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Autoregressive conditional betas

F. Blasques∗, Christian Francq† and Sébastien Laurent‡

September 14, 2023

Abstract

This paper introduces an autoregressive conditional beta (ACB) model that allows
regressions with dynamic betas (or slope coefficients) and residuals with GARCH
conditional volatility. The model fits in the (quasi) score-driven approach recently
proposed in the literature, and it is semi-parametric in the sense that the distri-
butions of the innovations are not necessarily specified. The time-varying betas
are allowed to depend on past shocks and exogenous variables. We establish the
existence of a stationary solution for the ACB model, the invertibility of the score-
driven filter for the time-varying betas, and the asymptotic properties of one-step
and multistep QMLEs for the new ACB model. The finite sample properties of these
estimators are studied by means of an extensive Monte Carlo study. Finally, we also
propose a strategy to test for the constancy of the conditional betas. In a financial
application, we find evidence for time-varying conditional betas and highlight the
empirical relevance of the ACB model in a portfolio and risk management empirical
exercise.

Keywords: Score driven model, Time-varying parameters, GARCH model, Betas.
JEL: C01, C22, C58.

1 INTRODUCTION

The introduction of time-dependent variance models has revolutionized time series ap-
plications, especially in finance, which is an area where conditional means can sometimes
be assumed to be constant (and even zero), but variances cannot. Much more recently,
it has been realized that the betas of regression models, such as those used in finance for
hedging or portfolio selection, are varying over time. In this paper, we propose and study
time-varying beta models which, like GARCH models, have updating and persistence
mechanisms.
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Failing to account for time-varying betas yields poor predictions and biased selection
rules. An active literature has developed different models and methods to account for
time-varying betas - we review this literature in detail below. However, existing ap-
proaches suffer from two main limitations: either they lack updating and persistence
mechanisms or their implementation is computationally challenging. Our new model ad-
dresses these limitations. We study in details their statistical properties and show that
these models can be estimated using a multistep QML estimator, making their estimation
straightforward.

Consider a time series {yt}t∈Z (e.g., financial returns) that depends linearly on a set
of p exogenous variables xt = (x1,t, . . . , xp,t)

′. Linear regression models play an important
role in economics and finance. However, the assumption of constancy for the parameters
can be inappropriate in a number of applications. When the slope (betas) and variance
parameters of the model are time-varying, the model can be specified as follows:

yt = β1,tx1,t + · · ·+ βp,txp,t + vt, vt = gtηt, (1)

where gt is the conditional volatility of yt and ηt is an i.i.d. random variable with mean
0 and unit variance.

If the conditional betas are time-varying but incorrectly assumed to be constant, this
can lead to inaccurate forecasts and poor decision-making. In such a case, it is therefore
desirable to render the betas as time-varying parameters. To do so, several solutions have
been proposed in the literature.

The simplest method to obtain time-varying estimates of the betas is to estimate the
model on rolling windows, as in Fama and MacBeth (1973), in the context of the CAPM
model in finance. Practitioners appreciate the fact that the estimated coefficients ob-
tained with this method are very smooth by construction. This method gives the illusion
of producing dynamic conditional betas. However, under the stationarity assumption,
the ordinary least squares (OLS) estimator targets the marginal (constant) betas and
the time-varying estimates are the result not only of possible variation in the conditional
information, but also from statistical uncertainty due to the limited dimension of the
window.

Interaction variables can also be used to introduce dynamics into betas, for instance,
as in Gagliardini et al. (2016). This method has the advantage of simplicity, but it also
requires the availability and selection of suitable variables to drive the entire dynamics of
the betas. The main drawback of this approach is that conditional betas can only inherit
memory from the selected covariates, since they do not depend on their own past values.
The ACB model proposed in this paper is an attempt to overcome this problem.

Occasionally, data are available at a higher frequency than that needed for betas
to be estimated (e.g., the intraday returns to compute daily betas). In such settings,
Barndorff-Nielsen and Shephard (2004) introduce the concept of realized betas that builds
upon realized volatility and covariance measures. Realized betas are used in Patton and
Verardo (2012) and Boudt et al. (2017), among other works while Ait-Sahalia et al.
(2020) study their theoretical properties in the context of a multiple linear regression
model. The main drawback of this approach is that data are not always available to
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compute realized betas. Furthermore, realized betas are known to be very noisy when
computed during short windows of time (e.g., daily realized betas computed on 5-minute
data). For instance Ait-Sahalia et al. (2020) average daily realized betas at a monthly
frequency to obtain smoother trajectories of the realized betas. Note also that unlike
realized betas, conditional betas obviously depend on the conditioning information that
is available. In this paper, the information set contains the past values of the dependent
variable and of covariates.

State space models are also commonly used to obtain time-varying betas, where the
betas are either assumed to be mean reverting but most often follow random walks.
As described, for instance, in Hamilton (1994) and Durbin and Koopman (2001), the
estimation of state space models is accomplished using Gaussian ML and requires the
application of the Kalman filter. There are, however, technical and numerical challenges
with the implementation of state space models, especially when dealing with nonlinear
parameter updates and/or non-Gaussian innovations. By suggesting a QMLE method
and an observation-driven score-updating procedure, we achieve a substantially simpler
and easier model implementation. Note also that the state space models involve two
latent noises and produce stochastic time-varying betas which are not measurable with
past observations, and are thus difficult to interpret and compare with the conditional
betas.

Building upon the work of Bollerslev et al. (1988), Engle (2016) introduce the dynamic
conditional beta (DCB) model. This model allows for the retrieval of the time-varying
betas from an estimate of the full conditional covariance matrix Σt using a multivariate
GARCH model estimated on both the endogenous variable yt and the p explanatory vari-
ables xt in the model. This approach is very intuitive because it relies on a conditional
version of the OLS estimator, where the unconditional covariance matrix of x and the
unconditional covariance matrix of y and x are replaced by their conditional counterparts
extracted from Σt. However, this approach also presents some major drawbacks. First,
testing and imposing the constancy of the conditional betas is sometimes impractical.
Second, while it is possible to introduce exogenous variables into the model, it is impos-
sible to identify precisely which variables influence the evolution of the different betas.
Third, the estimated conditional betas are often found to be highly volatile.

Darolles et al. (2018) propose a new multivariate GARCH model, called Cholesky-
GARCH (CHAR), where the conditional covariance matrix Σt of a (p+ 1)–dimensional
system is obtained from a modelization of its Cholesky decomposition. The elements of
this decomposition are obtained from a system of p+ 1 linear models with time-varying
betas, whose values depend on a constant, their lags and past shocks. It was found
that the CHAR model outperforms a model with constant betas and the DCB model
of Engle (2016). Grassi and Violante (2022) propose a block-CHAR model with time-
varying betas between a set of regressands and a set of regressors. The drawback of the
CHAR approach is, however, that it requires estimating the full multivariate system (as
in the DCB model) even when there is only one equation of interest. For instance, the
conditional betas of the last equation (which is similar to (1)) require the estimation of p
models (one for each exogenous variable). Furthermore, Darolles et al. (2018) and Grassi
and Violante (2022) do not allow exogenous variables to enter into the conditional beta
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equations.
In this paper, we propose a new and flexible model, which we call the autoregressive

conditional beta (ACB) model. In the ACB model, the conditional betas are obtained
using a score-driven (SD) or quasi score-driven (QSD) updating equation featuring an
additional set of q predetermined exogenous variables. The SD approach, developed
by Harvey and Chakravarty (2008) and Creal et al. (2012), relies on a scaled score to
drive the time variation in conditional moments. Blasques et al. (2023) propose the class
of QSD models that allows for the design of updating equations which are not linked
to the density of the error term. This extension is important to explain key empirical
regularities observed in the data, and achieves improved empirical performance in certain
applications. Unlike the CHAR, the ACB model does not require the estimation of a
system of equations with time-varying betas but only the equation of interest plus p
univariate GARCH models when the explanatory variables display volatility clustering.
The p univariate GARCH models play an important role in obtaining smoother betas,
as they regulate the step size in the updating equation for the betas. In particular, in
periods of high volatility in the regressors, the betas are updated more conservatively
than in periods where the regressors are less volatile. This ultimately leads to a model
that performs well empirically and filtered betas that are more stable and less noisy than
those obtained with a DCB model, for instance. Although the ACB model features a QSD
update constructed from a Gaussian score function, the model is studied and estimated
without assuming any particular distributions for the innovation processes, as allowed by
the QSD methodology. This approach is therefore semi-parametric and can, for instance,
accommodate fat-tailed innovations.

The remainder of the paper is structured as follows. Section 2 presents the model and
its properties (i.e., the stationarity and invertibility properties). The estimation of this
model is studied in Section 3. Our main theoretical results are stated in Sections 2 and
3, but their proofs are relegated to the online supplement. Section 4 studies in greater
detail the finite sample properties of the multistep QMLE method of the ACB model via
a Monte Carlo simulation. The empirical application is presented in Section 5. Section 6
concludes the paper. The main assumptions are gathered in the appendix. Finally, the
online supplement also contains additional Monte Carlo simulation results and a second
application.

2 ACB MODEL AND ITS PROPERTIES

2.1 ACB updating equations

In time series, a model often refers to a data generating process (DGP) or a filter used
for estimation or prediction. Where ambiguity is possible, we will use the terminology of
ACB process to refer to a time series generated by the ACB model. The ACB model is a
regression model with (Q)SD time-varying betas, as in (1), where the updating equation
of the conditional betas is obtained from a Gaussian score function. The model also
allows for heteroskedastic errors and stochastic regressors displaying GARCH dynamics.
Specifically, we assume that each of the p regressors xi,t (i = 1, . . . , p) has conditional
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mean µi,t and conditional variance g2i,t; i.e., xi,t = µi,t + gi,tεi,t, where εi,t is an i.i.d.
random variable with mean 0 and unit variance. The ACB model is based on the score-
driven approach, which has been successfully applied in many fields. More than 280
papers are referenced on the website gasmodel.com; these models have applications in
financial econometrics (credit risk modeling, stock volatility and correlation modeling,
modeling time-varying dependence structures, CDS spread modeling, systemic risk, and
high-frequency data), macroeconomics, and public health, among others.

Assume that yt follows a conditional density p(yt|ft,Ωt, θ) ∀ t ∈ Z, where ft is a
time-varying parameter of interest and Ωt is the information set available at time t. A
QSD model for ft features an autoregressive updating equation of the following form:

ft+1 = ϖ + ξS(ft)st(ft) + cft, (2)

where ϖ, ξ and c are unknown parameters to be estimated, S(ft) is a scaling function,
and st(ft) is a partial derivative of a loss function of interest with respect to ft. In
the special case where the loss function corresponds the conditional log-likelihood of yt
given its past, we obtain a SD model, where st(ft) =

∂ log p(yt|ft,Ωt,θ)
∂ft

is the score of the
predictive likelihood with respect to ft.

The SD literature does not prescribe a specific scaling function S(ft). While Blasques
et al. (2015) note that the scaling function should be bounded away from zero S(f) > 0 ∀f
for their optimality results to hold, those results are only applicable for univariate filters
and do not extend to the current multivariate setting. In practice, the SD model literature
is rich in scaling matrices. Examples include unit/identity scaling (Blasques et al., 2015);
inverse information scaling (Creal et al., 2010); square root inverse information (Creal
et al., 2011); Moore-Penrose pseudo-inverse (Bazzi et al., 2017). Similarly, the QSD
model approach allows also for flexibility in the choice of the scaling matrix.

For the ACB model, we specify an updating equation for the time-varying betas which
corresponds to a SD update when the regression error ηt is i.i.d. N (0, 1). Further, the
scaling of the score corresponds to a ‘diagonalized’ inverse information, i.e., one which
holds for a regression with independent regressors. Alternatively, the ACB can be seen
as a QSD model where the update is derived using a Gaussian log-likelihood as a loss
function, regardless of the distribution of the regression error ηt.

In the context of the linear regression model in (1), assuming that ηt i.i.d. N (0, 1),
the log-likelihood contribution at time t is given by

lt = −1

2

{
v2t
g2t

+ log(g2t )

}
, vt = yt −

p∑
i=1

βi,txi,t. (3)

This implies that ∂lt
∂βi,t

=
vtxi,t

g2t
while the inverse of the information matrix for orthogonal

regressors is

S(βi,t) = −
(
Et−1

∂2lt
∂2βi,t

)−1

=
g2t

µ2i,t + g2i,t
.

Other choices for the scaling function are possible, like the identity or the inverse-square-
root Fisher, but we found these specifications to be inferior than the one based on the
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inverse Fisher (i.e., much lower log-likelihoods) when applied to the data used in the
empirical application.

The ACB model uses an update for the betas of the form S(βi,t)
∂lt
∂βi,t

=
vtxi,t

µ2
i,t+g2i,t

. We
note that, in line with the QSD modeling approach, the adoption of this scaling matrix
does not imply any statement on the independence of the regressors, but rather, we
take a simple and convenient scaling function which delivers an update which works well
empirically.

An extended QSD updating equation for the i-th (i = 1, . . . , p) time-varying beta in
(1), featuring q additional exogenous variables z1,t, . . . , zq,t, is thus given by

βi,t+1 = ϖi + ξi
vtxi,t

µ2i,t + g2i,t
+ ciβi,t + γ1,iz1,t + · · ·+ γq,izq,t. (4)

This updating equation is intuitive, as the term vtxi,t implies that the QSD update
attempts to obtain values for the beta parameter for which the residual term vt becomes
orthogonal to the regressor xi,t so that xi,t is not only unconditionally uncorrelated with
vt but also conditionally uncorrelated.1 If, for instance, βi,t is undervalued, then

vtxi,t = ytxi,t −
∑
j ̸=i

βj,txi,txj,t − βi,tx
2
i,t > 0.

Therefore, if βi,t is too small and ξi > 0, then βi,t+1 tends to increase.2 The model thus
allows dynamic monitoring of the orthogonality condition between the error term of the
regression and the regressors. Additionally, by scaling vtxi,t by the time-varying quantity
(µ2i,t + g2i,t)

−1, the score-driven update ensures that the updating step size for the beta
parameter is smaller when the regressor xi,t is more volatile (i.e., when it features high
conditional volatility g2i,t). This makes the filtered beta less noisy and, in some sense,
more robust to clusters of volatility in the regressors.

Naturally, when a regressor xi,t is i.i.d., then a time series model does not need to be
fitted to filter the conditional mean and volatility of xi,t, since we have that µi,t+1 = µi
and g2i,t+1 = g2i . For such regressors, the scaling term µ2i + g2i can also be removed, as
the parameter ξi can be estimated accordingly. For this reason, it may be important
to test for the presence of serial correlation and GARCH effects in the regressors when
specifying the ACB model. In the case of an i.i.d. i-th regressor, the updating equation
for the corresponding time-varying beta is thus given by

βi,t+1 = ϖi + ξivtxi,t + ciβi,t + γ1,iz1,t + · · ·+ γq,izq,t,

where in this case ξi absorbs the effect of (µ2i + g2i )
−1. Given that we allow for multiple

regressors, the ACB model takes the form of a multivariate (Q)SD updating equation
and is closely related to a SD update (albeit with added regressors z1,t, . . . , zq,t). A

1Lange et al. (2022) propose an observation-driven modelling framework that permits time variation
in the model’s parameters using a proximal-parameter (ProPar) update. Interestingly, they applied this
framework to the modelling of a single conditional beta and also found that vtxi,t is a key variable driving
the dynamic of the conditional beta.

2Even if ξi > 0 is natural, we will not impose any sign constraint on the coefficients.
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multivariate version of the optimality results in Blasques, Koopman, Lucas (2015, 2018)
is missing in the (Q)SD literature. As such, existing results are not directly applicable to
the current model. We further note that one faces substantial difficulties in empirically
verifying the sufficient conditions required for optimality in Blasques, Koopman, Lucas
(2015, 2018). As a result, the score update cannot be theoretically justified by existing
optimality results and the proposed dynamic model should be judged empirically on its
own merits. As we shall see, the current ACB model joins a wide range of multivariate
SD filters which have nonetheless been proposed in the literature and used successfully
in applications.

We further note that the ACB model also allows for the addition of a time-varying
intercept in the regression equation. In particular, this happens when a regressor xi,t is
constant and more particularly when x1,t = 1 ∀ t. In such a setting, the time-varying
beta β1,t plays the role of a time-varying intercept. In this case, the resulting updating
equation is given by

β1,t+1 = ϖ1 + ξ1vt + c1β1,t + γ1,1z1,t + · · ·+ γq,1zq,t.

Note that the updating mechanism of the previous equation is very simple because µ21 = 1
and g21 = 0. Example 1 below shows that ARMA(1,1) belongs to the family of ACB
models.

Example 1 (ARMA(1, 1)). Assume that p = 1, q = 0 and x1t = 1 ∀t. Model (1) with
conditional betas that follow (4) can be rewritten as yt = ϖ1 +(ξ1 − c1)vt−1 + c1yt−1 + vt
and therefore is an ARMA(1,1) model with GARCH effects.

2.2 Stationarity and invertibility of the ACB model

In this section, we establish the stationarity of data generated by the ACB model and the
invertibility of the filters for both the time-varying conditional betas and the conditional
volatilities.

It is important to highlight that the proposed model specification, including the Gaus-
sian score, and the scaling by a ‘diagonalized’ inverse information matrix, was carefully
selected so that one can show that the filtering theory holds. Specifically, the results that
follow are achievable in part because, as we shall see, the specification is such that the
filtering equations are related to each other according to a specific order, meaning that
they can be analyzed sequentially. In particular, we note that (i) the conditional volatil-
ities of the regressors do not depend on other filtered parameters, (ii) the conditional
betas depend on the filtered conditional volatilities of their regressor only, and (iii) the
conditional volatility of the observation equation’s error depends on all the other filters.

Let zt = (z1,t, . . . , zq,t)
⊤ be the vector of covariates and Ft the sigma field generated

by {ηu, ϵ⊤u , z⊤
u , u ≤ t}. For simplicity, we assume a constant conditional mean and a
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GARCH(1,1) volatility for the regressors, and consider the DGP:

yt = β1,tx1,t + · · ·+ βp,txp,t + vt, vt = gtηt, (5)

βi,t+1 = ϖ0i + ξ0i
vtxi,t

µ20i + g2i,t
+ c0iβi,t + γ01,iz1,t + · · ·+ γ0q,izq,t, (6)

g2t+1 = ω0 + α0v
2
t + β0g

2
t , (7)

xi,t = µ0i + gi,tεi,t, (8)

g2i,t+1 = ω0i + α0i (xi,t − µ0i)
2 + β0ig

2
i,t (9)

with ϖ0i, ξ0i, c0i, γ0j,i, µ0i ∈ R for i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, ω0 > 0, α0 > 0,
β0 ≥ 0, ω0i > 0, α0i > 0 and β0i ≥ 0 for i ∈ {1, . . . , p}. The following proposition
provides conditions for the existence of a stationary solution to the time series process
defined by (5)-(9).

Proposition 1 (Stationarity of the ACB process). Under A1-A3 in the appendix, there
exists a unique stationary, ergodic and Ft-measurable sequence
(yt, β1,t+1, . . . , βp,t+1, g

2
t+1) satisfying (5)-(7). Moreover, the components of the previous

vector admit small-order moments.

The previous proposition illustrates an advantage of the ACB approach compared to
the DCB of Engle (2016): the stationarity conditions are obvious. Indeed, under stan-
dard constraints on the parameters of the univariate volatilities of the regressors and of
the errors term of the regression, the vector (vt, x1,t, . . . , xp,t) is stationary and ergodic.
When |c0i| < 1, βi,t inherits these properties, regardless of the values of the other pa-
rameters. This contrasts with the DCC process (often used in the DCB approach) whose
stationarity—and more specifically ergodicity—are notoriously difficult to study.

In the rest of the article, we assume that the DGP of {yt}t∈Z and {xi,t}t∈Z for i =
1, . . . , p is given by (5)-(9). Obviously, the theoretical results of this article no longer hold
if the DGP is not the one assumed. However, we have performed numerical experiments
showing that the results are not radically changed if, for example, the volatility of the
regressors is not a standard GARCH(1,1), but follows a more complicated specification.
Let φ0 be the vector of the true value of all the parameters of the DGP and Θφ be
the parameter space, which extends the positivity constraints of φ0 to all its elements.
Under the assumptions of Proposition 1, let (yt,x

⊤
t , z

⊤
t ) be a stationary, ergodic and

Ft-measurable solution to (5)-(9). The sigma field generated by the past observations
{yu,x⊤

u , z
⊤
u , u ≤ t} is denoted by F∗

t . For φ ∈ Θφ, we now study the existence of the
F∗
t -measurable solutions

Y t(φ) :=
(
g21,t+1(φ), . . . , g

2
p,t+1(φ), g

2
t+1(φ), β1,t+1(φ), . . . , βp,t+1(φ), vt(φ)

)
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to the filter

vt(φ) = yt − β1,t(φ)x1,t − · · · − βp,t(φ)xp,t, (10)

βi,t+1(φ) = ϖi + ξi
vt(φ)xi,t

µ2i + g2i,t(φ)
+ ciβi,t(φ) + γ1,iz1,t + · · ·+ γq,izq,t, (11)

g2t+1(φ) = ω + αv2t (φ) + βg2t (φ), (12)

g2i,t+1(φ) = ωi + αi(xi,t − µi)
2 + βig

2
i,t(φ). (13)

Note that while Equations (5)-(9) seem deceptively similar to those in (10)-(13), they are
crucially different in key aspects. First, Equations (5) and (7) make statements about how
the data yt and xt are generated, and take εi,t and vt = gtηt to be innovations which bring
randomness to the DGP. These equations are thus different from the filtering updates
in (10)-(13). Second, the filtering equations do not rely on the unobserved εi,t and vt.
Instead, they use observed data only, i.e., empirical counterparts (xi,t − µi) and vt(φ)
defined in (11), which are crucially different in nature. For example, vt(φ) will generally
not be an uncorrelated innovation for φ ̸= φ0. This may lead to different dynamics which
are the focus of Proposition 2. Further, even at φ0, the initialized filter will be such that
even ṽt(φ0) ̸= vt a.s. at any t. This is the focus of Proposition 3.

Let g2
t (φ) =

(
g21,t(φ), . . . , g

2
p,t(φ)

)⊤. Note that if it exists, the time-varying beta
parameter βt = (β1,t(φ), . . . , βp,t(φ))

⊤ satisfies a stochastic recurrence equation (SRE)
of the form

βt+1 = ψφ(yt,xt, zt, g
2
t (φ);βt) = ψt(φ;βt) (14)

for some measurable function ψφ : Rp+q+1 × (0,∞)p × Rp → Rp. Applying the general
theory of the SREs developed in Bougerol (1993) and Straumann and Mikosch (2006),
we obtain the following result.

Proposition 2 (Stability of the ACB filter). Let {yt,x⊤
t , z

⊤
t }t∈Z be stationary and er-

godic with a finite small-order moment, and suppose that A4 holds. Then, for all φ ∈ Θφ,
there exists a unique, strictly stationary, ergodic and F∗

t -measurable solution {Y t(φ)}t∈Z
to (10)-(13).

The results in Proposition 2 assume that the regressors are stationary and ergodic.
A high-level assumption of this nature is broadly in line with standards of the regression
and SD literature. In practice, one may also proceed by assuming a specific dynamic
DGP for the regressors which leads to primitive testable conditions.

In practice, the vector Y t(φ) defined in Proposition 2 must be approximated by a
measurable function of the available past observations {yi,x⊤

i , z
⊤
i } for i = 1, . . . , t. To

achieve this, let us choose starting values g̃2i,1(φ) = g̃2 ≥ 0 and

g̃2i,t+1(φ) = ωi + αi(xi,t − µi)
2 + βig̃

2
i,t(φ) for t ≥ 1.

For all starting values β0 ∈ Rp and g̃2 ∈ [0,∞), β̃t is defined by β̃1 = β0 and

β̃t+1 = ψ̃t(φ; β̃t) for t ≥ 1,
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where ψ̃t(·) is obtained by replacing the g2i,t(φ) values with the g̃2i,t(φ) values in ψt(·).
Straumann and Mikosch (2006) called this the perturbed SRE. Note that the sequence
of stochastic recurrence equations {ψ̃t(·)}t∈N in the perturbed SRE is not stationary
and ergodic. Similarly, g̃2t (φ) is defined with an arbitrary positive initial value, and
ṽt(φ) = yt− β̃

⊤
t xt. Replacing the elements of Y t(φ) with their “tilde” version, we obtain

Ỹ t(φ). Proposition 3 shows that
∥∥∥Ỹ t(φ)− Y t(φ)

∥∥∥ converges exponentially fast to zero
uniformly over Θφ.

Proposition 3 (Invertibility of the ACB model). Let the assumptions of Proposition 2
hold, and suppose that E supφ∈Θφ

∥Y t(φ)∥s < ∞ for some s > 0. Then, there exists
ϱ ∈ (0, 1) such that, as t→ ∞, a.s.

ϱ−t sup
φ∈Θφ

∥∥∥β̃t − βt

∥∥∥→ 0, (15)

and

ϱ−t sup
φ∈Θφ

{∣∣g̃2t (φ)− g2t (φ)
∣∣+ p∑

i=1

∣∣g̃2i,t(φ)− g2i,t(φ)
∣∣+ |ṽt(φ)− vt(φ)|

}
→ 0. (16)

Proposition 3 ensures that the ACB model is uniformly invertible (i.e., that the fil-
ter of the time-varying parameters converges almost surely and exponentially fast to a
unique limit solution regardless of the initialization of the filter) and that this result holds
uniformly over the parameter space Θφ. As shown in Section 3, this property is essential
for finding a consistent estimator of φ0 and for using the model in practice.

2.3 Empirically checking the invertibility of the ACB

Note that Ỹ t(φ) = Ỹ t(φ, y0) depends on the vector of initial values y0 = (g̃2,β0).
Since the initial values are arbitrarily fixed, to use the ACB model in practice, the
dependence of Ỹ t(φ, y0) on y0 must vanish for large t. Note that such invertibility is-
sues generally hold for time series models based on nonlinear SRE. In particular, the
invertibility of the EGARCH has been studied by Wintenberger (2013) and Blasques
et al. (2018a) studied the invertibility of more general SD models. Propositions 2–
3 show that the model is uniformly invertible when A4 is satisfied. The condition
E log supφ∈Θφ

∥∥∥∏k
j=1 Λt−j+1(φ)

∥∥∥ < 0, where Λt(·) is defined in A4 and k ≥ 1, is in-
feasible, but the expectation can be approximated by

1

n

n∑
t=k

log sup
φ∈Θφ

∥∥∥∥∥∥
k∏

j=1

Λ̃t−j+1(φ)

∥∥∥∥∥∥ , (17)

for k ≤ n, where Λ̃t(φ) is the p× p matrix whose entry on the i-th row and j-th column
is − ξixi,txj,t

µ2
i+g̃2i,t(φ)

+ ci1{i=j}. Note however that the evaluation of (17) is time-consuming,
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since it requires numerically computing n suprema. For this reason, we focus on

∆n(φ, k) =
1

n

n∑
t=k

log

∥∥∥∥∥∥
k∏

j=1

Λ̃t−j+1(φ)

∥∥∥∥∥∥ , (18)

for some particular values of φ. Obviously, if limn→∞∆n(φ, k) > 0 a.s. for any k ≥ 1 and
any operator norm, then A4 cannot hold true. For the numerical illustrations presented
below, we used the spectral operator norm (since it tends to produce smaller values of
∆n(φ, k) than with the operator norms induced by the ℓ1 or ℓ∞ vector norms). If the
empirical mean in (18) is found significantly negative (for instance by recalculating it over
several sub-samples) for some k, the ACB model can be estimated (see Section 3 below)
and used for forecasting when Θφ is contained in some sufficiently small neighborhood of
φ (by continuity arguments). As A4 is only a sufficient condition for invertibility, and
also because it is always good to do robustness exercises, the previous analysis can be
supplemented by the study of trajectories t 7→ e⊤i Ỹ t(φ, y0), where ei is the i-th column
of the identity matrix of size 2(p + 1), as function of y0 (as done for instance in Figure
4.1 of Francq and Zakoian, 2019 and in Figure 4 of Darolles et al., 2018, see Figures 1, 2
and 4 below).

2.4 Forecasting conditional betas

In some empirical applications (e.g., that presented in Section 5), out-of-sample forecasts
of the conditional betas are requested. In this section, we show how to obtain h-step-
ahead forecasts of the betas, which are denoted as Et(βi,t+h), where Et(.) refers to the
conditional expectation operator based on the information set at time t. When the i-th
conditional beta follows (6), for h > 0, Et(βi,t+h) can be written as

Et(βi,t+h) = ϖ0i+ξ0iEt

[
vt+h−1xi,t+h−1

µ2i + g2i,t+h−1

]
+c0iEt(βi,t+h−1)+

q∑
j=1

γ0,j,iEt(zj,t+h−1). (19)

The vector φ0 of the parameters is unknown, but in practice, it can be replaced by a
consistent estimate. For h = 1, Equation (19) reduces to

Et(βi,t+1) = ϖ0i + ξ0i
vtxi,t

µ2i + g2i,t
+ c0iβi,t +

q∑
j=1

γ0j,izj,t, (20)

while for h > 1, since Et [vt+h−1xi,t+h−1] = 0 under A7, we obtain

Et(βi,t+h) = ϖ0i + c0iEt(βi,t+h−1) +

q∑
j=1

γ0j,iEt(zj,t+h−1). (21)

Note that when q = 0 and |c0i| < 1, Et(βi,t+h) → ϖ0i
1−c0i

as h → ∞. Therefore, in the
absence of covariates in the conditional betas, out-of-sample forecasts of the conditional
betas converge exponentially to a constant as the horizon h tends to infinity.
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3 FULL, ONE-STEP AND MULTISTEP QML ESTIMA-
TORS

The ACB process contains multiple time-varying parameters, ranging from the uncondi-
tional mean and conditional volatility of the regressors to the time-varying conditional
betas and conditional volatility of the error term. As such, the structure of the ACB
model lends itself to an estimation by QMLE in one or more steps. Building on the sta-
tionarity and invertibility results obtained thus far, this section establishes asymptotic
properties for both one-step and multistep QML estimators.

As noted in the previous section, the ACB model has been designed with a specific
“sequential” dependence structure between the SREs for the filtering of time-varying
parameters. This structure allowed us to establish stability and invertibility results which
would otherwise be difficult to attain in a fully non-linear multivariate setting.

Naturally, the adopted model structure also leads us to consider both a multi-step
QMLE and a one-step QMLE. This an element of novelty compared to the generality of
the (Q)MLE results in the score literature.

3.1 Multistep QMLE

Let us first consider the regressors’ conditional volatility parameter and the role it plays
in the ACB model. Naturally, in the first step, for i ∈ {1, . . . , p}, the GARCH(1,1)
parameters θ(i)

0 = (µ0i, ω0i, α0i, β0i)
⊤ can be estimated independently by standard QML,

θ̂
(i)

n = arg min
τ∈Θ

Õ(i)
n (τ ), Õ(i)

n (τ ) =
1

n

n∑
t=2

ℓ̃i,t(τ ), (22)

where τ = (µ, ω, α, β)⊤ denotes a generic element of the parameter space Θ and

ℓ̃i,t(τ ) =
(xi,t − µ)2

g̃2i,t(τ )
+ log g̃2i,t(τ ), g̃2i,t(τ ) = ω + α(xi,t−1 − µ)2 + βg̃2i,t−1(τ )

with a given initial value g̃2i,1(τ ) = g̃2 ≥ 0. In (22), the sum starts at t = 2, but it could
start at t = r0 with any fixed r0 ≥ 1 without changing the asymptotic behavior. The
choice of r0 > 0 aims to reduce the influence of the starting values in the finite samples.
Note that g̃2i,t(τ ) is denoted by g̃2i,t(φ) in Proposition 2, but we use this new notation to
underline that g̃2i,t(φ) only depends on (µi, ωi, αi, βi) and not on the other components of
φ. Note also that the consistency and asymptotic normality of the first-step QMLE are
well known (see for example Francq and Zakoian, 2004). The first-step estimation (the
fact that the unknown parameters θ(i)

0 are replaced by their QMLE), however, influences
the asymptotic distribution of the QMLE of the other parameters, obtained in a second
stage.

In the second step, we estimate

ϑ
(0)
0 = (ω0, α0, β0)

⊤ and ϑ
(i)
0 = (ϖ0i, ξ0i, c0i, γ01,i, . . . , γ0q,i)

⊤,
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for i ∈ {1, . . . , p}. Let θ0 =
(
θ
(1)⊤
0 , . . . ,θ

(p)⊤
0

)⊤
, θ̂n =

(
θ̂
(1)⊤
n , . . . , θ̂

(p)⊤
n

)⊤
and ϑ0 =(

ϑ
(0)⊤
0 ,ϑ

(1)⊤
0 , . . . ,ϑ

(p)⊤
0

)⊤
. Let ϑ be a generic element of some parameter space Θϑ ⊂

(0,∞)2 × [0,∞)× Rp(3+q) and φ = (θ⊤,ϑ⊤)⊤. We estimate ϑ0 by

ϑ̂n = arg min
ϑ∈Θϑ

Õn(θ̂n,ϑ), Õn(φ) =
1

n

n∑
t=2

ℓ̃t(φ), (23)

where

ℓ̃t(φ) =
ṽ2t (φ)

g̃2t (φ)
+ log g̃2t (φ), ṽt(φ) = yt −

p∑
i=1

β̃i,t(φ)xi,t,

g̃2t (φ) = ω + αṽ2t−1(φ) + βg̃2t−1(φ),

β̃i,t(φ) = ϖi + ξi
ṽt−1(φ)xi,t−1

µ2i + g̃2i,t−1(θ̂n)
+ ciβ̃i,t−1(φ) +

q∑
j=1

γj,izj,t−1;

here, the obvious (abuse of) notation g̃i,t−1(θ̂n) and additional initial values for g̃21(φ)

and β̃1 =
(
β̃1,1(φ), . . . , β̃p,1(φ)

)⊤
are used. Note that by assuming that g̃21(φ) ≥ 0 and

Θφ := Θ×Θϑ is a compact set, there exists a constant ω > 0 such that

inf
t≥1

inf
φ∈Θφ

g2t (φ) ≥ ω and inf
t≥1

inf
φ∈Θφ

g̃2t (φ) ≥ ω. (24)

Similarly, g̃2i,1(τ ) is uniformly bounded away from zero. Therefore, the multistep QML

estimator φ̂n = (θ̂
⊤
n , ϑ̂

⊤
n )

⊤ is well defined by (22) and (23).

3.2 One-step QMLE

An alternative to multistep QMLE is to estimate all the parameters in one step. The
one-step QML estimator φ̂1S

n satisfies

φ̂1S
n = arg min

φ∈Θφ

Õn(φ). (25)

Note that, contrary to multistep QMLE, the one-step estimator does not exploit the
likelihood of the xi,t values to estimate certain components of φ. With this estimator, all
the parameters—even those involved in the proper dynamics of the xi,t processes—are
estimated from the likelihood of yt conditional on F∗

t−1. Hence, it is slightly surprising
for a one-step estimator to be consistent. However, with the help of Lemma 1, the
distribution of yt conditional on F∗

t−1 is sufficient to identify all the components of φ0.
For τ ∈ Θ, with the change of notation just introduced, the solution of the filter (13) is
g2i,t(τ ) =

∑
j≥0 β

j
{
ω + α(xi,t−j−1 − µ)2 + β

}
.

Lemma 1. Under A1 and A5 (a), g2i,t(τ ) = ag2i,t + b a.s., where a ̸= 0 implies a = 1 and
(µi, αi, βi) = (µ0i, α0i, β0i).
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Since the one-step estimator does not integrate all the information provided by the
likelihood of the xi,t processes, it is intuitively very inefficient, as confirmed by the Monte
Carlo experiments we performed, but not reported to save space. Clearly, we do not
recommend using the one-step QMLE method in practice. The study of the asymptotic
behavior of (25) is, however, simpler than that of the multistep estimator, and will
constitute a first step to determine the asymptotic distribution of φ̂n.

3.3 Full QMLE

Note that one-step estimator (25) is not a standard/full QML estimator, which requires
a parameterization of the conditional correlation matrix Rt(φ) of xt (by adding supple-
mentary parameters in φ) and is defined by

φ̂F
n = arg min

φ∈Θφ

n∑
t=2

ℓ̃t(φ) + (xt − µ)⊤Σ̃
−1

t (xt − µ) + log
∣∣∣Σ̃−1

t

∣∣∣ , (26)

where Σ̃t = D̃tR̃tD̃t with D̃
2

t = diag
(
g̃21,t(θ), . . . , g̃

2
p,t(θ)

)
and other obvious notations.

To derive this estimator, we write the conditional distribution of (yt,xt) as the conditional
distribution of yt given xt multiplied by the distribution of xt given Ft−1.

It is clear that, in terms of assumptions (the specification of Rt) and complexity
(optimization on a parameter space of a larger dimension), the estimator φ̂F

n is less
attractive than φ̂1S

n and is especially less attractive than the multistep estimator φ̂n

defined by (22) and (23). We therefore do not continue the study of (26).

3.4 Consistency of the one-step and multistep QML estimators

Let ℓt(φ) = v2t (φ)/g
2
t (φ) + log g2t (φ) and On(φ) = 1

n

∑n
t=2 ℓt(φ). The following result

establishes the strong consistency of both the multistep and one-step QML estimators.
Specifically, we show that φ̂1S

n → φ0 a.s. and ϑ̂n → ϑ0 a.s., as n→ ∞. The latter result,
when combined with the consistency of the first-step QML estimator for the GARCH
parameters, i.e., θ̂n → θ0 a.s. as n→ ∞, ensures the consistency of the multistep QML
estimator.

Theorem 1 (Consistency of the two estimators). Under Assumptions A1, A4 (a) and
A5 (a), θ̂n → θ0 a.s. as n → ∞. If in addition the assumptions of Propositions 1 and
2, A6 (a), A7, A8 and A9 hold, and ξ0i ̸= 0 for i = 1, . . . , p, then ϑ̂n → ϑ0 a.s. and
φ̂1S

n → φ0 a.s.

3.5 Asymptotic normality

We first need to study the derivatives of the filter in (10)-(13). It is well known that under
A4 (a), the volatilities g2i,t(·) admit derivatives of any order uniformly in Θφ. Moreover,

E supφ∈Θφ

∥∥∥∂g2i,t(φ)/∂φ∥∥∥s < ∞ for some s > 0, and there exists ϱ ∈ (0, 1) such that
t→ ∞ a.s.

ϱ−t sup
φ∈Θφ

∥∥∥∥∥∂g̃2i,t(φ)∂φ
−
∂g2i,t(φ)

∂φ

∥∥∥∥∥→ 0. (27)
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To obtain similar results for the derivative of β̃t+1 with respect to some component φk

of φ and with k varying from 1 to the total number of parameters d = pq + 7p + 3, let
us consider the new SRE

β
(k)
t+1 = w

(k)
t + Λtβ

(k)
t , (28)

where Λt is defined in A4 (b) and the i-th component of the vector w
(k)
t is

w
(k)
i,t =

∂

∂φk

{
ϖi + ξi

ytxi,t
µ2i + g2i,t(φ)

+ γ1,iz1,t + · · ·+ γq,izq,t

}

− β⊤
t xt

∂

∂φk

{
ξi

µ2i + βi,t(φ)
∂

∂φk
ci + g2i,t(φ)

}
.

Note that β̃
(k)

t := ∂β̃t/∂φk satisfies the perturbed SRE β̃
(k)

t+1 = w̃
(k)
t + Λ̃tβ̃

(k)

t , where
w̃

(k)
t and Λ̃t are obtained by replacing g2i,t(φ) with g̃2i,t(φ) in w

(k)
t and Λt. Using the

arguments of the proofs of Propositions 2 and 3, we obtain the following result.

Proposition 4 (Derivatives of the filter). Let the assumptions of Proposition 3 hold. For
all k ∈ {1, . . . , d} and all φ ∈ Θφ, there exists a unique stationary and ergodic process{
Y

(k)
t (φ)

}
t∈N

, with

Y
(k)
t (φ) :=

(
g
2,(k)
1,t+1(φ), . . . , g

2,(k)
p,t+1(φ), g

2,(k)
t+1 (φ),β

(k)
t+1

)
∈ F∗

t

such that the SREs (28),

g
2,(k)
i,t+1(φ) =

∂
{
ωi + αi(xi,t − µi)

2
}

∂φk
+ g2i,t(φ)

∂βi
∂φk

+ βig
2,(k)
i,t (φ)

and

g
2,(k)
t+1 (φ) =

∂
{
ω + αv2t (φ)

}
∂φk

+ g2t (φ)
∂β

∂φk
+ βg

2,(k)
t (φ),

∂vt(φ)

∂φk
= −x⊤

t β
(k)
t ,

hold. Suppose that E supφ∈Θφ

∥∥∥Y (k)
t (φ)

∥∥∥s < ∞ for some s > 0. Then, there exists
ϱ ∈ (0, 1) such that, as t→ ∞, a.s.

ϱ−t sup
φ∈Θφ

∥∥∥Ỹ (k)

t (φ)− Y
(k)
t (φ)

∥∥∥→ 0, (29)

where Ỹ
(k)

t (φ) :=
(
g̃
2,(k)
1,t+1(φ), . . . , g̃

2,(k)
p,t+1(φ), g̃

2,(k)
t+1 (φ), β̃

(k)

t+1

)
, g̃2,(k)i,t (φ) = ∂g̃2i,t(φ)/∂φk

and g̃2,(k)t (φ) = ∂g̃2t (φ)/∂φk.

We finally turn to the asymptotic distribution of both the one-step and the multistep
QML estimators. We first consider one-step QMLE. For notational simplicity, we define

I1S = E
∂ℓt(φ0)

∂φ

∂ℓt(φ0)

∂φ⊤ , J1S = E
∂2ℓt(φ0)

∂φ∂φ⊤ .

Theorem 2 establishes the asymptotic normality of the one-step QML estimator. The
notation L→ stands for the convergence in law as n→ ∞.
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Theorem 2 (Asymptotic distribution of the one-step estimator). Under the assumptions
of Propositions 1 and 4 and A5-A10, if ξ0i ̸= 0 for i = 1, . . . , p, we have

√
n
(
φ̂1S

n −φ0

)
L→ N

(
0,J−1

1S I1SJ
−1
1S

)
.

Having stated the asymptotic normality of the one-step QML estimator, we now turn
to the multistep QML estimator, which involves the estimation of all sets of GARCH
parameters for the conditional volatility of both the error term and all the regres-
sors (contained in the vector θ) as well as the set of regression parameters used in
the update of all time-varying betas (contained in ϑ). Recall that the dimensions of
θ and ϑ are d1 = 4p and d2 = 3(p + 1) + pq, respectively. Let us define the score

St =

(
∂ℓ1,t(θ

(1)
0 )

∂τ⊤ , . . . ,
∂ℓp,t(θ

(p)
0 )

∂τ⊤ , ∂ℓt(φ0)

∂ϑ⊤

)⊤
and the information matrices

I = EStS
⊤
t =

(
Iθ Iθϑ

I⊤
θϑ Iϑ

)
, J1S =

(
Jθ Jθϑ

J⊤
θϑ Jϑ

)
,

with obvious matrix partitions. Note that Iϑ is also the bottom-right submatrix of size
d2 × d2 of the matrix I1S . In addition, let J∗ = diag

(
J (1), . . . ,J (p)

)
.

Theorem 3 establishes the asymptotic normality of the multistep QML estimator.

Theorem 3 (Asymptotic distribution of the multistep QML estimator). Under the as-
sumptions of Theorem 2, we have

√
n (φ̂n −φ0)

L→ N (0,Σ) , Σ =

(
Σθ Σθϑ

Σϑθ Σϑ

)
,

where

Σθ = J−1
∗ IθJ

−1
∗ , Σθϑ = −J−1

∗ IθJ
−1
∗ JθϑJ

−1
ϑ + J−1

∗ IθϑJ
−1
ϑ ,

Σϑ = J−1
ϑ J⊤

θϑJ
−1
∗ IθJ

−1
∗ JθϑJ

−1
ϑ + J−1

ϑ IϑJ
−1
ϑ − 2J−1

ϑ J⊤
θϑJ

−1
∗ IθϑJ

−1
ϑ .

When ηt and ϵt are independent, we have Iθϑ = 0d1×d2 .

3.6 Testing the assumption of constant conditional betas

Testing the assumption of the constancy of conditional betas is vital, as it provides
an empirical justification for time-varying parameter models such as the ACB model.
Naturally, a number of tests for the constancy of regression parameters are available in
the literature. These include the class of CUSUM tests originally proposed by Brown et al.
(1975), the Lagrange multiplier tests proposed by Nyblom (1989) and Hansen (1992), the
tests for structural breaks proposed by Andrews (1993), and the parameter constancy
tests proposed by Bai (1996) and Bai and Perron (1998). The available battery of tests
is considerable.

Specifically, Nyblom (1989) proposes a test for the null hypothesis that all parame-
ters are constant against the alternative that some of the parameters are time-varying.
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Building upon the Nyblom test, Hansen (1992) allows for testing the constancy of single
parameters. Let β̂i be an estimate of βi obtained by maximizing the empirical mean of
(3) under the constancy null hypothesis of the i-th beta; i.e., H0 : βi,t = βi. Hansen
(1992) derives the limiting distribution of the statistic Li =

1
nVi

∑n
t=1 F

2
i,t under the null

hypothesis, where fi,t = ∂l̂t
∂β̂i

, Fi,j =
∑t

j=1 fi,j and Vi =
∑n

t=1 f
2
i,t, and suggests rejecting

H0 at the nominal level of 5% when Li > 0.470. This test is designed to have power un-
der various alternatives but has the locally highest power when βi,t follows a martingale
process.

Additionally, it is important to test for the constancy of the time-varying betas that
are specifically filtered by the ACB model. Such tests explore the structure of the ACB
model and can give us further confidence that the betas are time-varying. There are,
however, substantial challenges in deriving such tests because under the null hypothesis,
some parameters might not be identifiable. In particular, in the absence of exogenous
variables in the i-th conditional beta, Equation (4) is simplified as

βi,t+1 = ϖi + ξi
vtxi,t

µ2i + g2i,t
+ ciβi,t, (30)

and therefore, βi,t+1 converges to ϖi/(1 − ci) when ξi = 0. Imposing the constancy of
some conditional betas is therefore desirable, not only to avoid convergence problems due
to this identifiability issue but also to reduce the number of parameters to estimate.

The problem of testing hypotheses when a model is not identified under the null has
been well studied in the literature, see Amendola and Francq (2009) and the references
therein. An obvious solution consists in fixing the parameter that is not identified under
the null hypothesis to a plausible value.

In our case, this corresponds to fixing ci to some value c̄i. The first strategy is to
choose c̄i = 0. The i-th conditional beta therefore simplifies to βi,t+1 = ϖi+ ξi

vtxi,t

µ2
i+g2i,t

. In
this setting, there is no substantial issue with testing the null hypothesis for which H0 :
ξi = 0 since there is no unidentified parameter under the null. This solution is similar
to that of testing for no conditional heteroskedasticity in the context of an ARCH model
rather than a GARCH model. This test can be extended to account for q exogenous
regressors z1t, . . . , zqt in the updating equation of βit, i.e.,

βi,t+1 = ϖi + ξi
vtxi,t

µ2i + g2i,t
+ γ1,iz1,t + · · ·+ γq,izq,t. (31)

The null hypothesis of parameter constancy corresponds to H0 : ξi = γ1,i = . . . = γq,i =
0. Again, the absence of an autoregressive term ensures that there is no identification
problem under the null hypothesis. The advantage of this test is that it is expected to
have no size distortion, but its main drawback is that it is likely to have low power when
βi,t is very persistent.

The second option is to choose a value for c̄i that is plausible under the alternative
hypothesis. Two values are considered in the simulations reported in the next section,
i.e., c̄i = 0.9 and c̄i = 0.95. Naturally, the performance of this test depends on the choice
of c̄i. A supremum test statistic over all possible values of ci in a compact (partially)
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solves the problem of the choice of c̄i, but leads to a non standard distribution under the
null, and does not always increase the power.

In the next section, we investigate the properties of these tests across a wide range of
empirically relevant scenarios.

4 SIMULATIONS

In this section, we present a Monte Carlo experiment that studies the finite-sample prop-
erties of the ACB model. The endogenous variable is specified as in (1).

Several cases are considered. In all simulations, we set p = 4. An intercept is included
in the model by setting x1,t = 1∀t. We let x2,t, x3,t and x4,t be the first three explanatory
variables used in the empirical application, i.e., the daily log-returns (in %) of the market,
SMB and HML. A GARCH(1,1) model is estimated on these three series to obtain the
quantities µi and gi,t involved in the dynamics of the conditional betas.

The conditional betas follow the specifications given in (4), while the conditional
variance of the residuals vt follows the GARCH(1,1) specification given in (7). For the
parameters of the conditional beta equations, we choose ϖ2 = 0.06, ϖ3 = 0.04, ϖ4 = 0.02
and ξi = 0.05, ci = 0.94 for i = 2, 3, 4. As such, in the absence of exogenous variables in
the conditional betas, βi,t meander around the values of 1, 0.5 and 0.25, respectively for
i = 2, 3, 4. For the GARCH specification of the error term vt, we set ω = 0.005, α = 0.05
and β = 0.94 so that the unconditional variance of vt equals 0.5.

We consider three specifications of the ACB model:

Case 1: ACB model with an intercept and no exogenous variable in the betas. We obtain
this model by setting q = 0, ϖ1 = 0.001 and ξ1 = c1 = 0 so that β1,t = 0.001∀t.
The other three conditional betas are, however, time-varying.

Case 2: ACB model with a time-varying intercept and no exogenous variable (i.e., q = 0) in
the betas. This model extends Case 1 by setting ϖ1 = 0.001, ξ1 = 0.05, c1 = 0.94
so that β1,t varies over time around its unconditional level of about 0.0166.

Case 3: ACB model with a time-varying intercept and q = 1 exogenous variable in the
conditional betas of x2,t, x3,t and x4,t. This model extends Case 2 by adding a
variable z1,t corresponding to the value of the VIX of the previous day. We set
γ1,2 = 0.02 and γ1,3 = γ1,4 = 0 so that an increase in the VIX translates into
an increase in the market beta the day after but has no effect on the conditional
betas of the other two explanatory variables. This result is compatible with the
empirical result we obtained for the Durbl portfolio, one of the 12 industry portfolios
considered in the second application reported in the online supplement.

Before presenting the results on the finite-sample properties of the ACB model, we
illustrate the importance of the invertibility condition discussed in Sections 2.2-2.3. Fig-
ure 1 plots one path of the first 1,000 values of the three time-varying conditional betas
βi,t(φ0) for i = 2, . . . , 4 (solid black lines) generated with the model corresponding to
Case 1. We also plot 11 paths of filtered time-varying conditional betas β̃i,t(φ0) at the
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true parameter values but using different initial values β̃i,0 set to β̃i,0 = βi,0 + 0.1k for
k = −5, 4, . . . , 4, 5, where βi,0 is the true value of the i-th beta at time t = 0. The bottom
right graph plots ∆n(φ0, k) (see Section 2.3) for k = 1, . . . , 20. This figure shows that
the effect of the initialization vanishes rapidly and therefore that the filter is invertible.
This is confirmed by the bottom right panel because ∆n(φ0, k) < 0 for all the chosen
values of k.

Figure 2 plots the same information as in Figure 1 but for an ACB model with
ξ2 = ξ3 = ξ4 = −0.01 and c2 = c3 = c4 = 0.99 and ϖ2 = 0.01, ϖ3 = 0.005, ϖ4 = 0.0025
so that the unconditional betas are the same as in Case 1. Recall that the ARMA(1,1) is
a particular case of the ACB model, obtained by setting p = 1, q = 0 and x1,t = 1. In this
case, an ACB (or ARMA) model with ξ1 = −0.01 and c1 = 0.99 would not be invertible
because the invertibility condition of this model (see Example 2 in the appendix) is
supφ∈Θφ

|c1 − ξ1| < 1 while at the true parameter values |c1 − ξ1| = 1. Our example is
more general but we can infer that this model is not invertible. Indeed, even in the simpler
case that p = 1 where x1,t follows a GARCH(1,1) with µ1 = 0, Λt(φ0) = − ξ1x2

1,t

µ2
1+g21,t(φ0)

+c1

and therefore E log(Λt(φ0)) = 0 since E
(

x2
1,t

µ2
1+g21,t(φ0)

)
= 1. This is confirmed in Figure

2 where we see that the effect of the initial values never vanishes and therefore that the
filter is not invertible at the true parameter values. Indeed, all the paths of the filtered
conditional betas move in parallel and never cross each other. This is confirmed by the
bottom right panel because ∆n(φ0, k) > 0 for all the chosen values of k.

To study the finite-sample properties of the ACB model, the models corresponding
to Cases 1, 2 and 3 are estimated using the multistep QML estimator presented in
the previous section, and the standard errors are computed using the results given in
Theorem 3. While one-step QMLE estimation is possible, we focus on the multistep
QML estimator, as the log-likelihood of a one-step QML estimator tends to be quite flat
around the true parameter value, leading to very poor accuracy on reasonable sample
sizes.

For the sake of illustration, we plot in Figure B1 of the online supplement one path
of n = 4, 000 observations of both simulated (green dotted lines) and estimated (blue
solid lines) time-varying conditional betas corresponding to Case 1. This figure suggests
that the estimated conditional betas are very close to the true betas. Interestingly, we
also see in this example that the estimated conditional betas are rapidly approaching the
true conditional betas, even when the initialization of the three time-varying conditional
betas is not very good (as for β2,t).

The results of the Monte Carlo simulation of Case 1 for 1,000 replications are reported
in Table 1 while those of Cases 2 and 3 are reported respectively in Tables B1 and B2 of
the online supplement. Each table is divided in two panels. The left panels correspond to
a sample size of n = 2, 000 observations, while the right panels correspond to n = 4, 000
observations. The following information is reported in each table: the true values, bias,
RMSE, average of the asymptotic standard errors and the frequency of the estimated
parameters outside of the 95% confidence interval based on the asymptotic distribution.

We highlight that the biases are very small in all three cases for both sample sizes
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Figure 1: Invertibility condition satisfied. The plot shows 1,000 values of three simulated
conditional betas (black solid line) for a DGP satisfying the invertibility condition. It
displays also 11 paths of filtered betas β̃t,i (i = 2, 3 and 4) evaluated at the true parameter
values but using different initial values β̃0,i set to β̃0,i = β0,i+0.1k for k = −5, 4, . . . , 4, 5,
where β0,i is the true value of the i-th beta at time t = 0. The bottom right graph plots
∆n(φ0, k) for k = 1, . . . , 20.
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Figure 2: Invertibility condition not satisfied. Note: see Figure 1.
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Table 1: True values, bias, RMSE, average of the asymptotic standard errors and frequency of the
estimated parameters outside of the 95% confidence interval for a DGP and the estimated model
corresponding to Case 1. Sample sizes: n = 2, 000 and 4, 000.

n = 2, 000 n = 4, 000
True Bias RMSE aSTD 1-Cov95 True Bias RMSE aSTD 1-Cov95

ϖ1 0.001 0.000 0.014 0.014 4.400 0.001 -0.000 0.010 0.010 4.900
ϖ2 0.060 0.008 0.036 0.028 7.400 0.060 0.002 0.017 0.017 5.500
ξ2 0.050 0.004 0.013 0.012 7.400 0.050 0.002 0.008 0.008 6.500
c2 0.940 -0.008 0.035 0.028 7.400 0.940 -0.002 0.017 0.017 5.500
ϖ3 0.040 0.004 0.019 0.018 5.600 0.040 0.002 0.012 0.012 5.500
ξ3 0.050 0.004 0.013 0.012 7.700 0.050 0.001 0.008 0.008 5.200
c3 0.940 -0.007 0.028 0.026 5.500 0.940 -0.004 0.019 0.018 5.100
ϖ4 0.020 0.003 0.013 0.011 7.400 0.020 0.001 0.007 0.006 6.700
ξ4 0.050 0.001 0.012 0.012 6.600 0.050 -0.001 0.008 0.008 6.900
c4 0.940 -0.009 0.037 0.030 9.100 0.940 -0.003 0.019 0.018 7.500
ω 0.005 0.002 0.004 0.003 3.100 0.005 0.001 0.002 0.002 4.000
α 0.050 -0.000 0.010 0.010 7.500 0.050 -0.000 0.007 0.007 6.200
β 0.940 -0.003 0.014 0.013 6.600 0.940 -0.001 0.009 0.009 5.100
Average 0.000 6.592 -0.000 5.738

Note: The Monte Carlo simulation results are for n = 2, 000 (left panel) and n = 4, 000 (right panel) and
1,000 replications. The column labeled ‘True’ reports the true parameters, the column labeled ‘Bias’ shows
the empirical mean of the deviation in the estimated parameters from the true value, the column labeled
‘RMSE’ provides the root mean squared error, the column labeled ‘aSTD’ shows the average of the estimated
standard errors, and finally, the column labeled ‘1-Cov95’ provides the frequency of the estimated parameters
outside of the 95% confidence interval based on the asymptotic distribution. The models are estimated using
the multistep QML estimator. The average of the Bias and 1-Cov95 columns are also reported in the last
row of each panel.

and all parameters. The average biases reported in the last row of each panel (over
all parameters) are all close to 0. The RMSEs are always very close to the average of
the standard errors computed from the asymptotic distribution. The frequencies of true
parameters outside of the 95% confidence interval drawn from the asymptotic distribution
are reasonably close to 5%, with an average between 6.592 and 5.738 for n = 2, 000 and
4, 000 respectively; this confirms the asymptotic normality result derived in Section 3 for
these sample sizes.

To show the robustness of our QMLE when the innovations are not Gaussian, we
report in Table B3 of the online supplement additional Monte Carlo simulation results
for Case 1 with n = 4, 000 when ηt follows respectively a standardized Student-t dis-
tributed with a degree of freedom of 5, denoted ST (0, 1, 5), and a standardized version of
the Skewed Student-t distribution of Fernández and Steel (1998) proposed by Giot and
Laurent (2003) with a degree of freedom of 5 and an asymmetry parameter of exp(−0.1),
denoted SK − ST (0, 1, exp(−0.1), 5), so that the innovations have fat-tails and are left
skewed. Results suggest that the Gaussian QMLE performs similarly when the distribu-
tion of the innovations is Normal, when it has fat-tails and even when it is skewed.

We now investigate the finite sample properties of the three tests for the null hypoth-
esis of a constant conditional beta presented in Section 3.6. The rejection frequencies of
the null hypothesis H0 : β1,t = β1 are reported in Table 2. To study the size of the tests,
we consider the model corresponding to Case 1 (i.e., constant intercept). The first row of
the column labeled ‘Size (Case 1)’ contains the rejection frequency of the individual Ny-
blom test on the intercept ϖ1 in the model estimated under the null hypothesis (the other
three conditional betas and the conditional variance of the error term are correctly speci-
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fied in all simulations). The next three rows correspond to the rejection frequencies of the
null hypothesis of a Wald test for the null hypothesis H0 : ξ1 = 0 in a model specifying
β1,t as β1,t+1 = ϖ1 + ξ1vt, β1,t+1 = ϖ1 + ξ1vt + 0.9β1,t and β1,t+1 = ϖ1 + ξ1vt + 0.95β1,t.

To study the power of these tests, we first consider the model corresponding to Case
2, where β1,t+1 = 0.001 + 0.05vt + 0.94β1,t, and therefore, β1,t is time-varying.

Table 2: Finite sample properties of the tests for constant conditional betas.

Size (Case 1) Power (Case 2)
Nyblom test for β1,t+1 = ϖ1 3.2 75.6
Wald test for ξ1 = 0 in β1,t+1 = ϖ1 + ξ1vt 6.5 19.2
Wald test for ξ1 = 0 in β1,t+1 = ϖ1 + ξ1vt + 0.90β1,t 5.2 99.8
Wald test for ξ1 = 0 in β1,t+1 = ϖ1 + ξ1vt + 0.95β1,t 6.5 100.0

Note: The empirical size and power are studied for a DGP corresponding to Cases 1 and 2. In
Case 1, β1,t = 0.001, and therefore, the slope coefficient of the intercept (x1,t = 1) is constant.
In Case 2, β1,t+1 = 0.001 + 0.05vt + 0.94β1,t, and therefore, β1t is time-varying.

The results reported in Table 2 are for a nominal size of 5% and a sample size of 4,000
observations. The four tests have relatively good sizes. Importantly, fixing ci at either
0.9 or 0.95 does not affect much the size of the Wald test. The Nyblom test is found to
have good power (more than 75%). As expected, the power of the Wald test based on
the ACB specification without an autoregressive term (i.e., β1,t+1 = ϖ1 + ξ1vt) is quite
low and even lower than that of the Nyblom test. Interestingly, the power of the Wald
test based on the ACB specification when c1 is fixed either to 0.9 or 0.95 is higher than
the other two tests and close to 100% in this example.

5 Empirical Application

In this section, we illustrate the performance of the ACB model in a risk management
experiment similar to those in Engle (2016) and Darolles et al. (2018). The main objective
is to find a strategy to track US stocks using a six-factor model.

The six factor model contains the risk factors of the three-factor model of Fama
and French (1993), i.e., the market factor MKT proxied by the log-returns on the SP500
index, the standard Fama French size, the SMB (Small Minus Big) and HML (High Mi-
nus Low) value factors. The other three factors are the RMW (Robust Minus Weak) and
CMA (Conservative Minus Aggressive) factors initially proposed by Fama and French
(2015) as well as MOM (Momentum) as in Carhart (1997).

The starting point of this application is the following model with time-varying pa-
rameters, presented for a generic series yt:

yt =βINT,t + βMKT,tMKTt + βSMB,tSMBt + βHML,tHMLt (32)
+ βRMW,tRMWt + βCMA,tCMAt + βMOM,tMOMt + vt,

where βINT,t is the time-varying conditional intercept (often called alpha in the financial
literature) and βMKT,t, βSMB,t, βHML,t βRMW,t, βCMA,t and βMOM,t are the six time-
varying conditional betas. On total, there are potentially seven time-varying parameters
(in addition to the time-varying variance), i.e., βINT,t, . . . , βMOM,t, that we sometimes

22



simply denote βi,t for i = 1, . . . , 7 for ease of notation. Note also that we do not add
another index to denote the forecasting model used to produce the conditional betas, but
it is clear that the tracking portfolios are model dependent.

In the asset pricing context, expected returns on any asset are linear in the betas and
only depend upon the risk premiums embedded in the factors so that βINT,t = 0∀t (i.e.,
there is no alpha or intercept in (32)). We perform a tracking exercise that consists of
taking a position at time t in the 6 considered factors whose weights are the one-step-
ahead forecasts of the corresponding conditional betas. For each model, the conditional
beta forecasts are, therefore, used to construct a hedging portfolio. The returns at time
t + 1 of such a tracking portfolio (denoted Zt+1|t) are obtained by setting the intercept
to zero and using the conditional beta forecasts as weights of the realized returns at time
t+ 1 for the six factors; i.e.,

Zt+1|t =βMKT,t+1|tMKTt+1 + βSMB,t+1|tSMBt+1 + βHML,t+1|tHMLt+1 (33)

+ βRMW,t+1|tRMWt+1 + βCMA,t+1|tCMAt+1 + βMOM,t+1|tMOMt+1,

where MKTt+1 is the realized return of the market on day t + 1 (the other variables
indexed by t+ 1 are defined in the same way).

The performance of a model is obtained by computing the realized tracking errors
TEt+1 = yt+1 − Zt+1|t, where yt+1 is the realized return of the considered series on
day t + 1. We therefore seek the models with the smallest sample mean squared error
(MSE). To do so, we rely on the model confidence set in Hansen et al. (2011) and, more
particularly, the Mulcom 3.0 package in Hansen et al. (2021), which is an Ox econometric
toolkit for multiple comparisons.

We consider 16 US stocks (randomly selected among the most liquid ones) whose
tickers are AXP, BA, CAT, DIS, GE, JPM, KO, MCD, MRK, MSFT, PFE, PG, UTX,
VZ, WMT and XOM. Several models compatible with Equation (32) are considered in this
empirical application and estimated on daily data. Some models are nested by the ACB
model, while others are not. All models are used to produce one-step-ahead forecasts
of the betas. The first forecasts are obtained from models estimated on a window of
n = 1, 500 observations. The sample is then expended by one observation each time a
new forecast is produced until the end of the sample is reached. The parameters of the
models are re-estimated every 25 days. The competing models based solely on daily data
are listed below.

OLS: This model is an ACB model without dynamics in the conditional betas and a
constant conditional variance for the error term. It is obtained by setting q = 0
and imposing ξi = ci = 0 for all the betas in (32) as well as α = β = 0. This model
is therefore equivalent to an OLS regression with constant parameters.

OLS(100): This model is identical to the previous model but the model is estimated on the
latest 100 observations instead of the full sample available.3

3Results of a linear model estimated on the latest 250 observations were qualitatively the same and
therefore not reported to save space.
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ACB: This model is an ACB model with a time-varying intercept and six factors in the
conditional mean so that all the betas are allowed to be time-varying using a pure
(Q)SD dynamic without additional exogenous variable in the conditional betas (i.e.,
q = 0).

SS-RW: This model allows each conditional beta (including the constant) to follow a random
walk; i.e., βi,t = βi,t−1+δiui,t, where δi ≥ 0, ui,t

i.i.d.∼ N (0, 1) ∀i and ui,t⊥uj,t ∀i ̸= j.
This model is estimated by Gaussian ML via its state space formulation and requires
the use of the Kalman filter. Note that when δi = 0, the i-th beta is constant over
time.4

DCB: This model, proposed by Engle (2016) and called the dynamic conditional betas
(DCBs) model, allows obtaining time-varying betas from an estimate of the condi-
tional covariance matrix. As in Engle (2016), we rely on the DCC of Engle (2002)
with GARCH(1,1) models for the conditional variances.

We have data for the period spanning from January 1999 to the end of December 2017
(i.e., 4,778 observations) for all series but CAT, DIS, GE, JPM and KO for which the
sample starts in January 2005 (i.e., 3,269 observations). The daily data used to estimate
the above models are obtained by aggregating 5-minute log-returns on the 16 US stocks
(transaction prices purchased from tickdatamarket) and the six factors. The data on the
factors are obtained from Dacheng Xiu’s website.5 See Ait-Sahalia et al. (2020) for more
details on the construction of these series.

Following the suggestion of the editor, we use intraday data to compute realized
measures of the above daily conditional betas. There is indeed a growing literature on
realized betas, initiated by Barndorff-Nielsen and Shephard (2004) and Andersen et al.
(2006), that uses high-frequency data to compute lower frequency realized betas. We
estimate realized betas day by day using the 5-minute data under the assumptions that
the drift is negligible and that the realized betas are constant over the day. In this case,
realized betas of day t (denoted RBi,t, for i = 2, . . . , 7) correspond to the usual OLS
estimates of a linear model regressing the 5-minute log-returns of a stock on the six factors
(without intercept). Other estimators of realized betas that are robust to time-variation
in the spot betas are discussed in Ait-Sahalia et al. (2020) and Andersen et al. (2021).
We let this extension to future work but to attenuate the effect of large jumps when
estimating the realized betas, we follow Ait-Sahalia et al. (2020) and truncate intraday
log-returns of day t of the stocks and factors using a threshold value of 3( 1

78)
0.47BVt,

where BVt is the bipower variation on day t of the correspond series.
We, therefore, also consider two methods relying on realized betas.

True RB: This method is infeasible in practice because it uses realized betas on day t + 1
in (33) to form the tracking portfolios. Although infeasible, this method allows to

4Koundouri et al. (2016) extended the SS-RW model by allowing the time-varying betas to follow a
zero-mean AR(1) process.

5Note that log-returns are reconstructed from the raw returns provided on his website and that as in
Ait-Sahalia et al. (2020) the log-returns are not in excess of the risk free rate.
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assess whether realized betas computed on 5-minute data are accurate proxies of
the optimal weights in this tracking exercise.

ARFIMA RB: This method relies on a univariate model to forecast each realized beta series. To
account for the presence of long-memory in the series of daily realized betas, we
use an ARFIMA(1,d,0) model estimated by Gaussian maximum likelihood.

All models have been implemented in the Ox 8.0 programming language (see Doornik,
2012). Note that we rely on the G@RCH 8.0 software of Laurent (2018) for the DCC
models, on the SsfPack 3.0 Ox library of Doornik et al. (2008) for the SS-RW model and
the ARFIMA package of Doornik and Ooms (2021) for the ARFIMA model. The ACB
models are estimated using the multistep QML estimator presented in Section 3 and used
in all Monte Carlo simulations.

For the sake of illustration, we report in Table 3 the results of the ACB model for
series XOM (Exxon Mobil) estimated on the full sample.

Some comments are in order.

1. The intercept (i.e., βINT,t) and the beta of SMB (i.e., βSMB,t) are restricted to
be constant over-time. This decision is taken after having estimated model (32)
and having applied the Wald test discussed in Section 3.6 of the null hypothesis
H0 : βi,t = βi, when fixing ci to 0.95. The null hypothesis is rejected at the 5%
nominal level for all conditional betas except the intercept and SMB. Overall, there
is weak evidence of dynamics in the intercept of the 16 stocks, except for series VZ
(Verizon Communications).

2. The log-likelihood value of the estimated ACB is -6107.04 while the one of a GARCH
model with constant slopes is -6622.52 so that this model is strongly rejected at
any conventional significance level in favor of the ACB using a likelihood ratio test.
We therefore conclude that there is strong evidence of dynamics in some of the
conditional betas of the six-factor model. The same conclusion holds for the 16
series.

3. The estimated ci parameters are all very close but smaller than one.

4. The estimated coefficients of the lagged scaled score in the conditional beta equa-
tions, i.e., ξi, are all very close to 0 but positive and significant.

5. Finally, the three-factor model of Fama and French (1993) with time-varying betas,
obtained by setting βRMW,t+1|t = βCMA,t+1|t = βMOM,t+1|t = 0, is rejected in favor
of the six-factor model using a likelihood ratio test. Indeed, the log-likelihood
value of this model is -6443.87 so that this model is rejected at any conventional
significance level. The same conclusion also holds for the other 15 series considered
in this empirical application. We therefore report only the results of the six-factor
model.

Note that we have tested the inclusion of the i-th (for i = 2, . . . , 7) daily realized beta
of the previous day (i.e., γ1,iRBi,t) in (4). The main conclusion is that the coefficients γ1,i
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of RBi,t are found to be insignificant and that their inclusion deteriorates the performance
of the model in the financial application, reason why we do not report the results of this
model.

Table 3: Estimation results of the ACB models for series XOM

Equation Parameters Coefficient Std.Error p-value
Intercept ϖ1 -0.026 0.011 0.022

MKT ϖ2 0.002 0.001 0.072
ξ2 0.008 0.002 0.001
c2 0.998 0.001 0.000

SMB ϖ3 -0.358 0.032 0.000
HML ϖ4 0.001 0.001 0.403

ξ4 0.011 0.003 0.000
c4 0.996 0.002 0.000

CMA ϖ5 0.000 0.001 0.397
ξ5 0.008 0.002 0.000
c5 0.996 0.001 0.000

RMW ϖ6 0.000 0.000 0.944
ξ6 0.009 0.002 0.000
c6 0.997 0.001 0.000

MOM ϖ7 0.000 0.001 0.597
ξ7 0.021 0.003 0.000
c7 0.999 0.001 0.000

vt ω 0.007 0.004 0.065
α 0.067 0.013 0.000
β 0.928 0.015 0.000

Log-likelihood -6107.04
Note: QML estimates of the ACB model for series XOM on the full
sample spanning from January 1999 to December 2017 (i.e., 4,778 ob-
servations). Both the intercept and the beta of the factor SMB are
restricted to be constant.

The estimated conditional betas of the ACB model for series XOM are plotted in
Figure 3 together with 95% confidence bands obtained using the simulation method
proposed by Blasques et al. (2016). Interestingly, we see that the time-varying conditional
betas obtained with the ACB model are slowly varying over-time and quite persistent.
We also see from the confidence bands that the signals are estimated in a rather precise
way and allow to distinguish periods where the conditional betas are significantly above
or below their average.

To empirically check the invertibility of the ACB filter at the QML estimates φ̂, we
proceed in a way similar to Section 4 and plot in the first five graphs of Figure 4 eleven
paths of filtered time-varying conditional betas β̃i,t(φ̂) for series XOM and initial values
β̃i,0 set to β̃i,0 = β̂i,0 + 0.1k for k = −5, 4, . . . , 4, 5, where β̂i,0 is the initial value of the
i-th beta used in the estimation by QML. The bottom right graph plots ∆n(φ̂, k) for
k = 1, . . . , 21, i.e., ∆(φ, N) evaluated at the estimated values. This figure shows that
the effect of the initialization vanishes rapidly and therefore that the filter is invertible.
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Figure 3: Time series graph of the conditional betas of series XOM (solid red lines) and
95% confidence bands (dotted green lines) estimated on the full period with the ACB
model.

This is confirmed by the bottom right panel because ∆n(φ̂, k) < 0 for k > 15. The same
conclusion holds for the 16 series considered in the application.

For the sake of comparison, we also plot in Figure 5 the estimated conditional betas
of three competing models performing well in the tracking exercise. The solid red and
dashed blue lines correspond respectively to the ACB and SS-RW models estimated on
daily returns while the dotted gray lines correspond to the ARFIMA(1,d,0) fitted to the
daily realized betas. It can be seen that the in-sample forecasts of the ARFIMA model
estimated on the realized betas are the most erratic ones and that the trajectories of the
conditional betas of the ACB and SS-RW models are quite close, although different. It
can be concluded that the three methods give different but similar filtered paths.

Table 4 contains the results of the MCS test with an MSE loss function on the
realized tracking errors (similar results are obtained using a median absolute deviation
loss function). The figures reported in the first 16 rows correspond to the p-values
of the MCS test implemented with 10,000 bootstrap samples and a block length of 5
observations. A p-value below the chosen critical level (e.g., 5%) means that the model
does not belong to the MCS at that level and is therefore inferior to those belonging to
the MCS. The figures reported in the rows labeled ‘#>0.05’ correspond to the number
of times (out of 16) that the corresponding model belongs to the MCS at the 5% level.
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Figure 4: Empirical verification of the invertibility of the ACB filter at the QML esti-
mates. The first 5 graphs plot 11 paths of filtered time-varying conditional betas β̃t,i(φ̂)
for series XOM and initial values β̃i,0 set to β̃i,0 = β̂i,0+0.1k for k = −5, 4, . . . , 4, 5, where
β̂i,0 is the initial value of the i-th beta used in the estimation by QML. The bottom right
graph plots ∆n(φ̂, k) (see Section 2.3) for k = 1, . . . , 20.
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Figure 5: Time series graph of the conditional betas for the six-factor model estimated on
the full period. The solid red and dashed blue lines correspond respectively to the ACB
and SS-RW models estimated on daily returns while the dotted gray lines correspond to
the ARFIMA(1, d, 0) fitted to the daily realized betas.
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Note that the MCS test is applied on a universe of 7 models, including a strategy
that is infeasible in practice. Indeed, recall that the method labeled ‘True RB’ relies on
the realized betas observed on day t + 1, which are obviously not known at the end of
day t. We consider this method to assess the relevance of realized betas in the context of
a tracking exercise and the effect of a smoothing of the realized betas using an ARFIMA
filter.

This table first confirms that if they were observed at time t, realized betas on day t+1
would deliver the best tracking portfolios for all the series considered in the application.
Furthermore, univariate ARFIMA(1, d, 0) models fitted on these realized betas are almost
as good as the infeasible method because this method belongs to the MCS at level 5%
in 15 out of 16 cases. Importantly, the best model solely based on daily data is the
ACB model, which belongs to the MCS in 13 cases, i.e. slightly less often than the
ARFIMA. While belonging less often (i.e., in 10 cases) to the MCS than the ACB,
the SS-RW model also performs pretty well. The DCB model and the models with
constant parameters (estimated on the full sample or the latest 100 observations) clearly
underperform compared to the other models.

Finally, we also compare the performance of the five models based on daily returns
for forecasting conditional betas by comparing their forecasts with the corresponding
realized betas. For each model and time period t + 1, the loss is measured as the sum
over the six betas of the squared difference between the i-th realized beta at time t + 1
and its forecast obtained on day t, i.e.,

∑7
i=2(RBi,t+1 − β̂i,t+1|t)

2. The results reported
in Table 5 suggest that the ACB model produces on average the best forecasts when the
quality of the forecasts is assessed using daily realized betas (i.e., it is in the MCS at the
5% nominal level in 12 out of 16 cases while the second-best model is the SS-RW which
belongs in the MCS in only 6 cases). However, when the ARFIMA model fitted on the
realized betas is including in the set of competing models, this model outperforms all the
other methods (results are not reported here to save space).

In Section C of the online supplement, we report the results of a similar application
but for the 12 US industry portfolios. This application differs from the first one because
we do not have intraday data to calculate the daily realized betas, we compare the
performance of 3- and 5-factor models and also because we use exogenous variables in
the conditional betas. The results of this second application allow us to confirm the good
performance of the ACB model.

6 CONCLUSION

In this paper, we introduce a new (quasi) score-driven autoregressive conditional beta
(ACB) model. This model allows conditional betas to depend on exogenous variables
as well as conditional volatility in the error term. By scaling the updating step with
the inverse conditional volatility of the regressors, the score-driven update achieves a
smoother filtered beta, which naturally compensates for periods of high volatility in the
regressors.

We establish conditions for the existence of unique stationarity solutions of the ACB
model and the invertibility of the filtered time-varying parameters. We also derive an

30



Table 4: Results of the MCS test applied on the realized tracking errors of the 16 stocks

OLS OLS(100) SS-RW ACB DCB True RB ARFIMA RB
AXP 0.000 0.000 1.000 0.752 0.000 0.752 0.752
BA 0.007 0.072 0.072 0.072 0.000 1.000 0.072
CAT 0.000 0.000 0.996 0.996 0.000 1.000 0.996
DIS 0.001 0.001 0.833 0.833 0.000 1.000 0.826
GE 0.033 0.051 0.000 0.403 0.000 1.000 0.479
JPM 0.000 0.000 0.000 0.352 0.000 0.352 1.000
KO 0.002 0.076 0.424 0.918 0.000 0.993 1.000
MCD 0.005 0.033 0.486 1.000 0.000 0.727 0.727
MRK 0.002 0.014 0.070 0.044 0.000 1.000 0.070
MSFT 0.000 0.000 0.000 0.002 0.000 1.000 0.013
PFE 0.000 0.000 0.013 0.000 0.000 0.647 1.000
PG 0.000 0.023 0.029 0.728 0.000 1.000 0.728
UTX 0.001 1.000 0.381 0.661 0.000 0.449 0.281
VZ 0.000 0.000 0.001 0.094 0.000 0.397 1.000
WMT 0.000 0.036 0.067 0.570 0.000 0.570 1.000
XOM 0.000 0.000 0.829 0.239 0.000 1.000 0.239
#>0.05 0.000 4.000 10.000 13.000 0.000 16.000 15.000

Note: The table shows the p-values of the model confidence set test applied on the the tracking
errors of 7 competing models. The figures reported in the first 16 rows correspond to the
p-values of the MCS test implemented with 10,000 bootstrap samples and a block length of
5 observations with a MSE loss function. The figures reported in the row labeled ‘#>0.05’
correspond to the number of times (out of 16) that each model belongs to the MCS at the
5% level. The model labeled ‘OLS(100)’ is estimated on the latest 100 observations of the
available data while the method labeled ‘True RB’ is infeasible because it uses the observed
realized betas of day t + 1 to form the tracking portfolio. The other models are estimated by
QML on expanding windows. The first sample consists of the first 1,500 available observations.
The parameters are re-estimated every 25 days (i.e., approximatively every month) so that
the parameters are kept constant to produce 25 consecutive forecasts before being reevaluated.
The total number of one-step-ahead forecasts (and therefore, realized tracking errors) is 3,278
for all series but CAT, DIS, GE, JPM and KO for which there are 1,767 forecasts.

empirically verifiable condition for invertibility. Additionally, we establish the consistency
and asymptotic normality of both one-step and multistep QMLE.

A Monte Carlo simulation study reveals that multistep QMLE performs well with
different sample sizes and model specifications. Furthermore, we also find good size
and power properties for the proposed parameter constancy tests, which test for time
variations in the betas within the specific context of the ACB model.

Empirically, we find strong evidence of time variation in the regression betas of a
six-factor model. Overall, we highlight the empirical relevance of the ACB model in a
financial econometrics context. In particular, we find using the MCS test with a MSE loss
function of the tracking errors in a beta hedging exercise that our newly proposed ACB
model is the best model solely based on daily data. This model performs slightly better
than the SS-RW model (in which the conditional betas follow random walks), much
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Table 5: Results of the MCS test applied on the forecasting errors of the realized beta of
the 16 stocks

OLS OLS(100) SS-RW ACB DCB
AXP 0.000 0.000 0.000 1.000 0.000
BA 0.000 1.000 0.000 0.000 0.000
CAT 0.000 0.000 0.002 1.000 0.000
DIS 0.000 0.000 0.000 1.000 0.000
GE 0.000 1.000 0.000 0.759 0.000
JPM 0.000 0.000 0.000 1.000 0.000
KO 1.000 0.000 0.000 0.810 0.000
MCD 0.000 0.004 1.000 0.984 0.000
MRK 0.000 0.000 1.000 0.002 0.000
MSFT 1.000 0.000 0.007 0.311 0.000
PFE 0.000 0.000 1.000 0.000 0.000
PG 0.000 0.055 0.000 1.000 0.000
UTX 0.000 0.184 1.000 0.000 0.000
VZ 0.000 0.000 0.394 1.000 0.000
WMT 0.000 0.000 0.000 1.000 0.000
XOM 0.000 0.000 1.000 0.053 0.000
#>0.05 2.000 4.000 6.000 12.000 0.000

Note: The table shows the p-values of the model confidence set
test for the forecasting accuracy of the one-step-ahead forecasts
of the conditional betas. For each model and time period t + 1,
the loss is measured as the sum over the six betas of the squared
difference between the realized beta at time t + 1 and its one-
step ahead forecast, i.e.,

∑7
i=2(RBi,t+1 − β̂i,t+1|t)

2. The MCS
test is implemented with 10,000 bootstrap samples and a block
length of 5 observations in a universe consisting of the 6 models
based on daily returns. The figures reported in the row labeled
‘#>0.05’ correspond to the number of times (out of 16) that each
model belongs to the MCS at the 5% level. The total number
of one-step-ahead forecasts is 3,278 for all series but CAT, DIS,
GE, JPM and KO for which there are 1,767 forecasts.

better than the DCB model and models with constant parameters, and slightly worse
than univariate ARFIMA models fitted on the realized betas obtained from 5-minute
returns.

For future research, it will be valuable to study the properties of an ACB model of
higher orders to allow for time-varying betas with richer dynamics. Empirically, this
extension is not difficult to achieve. In theory, however, there are some challenges to
overcome given the nonlinearity of the updating equation for the betas. As such, this
model may require more involved and complex derivations for invertibility and ultimately
for consistency and asymptotic normality of the estimators.

32



APPENDIX

The assumptions are collected in this appendix.We start with the conditions on the
regressors. Let ϵt = (ε1,t, . . . , εp,t)

⊤. Assuming that

A1: (ϵt) is an i.i.d. sequence, Eεi,t = 0, Eε2i,t = 1, µ0i ∈ R, ω0i > 0, α0i > 0, β0i ≥ 0

and E log
(
α0iε

2
i,t + β0i

)
< 0 for i = 1, . . . , p.

it is well known that there exists a stationary solution xt = (x1t, . . . , xpt)
⊤ of the GARCH

equations (8)–(9). We do not need to specify a DGP for the exogenous variables, but we
assume that

A2: (ηt,x
⊤
t , z

⊤
t ) is stationary and ergodic and E∥zt∥s <∞ for some s > 0.

Furthermore, consider the following assumption.

A3: (ηt) is i.i.d., Eηt = 0, Eη2t = 1, ω0 > 0, α0 > 0, β0 ≥ 0, E log(α0η
2
1 + β0) < 0 and

|c0i| < 1 for i = 1, . . . , p.

Note that the assumptions ω0 > 0 and α0 > 0 are generally made to avoid degenerate
GARCH volatilities. To study the stability of the SRE (14), assume the following.

A4: (a) for all φ ∈ Θφ, 0 ≤ β < 1 and 0 ≤ βi < 1 for i = 1, . . . , p;
(b) there exists an operator norm ∥ · ∥ and an integer k ≥ 1 such that

E log sup
φ∈Θφ

∥∥∥∥∥
k∏

i=1

Λt−i(φ)

∥∥∥∥∥ < 0,

where Λt(φ) is the p× p matrix whose entries are − ξixi,txj,t

µ2
i+g2i,t(φ)

+ ci1{i=j}.

Example 2 (ARMA(1, 1) continued). In Example 1, Assumption A4 (b) is reduced to
supφ∈Θφ

|c1 − ξ1| < 1, which is the well-known invertibility condition of the ARMA(1,1)
model.

For the QMLE of the regressor GARCH models to be well defined, strongly consistent
and asymptotically normal, we make use of the following assumption (see, e.g., Francq
and Zakoian, 2019).

A5: (a) For i ∈ {1, . . . , p}, the support of the distribution of εi,t conditionally on Ft−1

contains at least 3 points. Moreover, Θ is a compact subset of R × (0,∞) ×
(0,∞)× [0, 1), which contains θ

(i)
0 .

(b) For i ∈ {1, . . . , p}, κi := Eε4i,1 <∞, and θ
(i)
0 belongs to the interior of Θ.

Under A1 and A5, we have the Bahadur representation

√
n
(
θ̂
(i)

n − θ
(i)
0

)
op(1)
=
{
J (i)

}−1 1√
n

n∑
t=1

{
ε2i,t − 1

g2i,t(θ
(i)
0 )

∂g2i,t(θ
(i)
0 )

∂τ
+

2ϵi,t

gi,t(θ
(i)
0 )

e1

}
, (34)
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where e1 = (1, 0, 0, 0)⊤ and J (i) = limn→∞ ∂2Õ
(i)
n (θ̂

(i)

n )/∂θ(i)∂θ(i)⊤ a.s.
For the consistency and asymptotic normality of both the one-step and multistep

estimators, we shall make use of the following assumption.

A6: (a) The support of the distribution of η1 contains at least 3 points. Moreover, Θϑ

is a compact set that contains ϑ0.

(b) ϑ0 belongs to the interior of Θϑ.

Additionally, the next assumption frames the regression model as a model of the
conditional expectation of yt given xt and Ft−1. In particular, together with A1-A3,
this assumption entails E (yt | xt,Ft−1) =

∑p
i=1 βi,txi,t.

A7: ηt is independent of the sigma field F+
t−1 generated by Ft−1 and xt.

We further impose an identifiability assumption requiring that if λ⊤
t xt = 0 a.s. for

some λt ∈ Ft−1, then λt = 0.

A8: For i ∈ {1, . . . , p}, the conditional distribution of εi,t given Ft−1 and {εj,t, j ̸= i} is
not degenerate.

For the exogenous variables zt entering the updating equation of the time-varying
betas, we do not need any kind of strong exogeneity assumption. Specifically, conditions
such as the independence between zt and (ϵ⊤t , ηt) are not necessary for the results that
follow. For identifiability reasons, we do, however, assume that zt does not contain all
the extra information conveyed by ηt or ϵt. More precisely, we impose the following
assumption.

A9: (a) ηt ̸∈ F++
t−1, where F++

t−1 denotes the sigma field generated by Ft−1, xt and zt;

(b) for i ∈ {1, . . . , p}, εi,t does not belong to the sigma field generated by Ft−1

and zt;

(c) for i ∈ {1, . . . , q}, zi,t does not belong to the sigma field generated by Ft−1

and {zj,t, j ̸= i}.

Note that A9 (c) precludes multicollinearity of the exogenous variables.
We now give conditions for the one-step and the multistep QML estimators to be√

n-consistent and asymptotically normal and derive their asymptotic covariance matrix.
Note that we demonstrated the consistency by assuming, for Y t(φ), marginal moments
only. For nonstandard GARCH (see e.g., Example (3.3) in Francq and Zakoian, 2004) or
multivariate GARCH (see Avarucci et al., 2013), it is often necessary to have high-order
finite moments to show asymptotic normality and for information matrices to exist. We
thus assume the following.

A10: There exist a neighborhood V (φ0) of φ0 and conjugate numbers; that is, pi ≥ 1
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and qi ≥ 1 satisfying 1/pi + 1/qi = 1 for i = 1, . . . , 4 such that∥∥∥∥∥ sup
φ∈V (φ0)

v2t (φ)

g2t (φ)

∥∥∥∥∥
p1

<∞,

∥∥∥∥∥ sup
φ∈V (φ0)

∥∥∥∥ 1

g2t (φ)

∂g2t (φ)

∂φ

∥∥∥∥
∥∥∥∥∥
2q1

<∞,∥∥∥∥∥ sup
φ∈V (φ0)

v2t (φ)

g2t (φ)

∥∥∥∥∥
p2

<∞,

∥∥∥∥∥ sup
φ∈V (φ0)

∥∥∥∥ 1

g2t (φ)

∂2g2t (φ)

∂φ∂φ⊤

∥∥∥∥
∥∥∥∥∥
q2

<∞,∥∥∥∥∥ sup
φ∈V (φ0)

|vt(φ)|
gt(φ)

∥∥∥∥∥
p3

<∞,

∥∥∥∥∥ sup
φ∈V (φ0)

∥∥∥∥ 1

gt(φ)

∂2v2t (φ)

∂φ∂φ⊤

∥∥∥∥
∥∥∥∥∥
q3

<∞∥∥∥∥∥ sup
φ∈V (φ0)

|vt(φ)|
gt(φ)

∥∥∥∥∥
p4

<∞,

∥∥∥∥∥ sup
φ∈V (φ0)

∥∥∥∥ 1

g2t (φ)

∂g2t (φ)

∂φ

1

gt(φ)

∂vt(φ)

∂φ⊤

∥∥∥∥
∥∥∥∥∥
q4

<∞,∥∥∥∥∥ sup
φ∈V (φ0)

1

gt(φ)

∥∥∥∥∂vt(φ)∂φ⊤

∥∥∥∥
∥∥∥∥∥
2

<∞.

Note that by (4.26) and (4.29) in Francq and Zakoian (2004), it can be seen that (the
analog of) A10 is always satisfied in the case of standard GARCH(p, q) models that do
not contain zero coefficients. The following example shows that this is not the case in
our framework.

Example 3 (Necessity of moment conditions). For simplicity, consider the case where
p = 1 and q = 0 (i.e., there exist no exogenous variables in the conditional beta equations).
Assume also that µ1 = 0 and g21t(φ) = ω1. SRE (14) can be written as

βt+1(φ) = ϖ + ξ
ytxt
ω1

+

(
c− ξx2t

ω1

)
βt(φ)

and thus,

∂βt+1(φ)

∂ξ
=
vt(φ)xt
ω1

+

(
c− ξx2t

ω1

)
∂βt(φ)

∂ξ
=

∞∑
i=0

(
vt−i(φ)xt−i

ω1

) i−1∏
j=0

(
c−

ξx2t−j

ω1

)
,

with the convention
∏−1

j=0 · = 1 and under the condition that E log
∣∣∣c− ξω01ε2t

ω1

∣∣∣ < 0. If we
assume that (ηt) and (εt) are independent, then vt and xs =

√
ω01εs are also independent.

Then,

E

∣∣∣∣∂βt+1(φ0)

∂ξ

∣∣∣∣r = E|v1|rE|ε1|r

|ω01|r/2
1

1− E|c0 − ξ0ε21|r
<∞

if and only if E|c0 − ξ0ε
2
1|r < 1 and E|α0η

2
1 + β0|r < 1 (the latter condition is equivalent

to E|v1|r < ∞). Now, assuming for further simplicity that β = 0 (i.e., that (vt) follows
ARCH(1)), we also have

1

g2t (φ0)

∂g2t (φ0)

∂ξ
=

−2vt−1xt−1

ω + αv2t−1

∂βt−1(φ0)

∂ξ
,
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which shows that the second moment condition in A10 requires E|c0 − ξ0ε
2
1|2q1 < 1 and

E|α0η
2
1 + β0|2q1 < 1. Note also that for the existence of the information matrices I1S

and J1S below, a moment of order 2 is needed for 1
g2t (φ0)

∂g2t (φ0)
∂ξ . This shows that the

constraints E|c0 − ξ0ε
2
1|2 < 1 and E|α0η

2
1 + β0|2 < 1 are needed for the asymptotic

variances of the QML estimators to be well defined on this example.
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