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ON THE DERIVATION OF A NEW ONE-DIMENSIONAL MODEL FOR

BLOOD FLOWS AND ITS NUMERICAL APPROXIMATION

Y. MANNES, M. ERSOY, AND O.F. EKER

Abstract. We propose a new section-averaged one-dimensional model for blood flows in de-
formable arteries. The model is derived from the three-dimensional Navier–Stokes equations, writ-
ten in cylindrical coordinates, under the ”thin-artery” assumption (similar to the ”shallow-water”
assumption for free surface models). The blood flow/artery interaction is taken into account through
suitable boundary conditions. The obtained equations enter the scope of the non-linear convection-
diffusion problems. We show that the resulting model is energetically consistent. The proposed
model extends most extant models by adding more scope depending on an additional viscous term.
We compare both models computationally based on an Incomplete Interior Penalty Galerkin (IIPG)
method for the parabolic part, and on a Runge Kutta Discontinuous Galerkin (RKDG) method
for the hyperbolic. The time discretization explicit/implicit is based on the well-known Additive
Runge–Kutta (ARK) method. Moreover, through a suitable change of variables, by construction,
we show that the numerical scheme is well-balanced, i.e., it preserves exactly still-steady states
solutions. To end, we numerically investigate its efficiency through several test cases with a con-
frontation to an exact solution.
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Introduction

Modeling the cardiovascular system in arteries holds a central place in medical science, particu-
larly in connection with cardiovascular diseases such as coronary heart disease, stroke, peripheral
artery disease, aneurysms, and among others. This is especially important today in understanding
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and forecasting the impact of developed countries’ way of life on people’s healthcare (around 30%
of cardiovascular disease deaths are developed from countries). Therefore, it is of major interest to
develop an accurate mathematical model. In this part, we derive a new one-dimensional model for
blood flow in the spirit of the work by [11, 13, 17].

The dynamic of such flow is mainly influenced by the fluid-structure interaction with the artery
wall. The forecast to predict the motion of blood through the artery is a difficult task to which
substantial effort has been devoted [15, 14, 5, 4, 2, 28, 30, 21].

One of the most widely used models to describe the motion of blood through the artery is the one-
dimensional (1D) Blood Flow equation derived, for instance, in [1, 23, 2, 28, 15, 19]. This classical
model takes the form of a hyperbolic system of Partial Differential Equations (PDE) describing the
conservation laws linking the wall elasticity to the fluid dynamics. This model is derived from an
ansatz for the velocity profile (3) and reads,

(1)

{
∂tA+ ∂xQ = 0,

∂tQ+ ∂x(αQ
2

A + 1
ρAP (A, x)) = 1

ρP (A, x)∂xA−KQ
A ,

where the unknowns A(t, x) stands artery’s section area (assumed to be cylindrical), Q(t, x) =
A(t, x)ux(t, x) is the flow rate and ux is the mean speed over the artery’s section (see [28, 15] for
further details). The function P (A, x) denotes the pressure of blood at the wall and reads,

(2) P (A, x) = b(x)

√
A−
√
A0

A0
,

where b encompasses the elastic behavior of the artery, i.e., b(x) = E(x)
1−ξ h

√
π, where E is the Young’s

modulus, ξ is the Poisson ratio, and h is the wall thickness. The velocity profile is given by

(3) ux(t, r, x) =
Q(t, x)

A(t, x)

γ + 2

γ

[
1−

(
r

R(t, x)

)γ]
,

where γ is an integer (often set to 9, see for instance [28, 16]). The friction term K is defined as a
function of γ by K = 2πν(γ + 2) where ν is the kinematic viscosity of the blood. In equation (1),

the Bousinessq coefficient is given by α = γ+2
γ+1 (c.f.[28, 16, 30]).

Our main goal in this section is to derive, starting from the incompressible Navier-Stokes equa-
tions with suitable Navier boundary conditions1 to account for the dynamic of the artery wall
and the friction generated, a model akin to (1) via section-averaging (c.f.[11]) under a thin-artery
assumption. The averaged model that we obtain differs from the model (1), in that it has an addi-
tional diffusion term, and the velocity profile is a direct consequence of the performed asymptotic
approximation (as in [17]). More precisely, one has

(4) ux(t, r, x) =
Q

A

[
1− kR(t, x)

4ν

(
1− 2

(
r

R(t, x)

)2
)]

where k < 0 is a friction term.
The new model we propose is

(5)

{
∂tA+ ∂xQ = 0,

∂tQ+ ∂x(Q
2

A + 1
ρAP (A, x))− ∂x(3νA∂x(QA )) = 1

ρP (A, x)∂xA+ 2πRk
1−Rk

4ν

Q
A ,

where P is defined by (2). We show that system (5) possesses a mathematical entropy given by,

E (t, x) = Ê (A, ux, x) =
Aux

2

2
+

1

ρ
AP (A, x)− β(x)

3ρA0(x)
A

3
2

1Contrary to [28], where they use Dirichlet boundary conditions
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where ux stands here for the mean speed over the artery’s section of the quantity (4).
We show that this entropy satisfies the following entropy relation for smooth solutions:

∂tE + ∂x((E +
β(x)

3ρA0(x)
A

3
2 )ux) = ∂x(3νA∂x(

Q

A
))ux +

2πRk

1− Rk
4ν

ux
2.

Under the assumptions, Q(t, 0) = Q(t, L) = 0 at the inlet and outlet respectively, we show that the
global energy decreases:

∂t

(∫ L

0
E

)
= −3ν

∫ L

0
(A(∂xux)2) +

2πRk

1− Rk
4ν

∫ L

0
ux

2 < 0 .

We outline the rest of the article as follows: in section 1, as our starting point we present the
Navier–Stokes equations and the boundary conditions including friction and the wall law. We derive
the section-averaged one-dimensional equations. In section 2 we use a Discontinues Galerkin (DG)
method from [29] called the Incomplete Interior Penalty Galerkin (IIPG) method together with the
Runge-Kutta Discontinues Galerkin method (RKDG) from [7]. We use additive implicit/explicit
Runge-Kutta for time integration for the parabolic and hyperbolic parts respectively. We provide
extensive numerical testing in section 4 of the resulting code2

1. Derivation of a new one-dimensional model for blood flow in arteries

In this section, we present the full derivation of the new one-dimensional model for blood flow.

1.1. Navier-Stokes equations in cylindrical coordinates. Our aim is to construct a mathe-
matical model for blood flow in an artery consistent with the phenomena that can affect its motion.
To this purpose, we propose a model reduction of the three-dimensional Navier-Stokes equations
leading to a new one-dimensional model following the technique in [12, 13, 17]. We study the case
of an axisymmetric artery (with a circular cross-section) and consider suitable boundary conditions
to account for artery wall radial deformation and friction. More precisely, the displacements are
only in the radial direction, for all angles θ.

Figure 1. Artery shape (DALL-E generated picture)

2A Julia implementation of this code, written by Y. Mannes and M. Ersoy, is freely available on request, see also
https://julialang.org/
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We start in subsubsection 1.1.1 by reviewing the Navier-Stokes equations in cylindrical coor-
dinates, describing the physics with the artery wall boundary. We then introduce the boundary
condition at the wall in subsubsection 1.1.2.

1.1.1. Geometric set-up and the three-dimensional Navier-Stokes equations in cylindrical coordi-
nates. With reference to Figure 1, we consider an incompressible fluid moving in the time-space
domain

(6) Ω =
{

(t, x, y, z) ∈ [0, T ]× R3 |
√
y2 + z2 ≤ R(t, x), x ∈ [0, L]

}
,

where R is the radius of a cross-section of the artery (supposed circular), L, its length, and T > 0
an arbitrary final time.

We assume that the viscous flow is axisymmetric (following [5, 28, 16]) and its velocity −→u satisfies,
on the domain Ω, the three-dimensional incompressible Navier-Stokes equations

(7)

{
div−→u = 0,

∂t
−→u + div (−→u ⊗−→u ) +∇p− div σ = 0,

where −→u = ux
−→
i + uy

−→
j + uz

−→
k with (

−→
i ,
−→
j ,
−→
k ) the cartesian basis, p = P

ρ where P is the pressure

and ρ, the density of the fluid. Finally, the stress tensor is

σ = ν
(
∇−→u + (∇−→u )

t
)
,

where ν is the kinematic viscosity.
Consider the following change of variable,

(8) −→er (θ) = cos θ
−→
i + sin θ

−→
j , −→eθ (θ) = − sin θ

−→
i + cos θ

−→
j ,

then the domain Ω (6) can be expressed as

(9) Ω =
{

(t, x
−→
i + r−→er (θ)) ∈ [0, T ]× R3 ; r ∈ [0, R(t, x)], θ ∈ [0, 2π[, x ∈ [0, L]

}
.

The velocity −→u , thanks to the axisymmetry assumption, is written −→u = ur
−→er + ux

−→
i where ur is

the radial speed and ux is called, later on, the axial speed.

Remark 1. As done in [28], thanks to the axisymmetry assumption, the velocity −→u has no angular
component. For the same reason, radial and axial components of −→u don’t depend on θ.

The coordinate transformation reads,

M(r, θ, x) = x
−→
i + r−→er (θ),

leading to the following Jacobian matrix,

A−1 =

1 0 0
0 r 0
0 0 1


−→er ,−→eθ ,

−→
i

, and its inverse A =
1

J

r 0 0
0 1 0
0 0 r


−→er ,−→eθ ,

−→
i

,

where J = r = det
(
A−1

)
. Coordinate change (8) together with axisymmetry assumption lead to

∇p =

 ∂rp
1
r∂θp
∂xp


−→er ,−→eθ ,

−→
i

, div−→u =
1

r
∂r(rur) + ∂xux, ∇−→u =

∂rur 0 ∂rux
0 ur

r 0
∂xur 0 ∂xux


−→er ,−→eθ ,

−→
i

,

div σ =

1
r∂r(rσrr) + ∂xσxr − 1

rσθθ
1
r∂r(rσrθ) + ∂xσxθ + 1

rσθr
1
r∂r(rσrx) + ∂xσxx


−→er ,−→eθ ,

−→
i

,
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where,

(10) σ =

σrr σrθ σrx
σθr σθθ σθx
σxr σxθ σxx


−→er ,−→eθ ,

−→
i

= ν

2∂rur 0 ∂rux + ∂xur
// 2urr 0
// // 2∂xux


−→er ,−→eθ ,

−→
i

.

Finally, the Navier Stokes equations (7) in cylindrical coordinates (8) are

(11)


1
r∂r(rur) + ∂xux = 0,

∂tur + 1
r∂r(ru

2
r) + ∂x(uxur) + ∂rp = ν

[
2
r∂r(r∂rur) + ∂x (∂rux + ∂xur)− 2ur

r2

]
,

1
r∂θp = 0,

∂tux + 1
r∂r(rurux) + ∂x(u2x) + ∂xp = ν

[
1
r∂r(r (∂rux + ∂xur)) + 2∂2xux

]
.

.

1.1.2. The artery wall boundary. Crucial to our model derivation is the particular situation at the
wall boundary, where the effect of wall deformation plays a central role. The wall boundary is the
set of points

(12) Γ =
{
x
−→
i +R(t, x)−→er (θ) ; θ ∈ [0, 2π[, x ∈ [0, L], t ∈ [0, T ]

}
.

We define Γ’s tangential and outward normal vectors by

−→
twx =

1

G

(−→
i + ∂xR(t, x)−→er

)
,
−→
nw =

1

G

(−→er − ∂xR(t, x)
−→
i
)
, G =

√
1 + (∂xR)2.

where G is the axial arclength.
Since the wall is assumed to be rough, it produces friction, and due to its elastic behavior, it

may get deformed. We take friction into account by considering the following Navier boundary
condition on the wall Γ,

(13)
(
σ
−→
nw
)
·
−→
twx = k−→u ·

−→
twx ,

where k ≤ 0 is a friction term. Fluid-structure interaction is modeled with the condition

(14) −→u ·
−→
nw = ∂tR

−→er ·
−→
nw.

Thanks to the following hypothesis:

H1 : Small thickness and plain stresses: the vessel wall thickness h is assumed to be, a
constant, small enough to allow a shell-type representation of the artery geometry. The
vessel structure is subjected to plain stresses.

H2 : Cylindrical reference geometry and radial displacement: as described before in (9) and
(12), the artery is described by a circular cylindrical surface with straight axes and its
displacements are only in the radial direction.

H3 : Small deformation gradients and linear elastic behavior. : we suppose that the artery
wall behaves like a linear elastic solid where ∂xR is assumed to be bounded in time.

H4 : Incompressibility: the wall tissue is incompressible [16].
H5 : Dominance of circumferential stresses. Stresses acting along the axial direction can be

neglected compared to circumferential ones.

one can derive the wall dynamic law (see [28] for further details):

(15) ∂2t η +
ρ

hρw
b
η

R2
0

=
R

R0

ρ

hρw

[
p− pext −Gσ

−→
nw · −→er

]
,

where η = R−R0 is the displacement of the wall, R0 = R(t = 0, x) is the initial radius of the artery,

ρw is the wall tissues density, h is the wall thickness, pext is the external pressure, b(x) = E(x)h
ρ(1−ξ2)
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is a function of the Young modulus E, σ (10) is the fluid stress tensor at r = R , and p is the fluid
pressure at r = R.

Gathering (13), (14) and (15), boundary conditions can be written:

(16)


ur − ∂xRux = ∂tR,

ν
[
2∂xR (∂rur − ∂xux) +

(
1− (∂xR)2

)
(∂rux + ∂xur)

]
= Gk(ux + ∂xRur),

hρw
ρ

R0
R ∂

2
tR+ bR−R0

RR0
+ ν (2∂ru− ∂xR (∂rux + ∂xur)) = p− pext.

1.2. Section-averaging. We now proceed in subsubsection 1.2.1 to write the Navier-Stokes equa-
tions with boundary conditions in non-dimensional form. Next, under a thin-artery assumption,
we consider the radius of the artery to be small compared to the length, introducing a small pa-
rameter ε. We formally make an asymptotic expansion of the Navier-Stokes system in first (in
subsubsection 1.2.2) and second (in subsubsection 1.2.4) order with respect to ε. Finally, we de-
rive a section-averaged first and second-order one-dimensional model for blood flow. Mathematical
properties of both models are presented in subsubsection 1.2.3 and in subsubsection 1.2.5. Our
approach is similar to those used in [12, 28, 17, 13, 9].

1.2.1. Dimensionless Navier–Stokes equations. To derive the blood flow model, we assume that
the artery’s radius is small compared to its length and that radial variations in velocity are small
compared to axial ones. This is achieved by postulating a small parameter ratio

ε :=
R

L
=
Ur
Ux
� 1,

where, R, L, Ur, and Ux are the scales of, respectively, radius, length, radial velocity, and axial
velocity. As a consequence, the time scale T is such that

T =
L

Ux
=

R

Ur
.

We also choose the pressure scale to be

(17) p = Ux
2
.

It is convenient to define L,Ux and T , as finite constants with respect to ε, while R = εL and
Ur = εUx. This allows us to introduce the dimensionless quantities of time t̃, space (x̃,r̃), pressure
p̃ and velocity field (ũx,ũr) via the following scaling relations

(18)

t̃ := t
T , p̃(t̃, r̃, x̃) = p(t,r,x)

p ,

x̃ := x
L , ũx(t̃, r̃, x̃) = ux(t,r,x)

Ux
,

r̃ := r
R

= r
εL , ũr(t̃, r̃, x̃) = ur(t,r,x)

Ur
.

We also rescale the following coefficients

(19)

k̃ = k
Ur

= k
εUx

, R̃(t̃, x̃) = R(t,x)

R
,

h̃ = h
εR
, Ẽ(x̃) = εE(x)

ρU2
x
,

R̃0(x̃) = R0(x)

R
.

Finally, we define the non-dimensional Reynolds number,

Re =
LUx
ν

,

and

ν0 = (εRe)
−1

6



yielding to the asymptotic regime

(20) R−1e = ν0ε.

Using these dimensionless variables (17), (18), (19) and (20) in the Navier-Stokes equations (11)
and the boundary conditions (16), we get
(21)

1
r̃∂r̃(r̃ũr) + ∂x̃ũx = 0,

∂r̃p̃ = εν0
[
2
r̃∂r̃(r̃∂r̃ũr) + ∂x̃(∂r̃ũx)− 2 ũr

r̃2

]
+ ε2δr,ε,ũ,

∂t̃ũx + 1
r̃∂r̃(r̃ũrũx) + ∂x̃(ũx

2) + ∂x̃p̃ = ν0
ε

1
r̃∂r̃(r̃∂r̃ũx) + εν0

[
1
r̃∂r̃(r̃∂x̃ũr) + 2∂2x̃ũx

]
,

ũr − ∂x̃R̃ũx = ∂t̃R̃,
1
εν0∂r̃ũx −Gk̃ũx = −εν0

[
2∂x̃R̃ (∂r̃ũr − ∂x̃ũx) + ∂x̃ũr − (∂x̃R̃)2∂r̃ũx

]
+ε2δR,ε,ũ,

b̃ R̃−R̃0

R̃R̃0
+ εν0

(
2∂r̃ũr − ∂x̃R̃∂r̃ũx

)
= p̃+ ε2δp,ε,ũ.

where,

δr,ε,ũ = −(∂t̃ũr + 1
r̃∂r̃(r̃ũr

2) + ∂x̃(ũxũr)) + εν0∂
2
x̃ũr,

δR,ε,ũ = Gk̃∂x̃R̃ũr + ν0ε(∂x̃R̃)2∂x̃ũr,

δp,ε,ũ = εν0∂x̃R̃∂x̃ũr − ε h̃ρwρ
R̃0

R̃
∂2
t̃
R̃,

b̃(x̃) = Ẽ(x̃)h̃
1−ξ2 .

1.2.2. First order approximation of the dimensionless Navier-Stokes equations. Omitting ·̃, remark-

ing that G =
√

1 + ε2(∂x̃R̃)2 = 1 + O(ε2), gathering all first-order terms in O(ε), equations (21)

become

(22)



1
r∂r(rur) + ∂xux = 0,

∂rp = O(ε),
∂tux + 1

r∂r(rurux) + ∂x(ux
2) + ∂xp = ν0

ε
1
r∂r(r∂rux) +O(ε),

ur − ∂xRux = ∂tR,
ν0
ε ∂rux = kux +O(ε),

bR−R0
RR0

= p+O(ε).

Integrating from r and R the radial momentum equation (the second equation in (22)), we obtain
the following pressure

(23) p(t, r, x) = p(t, R, x) +O(ε) = b(x)
R(t, x)−R0(t, x)

R(t, x)R0(t, x)
+O(ε).

As done in [28], we linearize the equation (23) with respect to R to obtain

(24) p(t, r, x) = b(x)
R(t, x)−R0(t, x)

R2
0(t, x)

+O(ε).

Moreover, by identifying terms at order 1
ε in the axial momentum equation (the third equation in

(22)), thanks to the boundary conditions (the fifth equation in (22)), we obtain the ”motion by
slice” decomposition

ν0
1

r
∂r(r∂rux) = O(ε) =⇒ r∂rux = O(ε) =⇒ ux(t, r, x) = ux,0(t, x) +O(ε),
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for some function ux,0. Noting

ux(t, x) =
1

|St,x|

∫
St,x

ux(t, r, x) dSt,x =
1

A(t, x)

∫ 2π

0

∫ R(t,x)

0
rux(t, r, x)dr dθ

as the mean speed of the fluid over a cross-section of the artery St,x where

(25) St,x =
{
x
−→
i + r−→e r(θ) ; r ∈ [0, R(t, x)[, θ ∈ [0, 2π[

}
and

(26) |St,x| = A(t, x) = πR(t, x)2,

we have the properties

(27) ux(t, r, x) = ux(t, x) +O(ε) and u2x(t, r, x) = ux
2(t, x) +O(ε).

Integrating the divergence equation (the first equation in (22)) over the section St,x (25), we
obtain

0 =
∫ 2π
0

∫ R
0 [∂r(rur) + ∂x(rux)] drdθ

= 2πRur(r = R) + ∂x

(∫ 2π
0

∫ R
0 rux

)
− 2π∂xRRux(r = R).

In view of the normal boundary condition (the fourth equation in (22)), we get the mass conservation
equation

(28) ∂tA+ ∂xQ = 0,

where

(29) Q(t, x) = A(t, x)ux(t, x) =

∫ 2π

0

∫ R

0
ruxdrdθ

is the blood flow rate through the section St,x of the artery.
Then, integrating the axial momentum equation (the third equation in (22)), we get∫ 2π

0

∫ R

0
r

[
∂tux +

1

r
∂r(rurux) + ∂x(ux

2) + ∂xp

]
drdθ

=

∫ 2π

0

∫ R

0
r

[
ν0
ε

1

r
∂r(r∂rux)

]
drdθ +O(ε)

yielding to ∫ 2π

0

∫ R

0
∂t(rux)drdθ + 2πRur(r = R)ux(r = R) +

∫ 2π

0

∫ R

0
∂x(ru2x)drdθ

+

∫ 2π

0

∫ R

0
∂x(rp)drdθ =

ν0
ε

2πR(∂rux)(r = R) +O(ε).

Using the definition of A (26) and Q(29), thanks to the normal boundary (the fourth, fifth, and
sixth equation in (22)), we have

∂tQ+ ∂x(Au2x) +

∫ 2π

0

∫ R

0
∂x(rp)drdθ = 2πRkux(r = R) +O(ε)

and thanks to the radial momentum equation (the second equation in (22)) and (27), we deduce
the equation of momentum

(30) ∂tQ+ ∂x

(
Q2

A
+Ap

)
= p∂xA+ 2πRk

Q

A
+O(ε)

8



Finally, from equation (24), (28) and (30), dropping all terms of the first order, we obtain the
following section-averaged one-dimensional model for blood flow

(31)


∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A +Ap
)

= p∂xA+ 2πRkQA ,

p = bR−R0

R2
0
.

1.2.3. Mathematical properties for the first order model. We have the following results

Theorem 1. Let (A, ux) and Q = Aux satisfy the one-dimensional blood flow system (31), we
have:

(1) System (31) is strictly hyperbolic on the set {A > 0}.
(2) For smooth (A, ux), in the region where A > 0, the mean velocity ux satisfies the head

equation

(32) ∂tux + ∂xψ(ux, p) = 2πRk
ux
A
,

where

(33) ψ(ux, p) =
ux

2

2
+ p

is the total head.
(3) For smooth (A, ux), the steady state reads

ux = 0, p = p0 for some constant p0.

In particular, for A = A0, we have p0 = 0.
(4) The pair of function (E ,E + p̃) with E := Aψ − p̃ forms a mathematical entropy pair for

system (31), in that they satisfy the following entropy relation for smooth (A, ux):

(34) ∂tE + ∂x((E + p̃)ux) = 2πRkux
2 ≤ 0

where p̃ = b
√
π

3A0

(
A

3
2 −A

3
2
0

)
.

(5) For ux such that ux(x = 0) = ux(x = L) = 0, the total energy in Ω, Etot(t) =
∫ L
0 E (t, x)dx

decreases and satisfies the inequality

d

dt
Etot =

2πRk

1− ε Rk4ν0

||ux||2L2([0,L]) ≤ 0.

Proof.
(1) To prove the hyperbolicity of system (31), we write

∂tU +H∂xU = S

where U =

(
A
Q

)
, H =

(
0 1

−Q2

A2 +A∂Ap 2QA

)
=

(
0 1

−Q2

A2 + b
√
π

2A0

√
A 2QA

)
, S =

(
0

2πRkQA

)
.

The eigenvalues of H read λ1(A,Q) = Q
A −

√
b
√
π

2A0
A

1
4 , λ2(A,Q) = Q

A +
√

b
√
π

2A0
A

1
4 and are

real and distinct for A > 0. Therefore, system (31) is strictly hyperbolic on the set {A > 0}.
(2) We rewrite the momentum (second) equation in system (31) in terms of (A, ux), with

ux = Q
A , as

∂t(Aux) + ∂x(Aux
2 +Ap) = p∂xA+ 2πRkux.

9



Applying the product rule to the first term of (30) and substituting in the conservation of
mass equation, we get

A∂tux − ux∂x(Aux) + ∂x(Aux
2) +A∂xp = 2πRkux.

Again, using the product rule, it follows

A∂tux +Aux∂x(ux) +A∂xp = 2πRkux.

Finally, dividing by A > 0, we get the head equation

∂tux + ∂xψ(ux, p) = 2πRk
ux
A
.

(3) Looking for still steady states, in the equation (32) for instance (or (31)), we have, ∂xψ(ux, p) =

0 meaning that ∂xp = 0, i.e., p = p0 for some constant p0. Recalling that p = b
√
π
√
A−
√
A0

A0
,

if A = A0, then we immediately deduce that p0 = 0. This steady state can be easily
preserved from a numerical point of view.

(4) To derive the entropy relation for system (31), we multiply the conservation of mass by ψ
which leads to

ψ∂tA+ ψ∂x(Aux) = 0,

then,

∂t(Aψ) + ∂x(Aψux)−A [∂tψ + ux∂xψ] = 0,

now, using the definition of ψ in (33), we get,

∂t(Aψ) + ∂x(Aψux)−A [ux (∂tux + ∂xψ) + ∂tp] = 0.

We use the momentum equation (32) to get,

∂t(Aψ − p̃) + ∂x(Aψux) = 2πRkux
2,

where p̃ =
∫
A∂Ap = b

√
π

3A0

(
A

3
2 −A

3
2
0

)
. We define the mathematical entropy E = Aψ − p̃

and we obtain

∂tE + ∂x((E + p̃)ux) = 2πRkux
2.

Finally, using that k < 0, we get consistent energy decay, meaning,

∂tE + ∂x((E + p̃)ux) ≤ 0.

(5) Integrating (34) between 0 and L, we get,

∂t

∫ L

0
E + [(E + p̃)ux]L0 = 2πRk

∫ L

0
ux

2,

which, when we suppose ux(x = 0) = ux(x = L) = 0 leads to,

d

dt
Etot(t) =

2πRk

1− ε Rk4ν0

||ux||2L2([0,L]) ≤ 0,

where Etot(t) =
∫ L
0 Edx is the total energy in Ω.

�
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1.2.4. Second order approximation of the dimensionless Navier-Stokes equations. We can improve
the order of accuracy of the section-averaged one-dimensional blood flow system (31) by determining
the first order correction depending on r in the expansion of ux(t, r, s) (see (27)). To do so, we
come back to equation (21) and gather all second-order terms in O(ε2), leading to,

(35)

1
r∂r(rur) + ∂xux = 0,

∂rp = εν0
[
2
r∂r(r∂rur) + ∂x(∂rux)− 2ur

r2

]
+O(ε2),

∂tux + 1
r∂r(rurux) + ∂x(ux

2) + ∂xp = ν0
ε

1
r∂r(r∂rux) + εν0

[
1
r∂r(r∂xur) + 2∂2xux

]
+O(ε2),

ur − ∂xRux = ∂tR,
1
εν0∂rux −Gkux +O(ε2) = −εν0

[
2∂xR (∂rur − ∂xux) + ∂xur − (∂xR)2∂rux

]
,

bR−R0
RR0

+ εν0 (2∂rur − ∂xR∂rux) = p+O(ε2).

Then, we remark on the axial momentum equation

ν0
ε

1
r∂r(r∂rux) = ∂tux + 1

r∂r(rurux) + ∂x(ux
2) + ∂xp+O(ε)

= ∂tux + r∂r
1
rurux + ur∂rux + 2ux∂x(ux) + ∂xp+O(ε)

= ∂tux + ur∂rux + ux∂x(ux) + ∂xp+O(ε)

= ∂tux + ∂x(ux
2

2 + p) +O(ε)

= 2πRk ux(r=0)
A +O(ε).

Multiplying by r and integrating from 0 to r, we get

ν0
ε
r∂rux = 2πRk

r2

2

ux(r = 0)

A
+O(ε),

and we obtain the following formula which gives a more detailed view of the axial velocity through
a parabolic correction

ux = ux(r = 0)

[
1 + ε

Rk

2ν0

( r
R

)2]
+O(ε2).

Then, integrating over a section St,x as defined in (25), we obtain

ux =

[
1 + ε

Rk

4ν0

]
ux(r = 0) +O(ε2),

meaning,

(36)
ux = ux

[
1− ε Rk4ν0

] [
1 + ε Rk2ν0

(
r
R

)2]
+O(ε2)

= ux

[
1− ε Rk4ν0

(
1− 2

(
r
R

)2)]
+O(ε2).

Moreover,

(37)

∫ 2π
0

∫ R
0 ru2xdrdθ =

∫ 2π
0

∫ R
0 rux

2
[
1− ε Rk4ν0

(
1− 2

(
r
R

)2)]2
+O(ε2)

= Aux
2 +O(ε2)

We write the pressure as follows

∂rp = εν
[
2
r∂r(r∂rur) + ∂x(∂rux)− 2ur

r2

]
+O(ε2)

= εν
[
2
r∂rur + 2∂2rur + ∂x(∂rux)− 2ur

r2

]
+O(ε2)

= εν
[
2∂r

ur
r + 2∂2rur + ∂x(∂rux)

]
+O(ε2)

= ∂r
(
εν0
(
2urr + 2∂rur + ∂xux

))
+O(ε2).

11



Integrating from R to r, we obtain

p = p(R) + εν0

[
2
ur
r

+ 2∂rur + ∂xux − 2
ur(R)

R
− 2∂rur(R)− ∂xux(R)

]
+O(ε2),

We now use the dynamic wall equation (the sixth equation in (35)) replacing p(R) by its expression,

p = b
R−R0

RR0
+ εν0

[
−∂xR∂rux(R) +

2

r
∂r(rur) + ∂xux − 2

ur(R)

R
− ∂xux(R)

]
+O(ε2),

and using the divergence equation (the first equation in (35)),

p = b
R−R0

RR0
+ εν0

[
−∂xR∂rux(R)− ∂xux − 2

ur(R)

R
− ∂xux(R)

]
+O(ε2).

We now use the tangential Navier boundary condition (the fifth equation in (35)), mainly that
∂rux(r = R) = O(ε) and the normal boundary condition at the wall (the fourth equation in (35))
yielding to

p = b
R−R0

RR0
+ εν0

[
−∂xux −

∂tA+ ∂xAux(R)

A
− ∂xux(R)

]
+O(ε2),

finally giving,

p = b
R−R0

RR0
− εν0∂xux(R) +O(ε2).

which can be approximated by

p = b
R−R0

R2
0

− εν0∂xux(R) +O(ε2)

as done in subsubsection 1.2.2 (see also equation (24)).
The left-hand side of the axial momentum equation (the third equation in (35)) can be integrated,

keeping in mind (36) and (37), as follows∫ 2π
0

∫ R
0 r

[
∂tux + 1

r∂r(rurux) + ∂x(ux
2) + ∂xp

]
drdθ

= ∂tQ+ ∂x(Q
2

A ) + 2π∂x
∫ R
0 rpdr − 2π∂xRRp(R) +O(ε2)

= ∂tQ+ ∂x(Q
2

A +AbR−R0

R2
0

)− εν0∂x(A∂x(ux))− 2π∂xRRp(R) +O(ε2)

The right-hand side of the axial momentum equation (the third equation in (35)) together with the
pressure term provides

2π∂xRRp(R) +
∫ 2π
0

∫ R
0 r

[
ν0
ε

1
r∂r(r∂rux) + εν0

[
1
r∂r(r∂xur) + 2∂2xux

]]
drdθ +O(ε2)

= 2π∂xRR
[
bR−R0
RR0

+ εν0 (2∂rur(R)− ∂xR∂rux(R))
]

+
[
2π ν0ε R∂rux(R) + 2πεν0

[
R∂xur(R) +R2∂2xux

]]
+O(ε2)

= ∂xAb
R−R0
RR0

+ 2πRkux(R)

+2πRεν0
[
2∂xR∂rur(R)− (∂xR)2∂rux(R)

]
−2πRεν0

[
2∂xR (∂rur(R)− ∂xux(R)) + ∂xur(R)− (∂xR)2∂rux(R)

]
+2πRεν0

[
∂xur(R) +R∂2xux

]
+O(ε2)

= ∂xAb
R−R0
RR0

+ 2πRkux(R) + 2εν0∂x(A∂xux) +O(ε2)

Finally, the section-averaged one-dimensional viscous model for blood flow reads,

(38)

{
∂tA+ ∂xQ = 0,

∂tQ+ ∂x(Q
2

A +Ap)− 3εν0∂x(A∂x(QA )) = ∂xAp+ 2πRk
1−ε Rk

4ν0

Q
A ,

12



resulting from an approximation in O(ε2) of the Navier Stokes equations. From now on, in these

equations, p stands for the pressure p = bR−R0

R2
0

. We emphasize that, at this order, the Coriolis-

Boussinesq coefficient α = u2x
ux2

is equal to 1. Our model differs from the existing ones from this

parameter, see for instance, [28].

1.2.5. Mathematical properties for the second order model. We have the following results

Theorem 2. Let (A, ux) and Q = Aux satisfy the one-dimensional blood flow system (38).

(1) For smooth (A, ux), in the region where A > 0, the mean velocity ux satisfies the head
equation

∂tux + ∂xψ(A, ux, x) = 3εν0
1

A
∂x (A∂xux) + 2πRk

ux
A
,

where ψ(ux, p) is the total head defined in (33).
(2) For smooth (A, ux), the steady state reads

ux = 0, p = p0 for some constant p0.

In particular, for A = A0, we have p0 = 0.
(3) The pair of function (E ,E + p̃) with E := Aψ − p̃ forms a mathematical entropy pair for

system (38), in that they satisfy the following entropy relation for smooth (A, ux):

∂tE + ∂x((E + p̃)ux) = 3εν0∂x (A∂xux)ux + 2πRkux
2.

where p̃ = b
√
π

3A0

(
A

3
2 −A

3
2
0

)
.

(4) For ux such that ux(x = 0) = ux(x = L) = 0, the total energy in our domain Etot(t) =∫ L
0 Edx decreases and satisfies

d

dt
Etot(t) = −3εν0

∫ L

0
A (∂xux)2 +

2πRk

1− ε Rk4ν0

||ux||2L2([0,L]) ≤ 0.

Proof.
(1) We rewrite the momentum (second) equation in system (31) in terms of (A, ux), with

ux = Q
A , as

∂t(Aux) + ∂x(Aux
2 +Ap) = 3εν0∂x (A∂xux) + p∂xA+ 2πRkux.

Applying the product rule to the first term of (30) and substituting in the conservation of
mass equation, we get

A∂tux − ux∂x(Aux) + ∂x(Aux
2) +A∂xp = 3εν0∂x (A∂xux) + 2πRkux.

Again, using the product rule, it follows

A∂tux +Aux∂x(ux) +A∂xp = 3εν0∂x (A∂xux) + 2πRkux.

Finally, dividing by A > 0, we get the head equation associated with system (31),

∂tux + ∂xψ(ux, p) = 3εν0
1

A
∂x (A∂xux) + 2πRk

ux
A
.

(2) We refer to the proof of 1.
(3) To derive the entropy relation for system (31), we multiply the conservation of mass by ψ

which leads to

ψ∂tA+ ψ∂x(Aux) = 0,
13



then,

∂t(Aψ) + ∂x(Aψux)−A [∂tψ + ux∂xψ] ,

now, using the definition of ψ in (33), we get,

∂t(Aψ) + ∂x(Aψux)−A [ux (∂tux + ∂xψ) + ∂tp] .

We use the momentum equation (32) to get,

∂t(Aψ − p̃) + ∂x(Aψux) = 3εν0∂x (A∂xux)ux + 2πRkux
2,

where,

p̃ =

∫
A∂Ap =

b
√
π

3A0

(
A

3
2 −A

3
2
0

)
.

We define the mathematical entropy E = Aψ − p̃ and remark

∂tE + ∂x((E + p̃)ux) = 3εν0∂x (A∂xux)ux + 2πRkux
2.

(4) Integrating (34) between 0 and L, we get,

∂t

∫ L

0
Edx+ [(E + p̃)ux]L0 = 3εν0

∫ L

0
∂x (A∂xux)ux + 2πRk

∫ L

0
ux

2,

which, when we suppose ux(x = 0) = ux(x = L) = 0 and use integration by parts leads to,

d

dt
Etot(t) = −3εν0

∫ L

0
A (∂xux)2 +

2πRk

1− ε Rk4ν0

||ux||2L2([0,L]) ≤ 0.

�

2. A Discontinues Galerkin method for convection-diffusion equations

In this section, we present a discontinuous Galerkin method to solve a general one-dimensional
convection-diffusion system of equations using the IIPG [10, 29, 6, 25] and the RKDG methods
[7, 8, 26, 27].

2.1. Model problem. Our aim is to construct a high-order numerical method for the blood flow
problem (38) derived in section 1. To this purpose, we propose a Discontinuous Galerkin approach
for one-dimensional convection-diffusion problem following [29, 7, 6]. Let us consider the following
non-linear one-dimensional convection-diffusion problem:

(39)


∂tu+ ∂xf − ∂x(g∂xu) = s, ∀(t, x) ∈]0, T ]×]a, b[,

u(t = 0, x) = u0(x),∀x ∈ [a, b]
u(t, x = a) = ua(t),∀t ∈ [0, T ]
u(t, x = b) = ub(t),∀t ∈ [0, T ]

where (ua(t), ub(t)) ∈ Rd × Rd are Dirichlet boundary conditions and u0(x) ∈ Rd is the initial
condition. Here, f(t, x, u) ∈ Rd is the convection component, g(t, x, u) ∈ Rd×d is the diffusive
component and s(t, x, u, ∂xu) ∈ Rd is the source term, where d = 1, 2 or 3.

Remark 2. For Neumann boundary conditions, one can refer to [29] and [7] for more details.
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2.2. Space discretization. Let a = x0 < x1 < · · · < xN = b be a partition of the interval [a, b]
and In = (xn, xn+1) where we define hn = xn+1 − xn. For the sake of simplicity, in what follows,
we consider h = hn, ∀n ∈ J0, N − 1K. The space of piecewise discontinuous polynomials of degree
p is

Vp([a, b]) = {v : v|In ∈ Pp(In) ∀n ∈ 0, . . . , N − 1} ,
where Pp(In) is the space of polynomials of degree p on the interval In. Defining v(x+n ) =
limε→0

ε>0
v(xn + ε) and v(x−n ) = limε→0

ε>0
v(xn − ε), the jump and the average of v at the endpoints of

In, ∀n ∈ J1, N − 1K, are defined by:

[v(xn)] = v(x−n )− v(x+n ), {v(xn)} =
1

2
(v(x−n ) + v(x+n )).

By convention, we also extend the definition of jump and average at the endpoints of the interval
[a, b] by

(40)
[v(xa)] = −v(x+a ), {v(xa)} = v(x+a ),
[v(xb)] = v(x−b ), {v(xb)} = v(x−b ).

For convenience, we define the numerical flux functions

(41)
f̂(t, x, v) = {f(t, x, v)}+ c

2 [v],
ĝ(t, x, v, ∂xv) = {g(t, x, v)∂xv} − σ

h [g(t, x, v)v],

where c = maxi=1,...,d |λi(t, xn, u)|, with λi, the eigenvalues of ∇uf , and σ > 0 a penalty parameter.

The numerical flux f̂(t, x, v) used for the advective component is the classical Rusanov flux [7] while
ĝ(t, x, v, ∂xv) yields to the well-known IIPG (Interior Incomplete Penalty Galerkin) [29].

2.3. Weak problem. To obtain, the weak formulation of equations (39), we multiply by v ∈
Vp([a, b]) and we integrate by parts on each interval In, to get∫ xn+1

xn
∂tuv −

∫ xn+1

xn
f(t, x, u)∂xv + f(t, xn+1, u)v(x−n+1)− f(t, xn, u)v(x+n )

+
∫ xn+1

xn
g(t, x, u)∂xu∂xv − g(t, xn+1, u)∂xuv(x−n+1) + g(t, xn, u)∂xuv(x+n )

=
∫ xn+1

xn
s(t, x, u, ∂xu)v.

By adding all N equations above, we obtain

(42)

∑N−1
n=0

∫ xn+1

xn
∂tuv −

∑N−1
n=0

∫ xn+1

xn
f(t, x, u)∂xv +

∑N
n=0[f(t, xn, u)v(xn)]

+
∑N−1

n=0

∫ xn+1

xn
g(t, x, u)∂xu∂xv −

∑N
n=0[g(t, xn, u)∂xuv(xn)]

=
∑N−1

n=0

∫ xn+1

xn
s(t, x, u, ∂xu)v,

where we used convention (40). The discrete problem is finding u solution of (42) for any v with
proper boundary conditions from (39). For the sake of simplicity, in what follows, we consider
d = 1. The generalization to d > 1 can be easily done and is left to the reader.

2.3.1. ODE system. Consider the following monomial basis functions of Pp(In) reading ∀i ∈ J0, pK,

(43) φni (x) =

[
2

h

(
x− xn+ 1

2

)]i
,

where xn+ 1
2

= 1
2 (xn + xn+1). Their derivative are d

dxφ
n
i (x) = 2

h i
[
2
h

(
x− xn+ 1

2

)]i−1
. We look for

an approximate solution uDG of (42) in Vp([a, b]) that we write, in the basis (43),

(44) uDG(t, x) =
N−1∑
m=0

p∑
j=0

φmj (x)Umj (t)1In(x),
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where the coefficients Umj are unknown time-dependent functions and 1In(x) is the characteristic
function of the set In.

We use the following notation for boundary conditions:

[uDG(xa)] = ua(t)− uDG(x+a ), [uDG(xb)] = uDG(x−b )− ub(t),
where ua and ub are the boundary conditions defined in (39), while, for v, the conventions described
in (40) are used.

Then, considering the approximations

[f(t, xn, uDG)v(xn)] ≈ f̂(t, xn, uDG)[v(xn)],

and,
[g(t, xn, uDG)∂xuDGv(xn)] ≈ ĝ(t, xn, uDG, ∂xuDG)[v(xn)],

in (42) where f̂ and ĝ are the numerical flux defined in (41), we look for uDG solution of
(45)∑N−1

n=0

∫ xn+1

xn
∂tuDGv −

∑N−1
n=0

∫ xn+1

xn
f(t, x, uDG)∂xv +

∑N
n=0 f̂(t, xn, uDG)[v(xn)]

+
∑N−1

n=0

∫ xn+1

xn
g(t, x, uDG)∂xuDG∂xv −

∑N
n=0 ĝ(t, xn, uDG, ∂xuDG)[v(xn)]

=
∑N−1

n=0

∫ xn+1

xn
s(t, x, uDG, ∂xuDG)v.

including the boundary conditions of (39) in ĝ(t, xk, uDG, ∂xuDG) and f̂(t, xk, uDG) for k = 0 and
k = N .

Keeping in mind the definition of uDG (44), equation (45) becomes, for i ∈ J0, pK,

(46)

∑N−1
n=0

∑p
j=0

(∫ xn+1

xn
φnj (x)φni (x)

)
∂tU

n
j (t) −

∑N−1
n=0

∫ xn+1

xn
f(t, x, uDG)∂xφ

n
i

+
∑N

n=0 f̂(t, xn, uDG)[vi(xn)]

+
∑N−1

n=0

∫ xn+1

xn
g(t, x, uDG)∂xuDG∂xφ

n
i (x)

−
∑N

n=0 ĝ(t, xn, uDG, ∂xuDG)[vi(xn)]

=
∑N−1

n=0

∫ xn+1

xn
s(t, x, uDG, ∂xuDG)φni (x)

where for 1 ≤ n ≤ N ,

[vi(xn)] = vi(x
−
n )− vi(x+n ) = φn−1i (xn)− φni (xn),

[vi(x0 = xa)] = −vi(x+a ) = −φ0i (xa) and, [vi(xN = xb)] = vi(x
−
b ) = φN−1i (xb).

Using those in (46), we obtain∑N−1
n=0

∑p
j=0

(∫ xn+1

xn
φnj (x)φni (x)

)
∂tU

n
j (t)−

∑N−1
n=0

∫ xn+1

xn
f(t, x, uDG)∂xφ

n
i

+
∑N

n=1 f̂(t, xn, uDG)φn−1i (xn)−
∑N−1

n=0 f̂(t, xn, uDG)φni (xn)

+
∑N−1

n=0

∫ xn+1

xn
g(t, x, uDG)∂xuDG∂xφ

n
i (x)−

∑N
n=1 ĝ(t, xn, uDG, ∂xuDG)φn−1i (xn)

+
∑N−1

n=0 ĝ(t, xn, uDG, ∂xuDG)φni (xn)

=
∑N−1

n=0

∫ xn+1

xn
s(t, x, uDG, ∂xuDG)φni (x),

which we rewrite as,∑N−1
n=0 M

n
ij∂tU

n
j (t) −

∑N−1
n=0 F

n
i (t, uDG) +

∑N−1
n=0 G

n
i (t, uDG) =

∑N−1
n=0 S

n
i (t, uDG),

where Mn
ij =

∫ xn+1

xn
φnj (x)φni (x),

(47) Fni (t, uDG) =

∫ xn+1

xn

f(t, x, uDG)∂xφ
n
i − f̂(t, xn+1, uDG)φni (xn+1) + f̂(t, xn, uDG)φni (xn),

(48)

Gni (t, uDG) =

∫ xn+1

xn

g(t, x, uDG)∂xuDG∂xφ
n
i (x)−ĝ(t, xn+1, uDG, ∂xuDG)φni (xn+1)+ĝ(t, xn, uDG, ∂xuDG)φni (xn),
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and,

(49) Sni (t, uDG, ∂xuDG) =

∫ xn+1

xn

s(t, x, uDG, ∂xuDG)φni (x).

Finally, we define,

(50)

F (t, uDG) = (Fni (t, uDG))i∈J0,pK, n∈J0,N−1K,
S(t, uDG, ∂xuDG) = (Sni (t, uDG, ∂xuDG))i∈J0,pK, n∈J0,N−1K,
G(t, uDG) = (Gni (t, uDG))i∈J0,pK, n∈J0,N−1K,
M = (Mn

ij)i∈J0,pK, j∈J0,pK, n∈J0,N−1K, m∈J0,N−1K,

U = (Unj )j∈J0,pK, n∈J0,N−1K.

This leads to the following system of ODE’s,

(51) M∂tU = F (t, U) + S(t, U)−G(t, U).

Remark 3.
(1) All integrals are computed using 2p+ 1 Gauss-Legendre quadrature points.
(2) The initial solution u0 of problem (39) is projected to get U0, i.e.,

N−1∑
n=0

p∑
j=0

∫ xn+1

xn

(U0)
n
j φj(x)φi(x) =

N−1∑
n=0

∫ xn+1

xn

u0(x)φi(x),

for all i in J0, pK, this leads to a linear problem, MU0 =
(∫ xn+1

xn
u0(x)φi(x)

)
i∈J0,pK, n∈J0,N−1K

.

3. Time discretization

In this section, we propose a time discretization based on the Additive Runge–Kutta (ARK)
methods applied to the ODE system (51) as done in [20, 31, 22] for instance.

3.0.1. ARK method. We recall the additive ARK methods derived in [20]. ARK methods are used
to solve equations of the form

(52) Ut =

D∑
m=1

F [m](t, U),

where F [m] are some functions. Let tk ∈ [0, T ] and ∆t a well-chosen step size, s-stage additive
Runge-Kutta methods reads, for i ∈ J1, sK,

K(i) = U (k) + ∆t
∑D

m=1

∑s
j=1 a

[m]
ij F

[m](tk + c
[m]
j ∆t,K(j)),

U (k+1) = U (k) + ∆t
∑D

m=1

∑s
i=1 b

[m]
i F [m](tk + c

[m]
i ∆t,K(i)),

Û (k+1) = U (k) + ∆t
∑D

m=1

∑s
i=1 b̂

[m]
i F [m](tk + c

[m]
i ∆t,K(i)),

where U (k) ≈ U(tk) is the approximate solution of (52) at time tk, U
(k+1) ≈ U(tk + ∆t) the

approximate solution at time tk+1 = tk+∆t at a certain order of accuracy and Û (k+1) ≈ U(tk+∆t)
another approximate solution at time tk+1 = tk + ∆t at a lower order of accuracy. Each of the

respective Butcher coefficients (a
[m]
ij )i∈J1,sK, j∈J1,sK, m∈J1,DK, (b

[m]
i )i∈J1,sK, m∈J1,DK, (c

[m]
i )i∈J1,sK, m∈J1,DK

and (b̂
[m]
i )i∈J1,sK, m∈J1,DK are constrained, at a minimum, by certain order of accuracy and stability

considerations discussed in [20]. s is the number of steps associated with the ARK method.
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3.0.2. Application to the ODE system. We rewrite the ODE (51) in the form of (52) leading to,

∂t(U) = M−1F [1](t, U) +M−1F [2](t, U),

where

(53) F [1](t, U) = F (t, U) + S(t, U), and F [2](t, U) = −G(t, U).

This leads to the following scheme,
MK(i) = MU (k) + ∆t

∑s
j=1

[
a
[1]
ij F

[1](tk + c
[1]
j ∆t,K(j)) + a

[2]
ij F

[2](tk + c
[2]
j ∆t,K(j))

]
,

MU (k+1) = MU (k) + ∆t
∑s

i=1

[
b
[1]
i F

[1](tk + c
[1]
i ∆t,K(i)) + b

[2]
i F

[2](tk + c
[2]
i ∆t,K(i))

]
,

MÛ (k+1) = MU (k) + ∆t
∑s

i=1

[
b̂
[1]
i F

[1](tk + c
[1]
i ∆t,K(i)) + b̂

[2]
i F

[2](tk + c
[2]
i ∆t,K(i))

]
.

We use the PID-controller from [20] to adapt ∆t with an upper-bound taken from [7] as in the
hyperbolic case. The maximal time step is given by

∆t =
cfl

2p+ 1

h

ck
,

where cfl ∈]0, 1], p is the polynomial degree, h, the spacial step size and c the characteristic
speed define as ck = maxn∈J0,N−1K |λ(tk, U

k, xn)|, with λ(t, u, x) the eigenvalues of ∇uf(t, u, x). An

explicit Runge–Kutta scheme is used for f [1] and a diagonally implicit one for f [2].
In this case, the scheme can be written as,

(54)



MK(i) −∆ta
[2]
ii F

[2](tk + c
[2]
i ∆t,K(i))

= MU (k) + ∆t
∑i−1

j=1

[
a
[1]
ij F

[1](tk + c
[1]
j ∆t,K(j)) + a

[2]
ij F

[2](tk + c
[2]
j ∆t,K(j))

]
,

MU (k+1) = MU (k) + ∆t
∑s

i=1

[
b
[1]
i F

[1](tk + c
[1]
i ∆t,K(i)) + b

[2]
i F

[2](tk + c
[2]
i ∆t,K(i))

]
,

MÛ (k+1) = MU (k) + ∆t
∑s

i=1

[
b̂
[1]
i F

[1](tk + c
[1]
i ∆t,K(i)) + b̂

[2]
i F

[2](tk + c
[2]
i ∆t,K(i))

]
.

This means we have s non-linear equations to solve. We use a fix-point method here to solve those,
meaning, we define the following recursion on r,

(55)
MK

(i)
r+1 −∆ta

[2]
ii F

[2](tk + c
[2]
i ∆t,K

(i)
r )

= MU (k) + ∆t
∑i−1

j=1

[
a
[1]
ij F

[1](tk + c
[1]
j ∆t,K(j)) + a

[2]
ij F

[2](tk + c
[2]
j ∆t,K(j))

]
,

with K
(i)
1 = U (k) while ||K(i)

r+1 −K
(i)
r || > ε for a given tolerance, ε (set to 10−12 in practice).

We use the following time scheme depending on p (see Table 1) and butcher tables which can be
found in [20] for instance.

p Time scheme
1 ARK3
2 ARK3
3 ARK4
4 ARK5

Table 1. Time schemes for different values of p
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3.1. Still-steady states solutions. We show in this section that one can easily obtain a well-
balanced scheme without modifying the numerical method contrary to the well-known existing
methods [24, 3, 18]. It can be achieved through a simple change of variables and the presented
method can also be applied to the Saint-Venant equations with classical approximate Riemann
Solver.

Let us introduce

a = A−A0.

One can transform the system (38) into the form

(56) ∂ta+ ∂xQ = 0,

and,

(57)
∂tQ+ ∂x

(
Q2

a+A0
+ (a+A0)P

)
− ∂x

(
3ν(a+A0)∂x

(
Q

a+A0

))
= P∂x(a+A0) + γ Q

a+A0
.

Then, we have the following property :

Proposition 1. The numerical scheme (54) preserves exactly the still-steady states solutions (see

1 and 2). Let us note U (k) be an approximation of U(tk). If U (0) = 0 then U (k) = 0 for all k > 0.
More precisely, the approximation of a and Q at time tk are 0.

Proof.
We want to prove that if (U (k))k is a sequence verifying equation (54) such that U (0) = 0, then,

U (k) = 0, ∀k > 0. In this proof, we justify only the case U (0) = 0 ⇒ U (1) = 0 since the proof at
rank k, U (k) = 0⇒ U (k+1) = 0, is a straightforward consequence.

Let us also remark that if u = 0 and ∂xu = 0, then F [1](t, 0) = F [2](t, 0) = 0 for all t > 0

which is the case when we consider the model (56) and (57) with f(t, x, u) = Q2

a+A0
+ (a + A0)P ,

g(t, x, u) = 3ν(a+A0), s(t, x, u, ∂xu) = P∂x(a+A0)+γ Q
a+A0

with u = (a,Q)t through the definition

of (41), (47), (48), (49), (50) and (53).

Assume that U (0) = 0, then in (54), for i = 1 we have

MK(1) −∆ta
[2]
11F

[2](t0 + c
[2]
1 ∆t,K(1)) = 0.

To obtain the value of K(1), we perform a fixed-point iteration (55). For r = 0, we have MK
(1)
1 = 0

yielding to K(1) = 0. For i = 2, K(2) satisfies

MK(2) −∆ta
[2]
11F

[2](t1 + c
[2]
1 ∆t,K(1)) = 0

yielding to, as K(1), to K(2) = 0. Then, recursively, we get K(i) = 0 for i = 1, . . . , s. As a
consequence, the second and third equation in (54), provide U (1) = 0 and Û (1) = 0.

�

4. Numerical test cases

In this section, we present some test cases for the Discontinuous Galerkin (DG) method on
convection-diffusion problems as presented in section 2. We deal with a scalar case in subsection 4.1
and the blood flow models (31) and (38) in subsection 4.2. The main objectives of these test cases
are to:

(1) Examine the behavior of the numerical scheme in the presence of degenerating parabolic
terms. This will involve testing the scheme’s performance when the diffusion component
becomes negligible or zero.
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(2) Assess the numerical convergence of the DG method. We aim to evaluate the accuracy
and stability of the method under various scenarios, including different grid resolutions and
complexities.

(3) Apply the DG method to the 1D blood flow models (31) and (38). This step will demon-
strate the method’s practical applicability in simulating real-world scenarios in blood flow
dynamics.

These test cases will provide insights into the efficacy and robustness of the DG method, par-
ticularly in handling challenges posed by convection-diffusion problems with varying degrees of
complexity.

4.1. Convergence order for scalar convection-diffusion equations. To test our numerical
scheme, we consider two test cases. The first one, presented in subsubsection 4.1.1 will highlight
the robustness of the scheme in scenarios where the exact solution gets close to a discontinuous
solution for diffusion coefficient smaller and smaller, with respect to the penalty parameters.

The second test case, presented in subsubsection 4.1.2 however is made to make the diffusion
tend to 0 in time to highlight how the scheme acts when the model has degenerate parabolicity.

4.1.1. Quasi-discontinuous solution. For this first test case, the following one-dimensional convection-
diffusion problem is considered:

(58)


∂tu+ ∂xu− ν∂xxu = 2

νu(1− u2),
u(x, 0) = tanh

(
x
ν

)
x ∈ [0, 1],

u(0, t) = tanh
(
− t
ν

)
t ∈ [0, 0.5],

u(1, t) = tanh
(
1−t
ν

)
t ∈ [0, 0.5].

The analytical solution is u(x, t) = tanh
(
x−t
ν

)
(shown in Figure 2). Following the notations from

section 2, we consider:

• f(u) = u: the convection term.
• g(u) = ν: the constant diffusion coefficient.
• s(u) = 2

νu(1− u2): the source term.

where ν is a strictly positive parameter.

Numerical solutions. In Figure 2, for σ = 100, we observe different behavior of the numerical
solution when the diffusion coefficient decreases. Indeed, as the diffusion coefficient ν decreases,
the solution approaches a discontinuity leading to high error in the numerical solution and the
accuracy of the solution can be improved using slope limiter [7].
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(a) ν = 0.1 (b) ν = 0.01

(c) ν = 0.001

Figure 2. Solution of (58) with degree p = 1 and at time t = 1
2

In the case of ν = 0.001, we observe, as shown in Figure 3 (to compare with Figure 2), the
smaller σ is, the better the results are accurate meaning that the automatization of the choice of
the parameter σ is relevant (as in [29]). Moreover, in the case of large viscosity, we will see that
the parameter σ is crucial to get accurate solution (see Figure 5).

Figure 3. Solution of (58) with degree p = 1 and at time t = 1
2 with ν = 0.001

and σ = 0

Numerical order. We proceed with the computation of the error ε to get the numerical order of
convergence where ε = ‖uexact − uDG‖l2([0,1]) with uexact the exact solution to the problem (58) and

uDG the solution obtained from the numerical scheme presented in section 2 at time t = 1
2 .
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In our convergence study, the numerical solution is computed for N = 16, 32, and 64. and the
results are given in Figure 4 for σ = 100. We also study the order with respect to the parameter σ
in Figure 5.

In Figure 4, we recover the usual numerical order no of the IIPG method (as in [29] for instance)

whenever the viscosity ν is large enough, i.e.
no = p+ 1 if p is odd
no = p if p is even

Whenever the viscosity is small, as shown in Figure 4, the numerical order of convergence is
almost 0.5, i.e. we recover the classical order for convection problem in the presence of discontinuity
or very sharp numerical solution.

(a) ν = 0.1 (b) ν = 0.01

(c) ν = 0.001

Figure 4. Numerical convergence order for different values of p and ν with σ = 100

Finally, to show the importance of the choice of the penalty parameter σ, Figure 5 show the
numerical order of convergence for different values of σ and ν with p = 1. For a high value of ν, a
high penalty parameter is required while, for the low value of ν, the penalty parameter should be
small. Automatization of the choice of the parameter σ is then relevant to get accurate numerical
simulation (as in [29], done in the case of a linear problem).
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(a) ν = 0.1 (b) ν = 0.01

(c) ν = 0.001

Figure 5. Numerical convergence order for different values of σ and ν with p = 1

4.1.2. Quasi-degenerate diffusion. For this second test case, the following one-dimensional convection-
diffusion problem is considered:

(59)



∂tu+ ∂x

(
u2

2

)
− νe−t∂xxu = 20(1− u2)(

x− 1
2 + (1 +40tνe−t)tu

)
,

u(x, 0) = 0 for x ∈ [0, 1],
u(0, t) = tanh(−10t) for t ∈ [0, 10],
u(1, t) = tanh(10t) for t ∈ [0, 10].

The analytical solution is u(x, t) = tanh
(
20t(x− 1

2)
)

(as shown in Figure 6). Following the
notations from section 2, the functions are defined as:

• f(u) = u2

2 : the convection term.
• g(u) = νe−t: the diffusion term.
• s(u) = 20(1− u2)(x− 1

2 + (1 + 40tνe−t)tu) : the source term.

For this test case, we set σ = 100 and ν = 0.01. Remark that, in (59), the parabolic part vanishes
exponentially, which leads to the hyperbolic part being dominant. Moreover, due to the definition
of the viscous numerical flux (see (41)), the penalty term vanishes, meaning that, we expect to
obtain an accurate solution given the observation in subsubsection 4.1.1.

As already mentioned in the previous test case subsubsection 4.1.1, these results could be im-
proved using slope limiters (see [7]). Finally, in Figure 7, we compute the numerical order of
convergence and we obtain the order of the RKDG scheme (see [7]) (i.e. if we approximate the
solution of problem (59) by a piecewise polynomial of order p, we obtain p+1 order of convergence).
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(a) t = 0.5 (b) t = 10.0

Figure 6. Solution of (59) with degree p = 1

Figure 7. errors for the test case (59) at t = 0.5

4.2. Test case for Blood Flow Systems. To solve the second order (viscous) one-dimensional
blood flow model (see section 1, equations (38)), we use the DG method presented in section 2.
Our aim is to compute the numerical order of convergence for a given exact solution and to show
that, under a suitable change of variable, the numerical scheme captures exactly the still-steady
states solutions. Moreover, we will also compare the non-viscous model to the viscous one.

4.2.1. Convergence Order. We consider the blood flow model

(60)

{
∂tA+ ∂xQ = 0,

∂tQ+ ∂x

(
Q2

A +AP
)
− P∂xA− 3ν∂x

(
A∂x

(
Q
A

))
= Kr

Q
A + SQ,

for which the exact solution is

(61) A(x, t) = 2 + cos(x) sin(t), Q(x, t) = − sin(x) cos(t).

In these equations, we have Kr = 2π Rk
1−Rk

4ν

= 422
15πν for the friction term and the source term is

given by

SQ =− 2 cos(t) cos(x)
Q

A
− β sin(x) sin(t)

2A0

√
A+

KrQ

A
+ sin(x) sin(t)

+ sin(x) sin(t)
Q2

A2
− 3ν

(
−Q+ 2

cos(x) sin(t)Q

A
+
Q3

A2
tan2(t)

)
,

where P = β
√
A−
√
A0

A0
is the pressure.
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For this test case, we consider the following initial and boundary conditions:

A(x, 0) = A0, Q(x, 0) = − sin(x),
A(0, t) = 2 + sin(t), Q(0, t) = 0,
A(2π, t) = 2 + sin(t), Q(2π, t) = 0,

and the following physical and numerical parameters in Table 2.

Parameter Value
β 1
A0 2
ν 0 or 1
T 0.5
L 2π
σ 100
cfl 0.5

Table 2. Physical and Numerical Parameters

We compute the error ε = ‖uexact − uDG‖l2([0,1]) with uexact the exact solution (61) and uDG the

solution obtained from the numerical scheme (presented in section 2) at time t = T .
Non-viscous case ν = 0 (see equations (60)): In Figure 8, we show the pressure and speed for
different values of N (4, 8, 16, 32) in the non-viscous case. In Figure 9, we compute the numerical
order of convergence for the pressure and speed for different polynomial degree p. We obtain
numerical order between p+ 1

2 and p+ 1 for both the pressure and the speed. As expected, those
results are similar to those obtained in the RKDG case [7].

(a) Pressure (b) Speed

Figure 8. Convergence study for the exact solution 61 in the nonviscous case at
time t = T
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(a) Pressure (b) Speed

Figure 9. Convergence order in the nonviscous case

Viscous case ν > 0 (see equations (60)): As done before, in Figure 10, we show the pressure and
speed for different values of N (4, 8, 16, 32) for the viscous model (60). In Figure 11, we obtain
numerical order between p+ 1

2 and p+ 1 when p is odd and from p− 1
2 to p+ 1

2 when p is even for
both the pressure and the speed. Those results are similar to those obtained in the IIPG case [29].

(a) Pressure (b) Speed

Figure 10. Convergence study for the exact solution (61) in the viscous case at
time t = T

(a) Pressure (b) Speed

Figure 11. Convergence order in the viscous case
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4.2.2. Still-Steady States Solutions. As done in subsection 3.1, one can transform the previous
system (60) into the equivalent form

∂ta+ ∂xQ = 0,

and,

∂tQ+ ∂x

(
Q2

a+A0
+ (a+A0)P

)
− ∂x

(
3ν(a+A0)∂x

(
Q

a+A0

))

= P∂x(a+A0) + γ
Q

a+A0
,

where

a = A−A0.

The main advantage of this formulation is that, as shown in subsection 3.1, we capture exactly the
still-steady states solutions. To show the ability of the scheme to capture those states, we consider
the following initial and boundary conditions:

A(x, 0) = A0(x), Q(x, 0) = 0,
A(0, t) = A0(0), Q(0, t) = 0,
A(L, t) = A0(L), Q(L, t) = 0

where A0(x) = π
(
R0 + (R1 −R0)e

−2(x−L
2
)2
)2

and

β(x) =

[
E0 +

E1 − E0

2
(tanh(10(x− 5))− tanh(10(x− 10)))

]
h
√
π

ρ(1− ξ2)
.

From a physical viewpoint, A0 represents a stenosis (as represented in Figure 12) and β represents
the elasticity distribution within the artery. We have used the physical and numerical parameters
in Table 3.

Parameter Value Unit Description

E0 3× 106 kg cm−1 s−2 Minimum Young modulus
E1 3× 108 kg cm−1 s−2 Maximum Young modulus
h 0.05 cm Thickness
ρ 1 kg cm−3 Density
ξ 0.0 Poisson coefficient
R0 0.5 cm Maximum radius
R1 0.3 cm Minimum radius
ν 0.03 cm2 s−1 Kinematic viscosity
T 0.25 s Final time
L 15 cm Artery’s length
σ 1 Penalty parameter
cfl 0.5 Cfl
N 32 Number of sub-intervals

Table 3. Physical and Numerical Parameters for the 1D steady-state solutions.

As expected and as shown in Figure 13, the still-steady states are exactly preserved.
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Figure 12. Artery Geometry

(a) Pressure (b) Speed

Figure 13. steady state solutions at t = T = 0.25

5. Concluding remarks and perspectives

In this work, we have presented the derivation of a new one-dimensional model for blood flows
including account additional viscous terms in comparison with existing models in the literature.
The model is derived from the axis-symmetric assumption for which the mean axis is assumed
straight and the effects of the curvature and torsion are neglected. In the case of the brain arteries,
those effects play an important role in the fluid dynamic of the blood and cannot be omitted and
more accurate models are required. This is the main topic of a forthcoming work. Furthermore,
we have presented a numerical method based on a Discontinuous Galerkin method (ARK - IIPG -
RKDG) to show its robustness and accuracy. However, as done in [29], the automatization of the
penalty parameter is crucial and the construction of such a method is still in progress in the case
of convection-diffusion problems. It is the topic of a forthcoming paper.
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Práger and Emil Vitásek , pages 17–33, Institute of Mathematics CAS, Prague, France, Nov. 2015. J. Brandts
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[31] Y. Xia, Y. Xu, and C. Shu. Efficient time discretization for local discontinuous galerkin methods. Discrete and
Continuous Dynamical Systems Series B, 8(3):677, 2007.

29
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