vessel), called t0. A total of 11 acquisition runs of 200 images each,
with a frame rate of three images per second, were made. The image
acquisitions were spaced 400s apart, leading to a total measurement
time of 67 min.

During the course of the experiments, four samples of
approximately 75 mL each were taken at t0 + 400s, t0 + 1,200s,
t0 + 2,000s, and t0 + 4,000s, at the end of the experiment.
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4.2 Image processing results for
oil–water emulsion

The three algorithms described above were applied
successively to the 11 sets of images recorded by the
endoscopic probe. Here, the detection threshold of YOLO was
raised to 0.95 to detect only droplets that perfectly met the
sharpness criteria of the training. An example of a raw image
is shown in Figure 8A and of the results of droplet detection for
CHT, SOPAT, and BYG-Drop in Figures 8B–D, respectively. In
this example, which was taken at random out of the 2,200 shots
taken, we can clearly see that, despite raising the threshold to
0.95, BYG-Drop is the algorithm that positively detects the
highest number of droplets.

From these detections, an evaluation of the DSD at each time
step was constructed. Figure 9 compares the DSD in volume
measured with the imaging and laser granulometry techniques at
the four time-steps sampled. For both techniques, the evolution
of the droplet size distributions is typical of the fragmentation of
the oil droplets under agitation. The results of the two techniques
are in good agreement, except for the smaller sizes where the
number of small droplets measured by the granulometer is higher
than by image processing. This is partly due to the limited
resolution of the images taken by the endoscopic probe, which
makes the smallest objects undetectable and also due to the laser
diffraction, which tends to overestimate the fraction of small
droplets as they remain in the measurement sample for longer
periods than the bigger ones because of their lower velocity
(Kowalenko and Babuin, 2013; Sijs et al., 2021).

The distributions for the different image processing
techniques appear similar (cf. Figure 9), partly thanks to
normalization induced by the volume density presentation.
However, once again, the machine learning approach detects a
significantly higher number of droplets despite the increase in the
decision threshold, making the results statistically more reliable.
In addition, the other two algorithms sometimes make detection
mistakes, such as detecting ghost droplets with CHT (see two in
Figure 9D) or taking account of air bubbles with the commercial
algorithm (see one in Figure 9D), which can bias the tails of the
size distributions.

Finally, the robustness and the efficiency of the new method
for detecting droplets with a different texture (by image
coloration) was evaluated with the same two fluids by adding
a dye (methyl blue at 1 mg/L) in the dispersed phase. This
addition makes it possible to obtain a dark dispersed phase
without altering the emulsification properties, allowing reuse
of the experimental setting described in Section 4.1. For this
second experiment, 95 acquisition runs of 15 images each, with a
frame rate of 10 images per second and trigger interval of 1.5 s
were taken, corresponding to a total acquisition time of 285 s.

YOLO was trained on the same database of synthetic images but
textured darkly. The algorithm was then applied on the full data set
of 1,425 images with a confidence threshold of 0.95. For comparison
purposes, the same sequence was processed with CHT, which is
highly effective for images with such high contrast.

Figure 10A shows a typical image, while Figure 10B
compares the count histograms measured with the two
algorithms. The machine learning approach again detects a

significantly higher number of droplets, especially for the
smallest classes, making the results statistically more reliable.
These experiments confirm both the ability of the combined
algorithm to detect a wide spectrum of textures and the powerful
aspect of texturing.

5 Conclusion

A new image processing machine learning algorithm for
droplets detection in liquid–liquid systems, BYG-Drop, is here
introduced. It is based on the combination of three numerical
tools: the object detector YOLOv5, the free and open-source 3D
computer graphics software Blender, and a neural network
specialized in texture transfer, CycleGAN. This method
surpasses the usual image processing techniques on digital test
cases both in terms of precision and in the droplet numbers
detected, as demonstrated by a recall almost twice as high as the
best other algorithms. These promising results are confirmed
when processing experimental images, for which the machine
learning processing remains consistent with the usual techniques,
whether laser diffraction or other image processing, while
performing better in terms of the number of good detections
in each image.

Using synthetic images for training instead of manually
labeled real images has several advantages, including the
ability to effortlessly label a large dataset, which turns out to
be an enormous advantage for efficient learning. As a result, the
trained network can easily avoid false detections such as ghost
drops or air bubbles.

Moreover, CycleGAN image texturing allows easy and fast
adaptation to different fluid systems (colored and transparent,
droplet size, shape, etc.). This makes droplet size measurement
by imaging and image processing an even more versatile and
adaptable in situ technique.

Finally, the processing time for each image is faster, which is an
advantage of YOLO, a network designed for real-time video
detection. Although YOLO version 5 has been trained here for a
posteriori processing, we are confident that BYG-Drop can perform
real-time DSD measurement in chemical processes using a more
advanced version of the object detector and GPU implementation
Wang et al. (2023).
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