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Why Are Proofs Relevant in Proof-Relevant Models?∗
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FEDERICO OLIMPIERI, University of Leeds, United Kingdom

Relational models of _-calculus can be presented as type systems, the relational interpretation of a _-term

being given by the set of its typings. Within a distributors-induced bicategorical semantics generalizing the

relational one, we identify the class of ‘categori�ed’ graph models and show that they can be presented as type

systems as well. We prove that all the models living in this class satisfy an Approximation Theorem stating

that the interpretation of a program corresponds to the �ltered colimit of the denotations of its approximants.

As in the relational case, the quantitative nature of our models allows to prove this property via a simple

induction, rather than using impredicative techniques. Unlike relational models, our 2-dimensional graph

models are also proof-relevant in the sense that the interpretation of a _-term does not contain only its typings,

but the whole type derivations. The additional information carried by a type derivation permits to reconstruct

an approximant having the same type in the same environment. From this, we obtain the characterization of

the theory induced by the categori�ed graph models as a simple corollary of the Approximation Theorem:

two _-terms have isomorphic interpretations exactly when their Böhm trees coincide.
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1 INTRODUCTION

The equational theories of _-calculus are called _-theories, and constitute the main object of
study when one is interested in the equivalence between terms, rather than focusing on their
computational process [Barendregt 1984]. Among the uncountably many possible _-theories [Lusin
and Salibra 2004], some are particularly relevant for computer scientists as they equate all programs
displaying the same operational/observational behavior. Examples are the theoryH , collapsing
together all unsolvables, the theory B, equating two _-terms exactly when they have the same
Böhm tree, and the extensional theoryH ∗ equating all observationally indistinguishable _-terms.
Lambda theories may also arise from denotational models D by taking the kernel�(D) of their
interpretation function: classical results establish that Plotkin’s model Pl has theory �(Pl ) =
B and Scott’s D∞ has theory �(D∞) = H

∗ [Hyland 1976; Wadsworth 1976]. In both cases,
i.e. for D ∈ {Pl ,D∞}, the inclusion B ⊆ �(D) follows from the fact that D satis�es an
Approximation Theorem stating that the interpretation of a _-term in the model D is given by the
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supremum of the denotations of its �nite approximants—a result usually achieved via impredicative
techniques [Barendregt et al. 2013, §17.3] generalizing Tait’s computability predicates [Tait 1966].

As the continuous semantics and its variations are nowadays well understood [Berline 2000], in
the last decades researchers mostly considered models living in quantitative semantics of linear
logic [Girard 1987]—the simplest being the relational semantics originated in [Girard 1988] and �rst
studied in [Bucciarelli et al. 2007; de Carvalho 2007; Hyland et al. 2006]. Since the pioneering work
of de Carvalho [2007] it is clear that relational models can be presented as relevant intersection
type systems where the operator ∩ is associative, commutative but not idempotent, i.e. 0 ∩ 0 ≠ 0

(see [Bucciarelli et al. 2017; Paolini et al. 2017]). The relational interpretation of a _-term" is given
by the set of typings (Γ, 0) such that Γ ⊢ " : 0. As shown in [de Carvalho 2018], the relevance of the
system and the lack of idempotency allow to extract from a typing an upper bound to the number of
head reductions from" to its hnf. Breuvart et al. [2018] exploited this quantitative information to
give a combinatorial proof of the Approximation Theorem satis�ed by all relational graph models
(rgm’s), thus bypassing computability predicates. It follows that the theory of any rgm includes B.
They also constructed an rgm E whose theory is exactly B: the proof of�(E) ⊆ B relies on the
fact that E has countably many atoms, thus the system admits a kind of principal typings.

The relational semantics has been generalized in a number of directions, see, e.g. [Ong 2017]. In
[Laird et al. 2013], relations' : �×� → 2 are extended to “weighted” relations' : � × � → S, where
S is an arbitrary continuous semiring. Another possible generalization is given by categori�cation,
where set-theoretic notions are replaced by categorical ones. In the categori�ed setting that we
consider, sets are replaced with small categories and relations with distributors—a distributor �
between small categories �, � being a functor of the form � : �op × � → Set. Distributors are
proof-relevant, in the sense that two objects 0, 1 are mapped to the set � (0, 1) of ‘witnesses’ of their
relationship, and determine a weak 2-dimensional categorical structure: in a bicategorical model
the interpretation of two V-convertible _-terms is only equal up to coherent isomorphisms.

The 2-dimensional setting re�nes the denotational semantics viewpoint, allowing the possibility
to categorically model rewriting [Fiore and Saville 2019; Hilken 1996; Seely 1987]. Moreover, Fiore
et al. [2008] introduced the generalized species of structure (see also [Gambino and Joyal 2017]), a
Kleisli bicategory of distributors categorifying the standard multiset-based semantics of _-calculus
as well as Joyal’s species of structures [Joyal 1986]. Their construction led to relevant developments
in denotational semantics. For instance, Tsukada et al. [2017] showed that the semantics of species
can be syntactically presented via a theory of approximation for _-terms re�ning Ehrhard and
Regnier’s Taylor expansion [2003]. In particular, they exploited this semantics to enumerate the
reduction paths to normal forms for non-deterministic programs (subsequently, generalized to other
e�ects [Tsukada et al. 2018]). Building on that work, and on Mazza et al.’s categorical approach to
intersection type theories [2017; 2018], Olimpieri [2020; 2021] considered a class of bicategories
generalizing the construction by Fiore et al. He proved that they actually determine categorical
models of _-calculus and can be syntactically presented via intersection types. Each of these models
gives a particular notion of intersection type, linked to an appropriate monadic construction.
The present work should be seen as a step further towards the categori�cation of the classical

theory of _-calculus, in the sense of [Hyland 2017]. In particular, we generalize the (relational) graph
models, that constitute an important class of “traditional” semantics [Berline 2000]. In doing so, we
aim at building a solid argument in favor of 2-dimensional categorical semantics. We show that the
proof-relevance given by the jump to second dimension grants access to powerful techniques for
studying computational properties of programs, that are simply unavailable in the usual settings.
We also build on a long-established tradition of type-theoretic approaches to _-terms semantics,
initiated by the Torino school [Barendregt et al. 1983; Coppo et al. 1984; Ronchi Della Rocca
1982], that can be seen as an instance of the logical presentation of domain theory by Abramsky
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[1991]. In our case, this produces a virtuous duality between sophisticated categorical tools and
concrete syntactic constructions. We believe that this aspect of our work could be formalized as a
2-dimensional generalization of [Abramsky 1991], but we leave this perspective for future works.

Main Results. We signi�cantly generalize the semantics in [Olimpieri 2021] to arbitrary categori-

�ed graph models (De�nition 5.1). We prove that these models can be presented via an intersection
type systemwhere the intersection is neither commutative nor idempotent, thus 01∩· · ·∩0= is given
as a list ⟨01, . . . , 0=⟩. Permutative actions on the type derivations allow to restore commutativity
“up to iso”. The semantics so-de�ned is proof-relevant: the interpretation of a _-term can be thought
of as the set of its type derivations. In other words, type derivations are the protagonists of our
bicategorical model. The interpretation map is then extended to the Böhm tree of" by taking the
�ltered colimit of the interpretations of its �nite approximants, which is available in the bicategory.

In general, in a derivation c of Δ ⊢ " : 0, only some of the subterms of" need to be typed. We
expose the quantitative nature of the system by proving that the contraction of a redex in" typed
in c yields a derivation c ′ (intuitively, the reduct of c ) having a strictly smaller size (Proposition 6.4).
Thus, this process needs to terminate after a �nite number of steps, giving the (unique) normal
form nf (c) of c . We then de�ne the normal form of the interpretation of a _-term " , which we
prove to be equivalent to the interpretation of its Böhm tree. We show that from nf (c) it is possible
to reconstruct a �nite approximant �c of" such that nf (c) is a derivation of Δ ⊢ �c : 0. It follows
that any categori�ed graph model D satis�es the Approximation Theorem 6.13 stating that the
interpretation of" is isomorphic to the interpretation of its Böhm tree. Moreover, we demonstrate
that any c living in the interpretation of" , but not in the interpretation of # , yields an approximant
�c of" which is not an approximant of # . This leads to a characterization of the theory ofD, since
it allows to conclude that�(D) = B (Theorem 7.3). This technique to characterize the theory of
a model is original, and the same reasoning cannot be performed in the relational semantics as
typings do not carry enough information to uniquely identify an approximant, in general.

It is worth stressing the fact that the bicategorical notion of theory of a model is de�ned in terms
of isomorphisms, not equality of denotations. In particular, our characterization relies on appropriate
isomorphisms that are coherent with respect to V-normalization, as explained in Section 7. Finally,
we de�ne a decategori�cation pseudofunctor forgetting the bicategorical structure which is present
in the model D and retrieving a relational graph model U living in the coKleisli of the comonad of
�nite multisets on the category Polr of preorders and monotonic relations [Ehrhard 2012, 2016]. We
show that the Approximation Theorem forU follows easily from the analogous result we proved
for D (Theorem 8.14), therefore �(D) ⊆ �(U) holds (Corollary 8.15). In the conclusions, we
discuss how these results could be used to characterize the theories of more bicategorical models.
Related works. Our work builds on the semantic techniques introduced by Olimpieri in 2021.

In that paper, the author presents a type-theoretic bicategorical semantics of _-calculus, where
the models under consideration are free-algebra constructions for an appropriate endofunctor.
We extend his approach to a considerably more general notion of bicategorical models, the class
of categori�ed graph models. The free-algebra models are then just particular (non-extensional)
instances of our construction. Categori�ed graphmodels can possibly be extensional and we provide
some canonical examples, categorifying classical �lter models of _-calculus (see Remark 5.8).
The theory of normalization for our bicategorical semantics (Section 6) implicitly builds on

techniques introduced by Ehrhard and Regnier [2008] in the setting of the Taylor expansion of
_-terms. The commutation theorem (Theorem 6.12)—stating that the normal form of the denotation
of a _-term coincides with the denotation of its Böhm tree—recalls a crucial result for Taylor
expansion. The underlying intuition is indeed that the intersection type derivations can be seen
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as (typed) linear approximations of _-terms. From this perspective, our work can be also seen as a
generalization to the untyped case of Tsukada et al.’s approach to Böhm trees semantics [2017].

As already mentioned, the �rst combinatorial proof of the Approximation Theory for relational
graph models was given in [Breuvart et al. 2018]. The technique for reconstructing an approximant
from any derivation in the associated type system has been introduced in [Bucciarelli et al. 2014].

General notations. In the proofs we abbreviate ‘induction hypothesis’ as IH. We write N for
the set of natural numbers. We use �, �,� to denote categories and A,B,C to denote bicategories.
Given a category � we write �op for its opposite category. Given a bicategory C, Cop denotes the
bicategory obtained by reversing the 1-cells of C but not the 2-cells. Given bicategories C1, . . . ,C= ,
we write C1 × · · · × C= for their product and C1 ⊔ · · · ⊔ C= for their coproduct.

2 THE LAMBDA CALCULUS IN A NUTSHELL

We recall some basic notions and notations about the theory of _-calculus. We start by presenting
its syntax and operational semantics (§2.1), then we discuss solvability and introduce the Böhm
tree semantics (§2.2), and �nally we recall the associated theory of program approximation (§2.3).

2.1 Its Syntax

Concerning the syntax of _-calculus, we mainly use the notations of Barendregt’s �rst book [1984].
We consider �xed a countably in�nite set Var of variables denoted G,~, I, . . . possibly with indices.

De�nition 2.1. The set Λ of _-terms over Var is de�ned by the following grammar (for G ∈ Var):

Λ : ", # ::= G | _G ." | "#

As usual, application associates to the left, and has higher precedence than abstraction. E.g.,

_G~I.G~I := _G.(_~.(_I.((G~)I))). We let" ®# (resp. _®G .") denote"#1 · · ·#: (resp. _G1 . . . G= .").
The set FV(") of free variables of " and the U-conversion are de�ned as in [Barendregt 1984,

Ch. 1§2]. If FV(") = ∅ then" is closed. Hereafter, _-terms will be considered up to U-conversion.

De�nition 2.2. (i) A (single-hole) context � [] is a _-term containing an occurrence of an alge-
braic variable, called hole and denoted by []. Formally, � [] is generated by the grammar:

� [] ::= [] | _G .� [] | � []" | "� [] (for" ∈ Λ)

(ii) Given a context � [] and a _-term" , we write � ["] for the _-term obtained by substituting
" for all occurrences of [] in � [], possibly with capture of free variables in" .

The set Λ is endowed with notions of reduction turning the _-calculus into a higher-order term
rewriting system.

De�nition 2.3. Consider a binary relation R ⊆ Λ
2.

(i) The relation R is compatible if" R " ′ entails _G ." R _G ." ′, #" R #" ′ and"# R " ′# .
(ii) The contextual closure of R, written→R, is the least compatible relation containing R.
(iii) The multistep R-reduction→→R is de�ned as the re�exive-transitive closure of→R.
(iv) The R-normal form (R-nf ) of" , if any, is denoted by nfR ("). I.e.," →→R nfR (") ↛R.
(v) The R-conversion =R is de�ned as the re�exive, transitive and symmetric closure of→R.

The V- and [-reductions are de�ned as the contextual closure of the following relations:

(V) (_G.")# → " [# /G], ([) _G ."G → ", if G ∉ FV("),

where" [# /G] denotes the capture-free substitution of # for all free occurrences of G in" . The
term on the left-hand side of the arrow is called redex, the one on the right-hand side is its contractum.
It is easy to check that a _-term is in R-normal form if and only if it contains no R-redexes.
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Notation 2.4. Concerning speci�c _-terms, we �x the following notations:

I = _G.G, 1 = _G~.G~, Δ = _G .GG, Ω = ΔΔ, Y = _5 .(_G .5 (GG)) (_G.5 (GG)) .

It is readily seen that I is the identity, 1 is an [-expansion of the identity, Δ is the self-applicator, Ω
the paradigmatic looping _-term, and Y represents Curry’s �xed point combinator.

2.2 Solvability and Böhm Trees

The _-terms are classi�ed into solvable/unsolvable, depending on their capability of interaction
with the environment.

De�nition 2.5. A closed _-term # is solvable if there are ®% ∈ Λ such that # ®% →→V I. A _-term"

is solvable if its closure _®G ." is solvable. Otherwise" is called unsolvable.

A _-term" is in head normal form (hnf ) if it has the shape _G1 . . . G= .G 9"1 · · ·": where either
G 9 ∈ ®G or it is free. A _-term" has an hnf if it reaches an" ′ in hnf, in a �nite number of reductions.
If" has an hnf, then such a normal form can be reached by performing head reductions→→ℎ , i.e.
by repeatedly contracting the head redex of" = _G1 . . . G= .(_~.# )"0"1 · · ·": .

Theorem 2.6 ([Wadsworth 1976]). A _-term" is solvable if and only if" has an hnf.

The typical examples of unsolvables are Ω and YI. The execution of a _-term can be represented
as a possibly in�nite tree, obtained by collecting all the stable pieces of information coming out
from the computation (if any). The complete lack of information is represented by a constant ⊥.

De�nition 2.7. The Böhm tree BT(") of a _-term" is de�ned coinductively as follows:

• if" →→ℎ _G1 . . . G= .G8"1 · · ·": (for =, : ≥ 0), then

BT(") = _G1 . . . G= .G8

BT("1) BT(": ),· · ·

• otherwise" is unsolvable and BT(") = ⊥.

Example 2.8. The following are examples of Böhm trees.

(i) BT(I) = _G .G , BT(1) = _G~.G~ and BT(Δ) = _G .GG .
(ii) More generally, if" is in V-nf then BT(") = " .
(iii) Since Ω is unsolvable, we have BT(Ω) = ⊥. For analogous reasons, BT(YI) = ⊥.
(iv) More interestingly, we have BT(Y) = _5 .5 (5 (5 (5 (5 (· · · ))))).

Remark 2.9. Since BT(") is de�ned coinductively, so it is the equality between Böhm trees.
That is, BT("1) = BT("2) holds if and only if either "1, "2 are both unsolvable, or (for 8 = 1, 2)
"8 →→ℎ _®G .~#81 · · ·#8: where BT(#19 ) = BT(#29 ) holds, for all 9 (1 ≤ 9 ≤ :).

The equivalence B obtained by equating all _-terms having the same Böhm tree, i.e.

B = {(", # ) | BT(") = BT(# )} ⊆ Λ
2,

is an example of a so-called _-theory, namely an equational theory of _-calculus. These theories
become the main object of study when considering the computational equivalence more important
than the process of computation itself [Lusin and Salibra 2004].

De�nition 2.10. (i) A _-theory is any congruence on Λ (that is, an equivalence relation com-
patible with abstraction and application) containing the V-conversion.

(ii) A _-theory is called extensional if it contains the [-conversion as well.
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8:6 Axel Kerinec, Giulio Manzone�o, and Federico Olimpieri

Given a _-theory T , we will write T ⊢ " = # , or simply " =T # , to express the fact that "
and # are equal in T . The theory B is consistent as it does not equate all _-terms, and sensible in
the sense that it does equate all unsolvables.

Example 2.11. (i) B ⊢ Ω = " , for all" unsolvable.
(ii) B ⊢ _G .GΩ = _G.G (YI), by (i) since YI is unsolvable.
(iii) B ⊢ Y = / , for any �xed point combinator / .

2.3 A Theory of Program Approximation

The notion of Böhm tree was introduced by Barendregt in the 70s [Barendregt 1977], and it
can be seen as one of the �rst appearances of a coinductive de�nition in the literature (see the
discussion in [Jacobs and Rutten 1997]). Researchers also proposed an (inductive) theory of program
approximation based on Scott-continuity and �nite trees. The possibly in�nite behavior of a _-term,
represented by its Böhm tree, is then retrieved by performing a ‘limit’ of its �nite approximants.

De�nition 2.12. (i) The set Λ⊥ of _⊥-terms over Var is inductively de�ned by the grammar:

Λ⊥ : ", #, ! ::= ⊥ | G | _G ." | "#

(ii) Let ≤⊥⊆ Λ⊥ × Λ⊥ denote the least contextual closed preorder generated by setting

⊥ ≤ ", for all" ∈ Λ⊥.

(iii) The _⊥-terms are endowed with the reduction→V⊥, namely V-reduction extended with

_G.⊥ →⊥ ⊥,
⊥"1 · · ·"= →⊥ ⊥ (for = > 0).

(iv) The set A ⊆ Λ⊥ of �nite approximants is de�ned by:

A : %,& ::= ⊥ | _G1 . . . G= .~%1 · · · %: (for =, : ≥ 0)

(v) Two approximants %1, %2 ∈ A are compatible if there exists & ∈ A such that %1 ≤⊥ & ≥⊥ %2.
(vi) Given a _-term" , the set A(") of �nite approximants of" is de�ned as follows:

A(") = {% ∈ A | ∃# ∈ Λ . " →→V # and % ≤⊥ # }.

Intuitively, the �nite approximants of a _-term " are obtained by cutting its Böhm tree into
�nite pieces, replacing the removed subtrees with ⊥.

Example 2.13. (i) A(I) = {⊥, _G .G} and A(1) = {⊥, _G~.G⊥, _G~.G~}.
(ii) A(Ω) = A(YI) = {⊥}, whence A(_G.GΩ) = {⊥, _G .G⊥} = A(_G .G (YI)).
(iii) A(Y) = {⊥} ∪ {_5 .5 = (⊥) | = > 0}.

The following properties are well established. See, e.g., [Amadio and Curien 1998].

Lemma 2.14. (i) " ∈ Λ⊥ is in V⊥-normal form if and only if" ∈ A.

(ii) For" ∈ Λ, the setA(") is an ideal (i.e. non-empty, downward closed and directed) and admits

a supremum.

The (syntactic) Approximation Theorem below shows that in�nite Böhm trees can be recovered
by taking the supremum of their �nite approximants.

Theorem 2.15 (Approximation Theorem). For all" ∈ Λ, we have

BT(") =
∨
A(")

Such a supremum always exists by Lemma 2.14(ii). Moreover, BT(") = BT(# ) ⇔ A(") = A(# ).
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3 CATEGORICAL PRELIMINARIES

In this section we recall some notions of 2-dimensional category theory, but we assume that the
reader is already familiar with basic category theory and with the notion of monoidal categories.
First, we provide the de�nitions of bicategories, of 2-categories, and of pseudore�exive objects
living in a cartesian closed bicategory (§3.1). Then, we recall the notion of coend and present a
basic theorem of the associated coend calculus, i.e. the so-called Yoneda lemma for coends (§3.2).
Finally, we provide the construction of a free algebra for an endofunctor in Cat (§3.3).

3.1 Bicategories in a Nutshell

Intuitively, bicategories are categories with “morphisms between morphisms” called 2-morphisms.
The associativity and identity laws for composition of morphisms in a bicategory hold just up to
coherent isomorphisms. For a gentle introduction, we refer to [Johnson and Yau 2021].

De�nition 3.1. A bicategory C consists of:

• a collection ob(C) of objects (denoted by �, �,�, . . . ), also called 0-cells;
• for all �, � ∈ ob(C), a category C(�, �);
objects � in C(�, �), also written � : �→ �, are called 1-cells or morphisms from � to �;
arrows in C(�, �) are called 2-cells or 2-morphisms and denoted by Greek letters (U, V, . . . );
composition of 2-cells is denoted by − • − and generally called vertical composition;
• for every �, �,� ∈ ob(C), a bifunctor

◦�,�,� : C(�,�) × C(�, �) → C(�,�)

called horizontal composition (often the indices �, �,� in ◦�,�,� are omitted). Therefore, for
all 1-cells �, � ′ : �→ � and �,� ′ : � → � , and for all 2-cells U : � ⇒ � ′ and V : � ⇒ � ′, we
have both a 1-cell � ◦�,�,� � : �→ � and a 2-cell V ◦�,�,� U : (� ◦�,�,� � ) ⇒ (�

′ ◦�,�,� �
′);

• for every � ∈ ob(C), a functor 1� : 1→ C(�,�), where 1 is the category with one object ∗
and one arrow. We slightly abuse notation and identify 1� (∗) with the identity 1� of �;
• for all 1-cells � : �→ �, � : � → � , and � : � → �, a family of invertible 2-cells expressing
the associativity law

U�,�,� : � ◦ (� ◦ � ) � (� ◦�) ◦ � ;

• for every 1-cell � : �→ �, two families of invertible 2-cells expressing the identity law

_� : 1� ◦ � � �, d� : � � � ◦ 1� .

Moreover, these data must satisfy two additional coherence axioms [Borceux 1994].

A 2-category is a bicategory where associativity and unit 2-cells are identities.

Example 3.2. (i) The most canonical example of 2-category is Cat: namely, the 2-category of
small categories, functors and natural transformations.

(ii) Any monoidal category is a one object bicategory, taking the tensor product as the horizontal
composition. The coherence laws for horizontal composition are indeed the ‘same’ as the ones
for the tensor product. Bicategories are in this way a generalization of monoidal categories,
in the same way as categories generalize monoids.

There is a notion of morphisms between bicategories, called pseudofunctors [Borceux 1994],
where composition is preserved only up to coherent isomorphism. Most notions of 1-dimensional
category theory can be expressed in the bicategorical setting as well. We recall here the most
important ones, that will be useful in the rest of the paper.
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De�nition 3.3 (pseudoretraction (left inverse), pseudosection (right inverse) and equivalence).

Let C be a bicategory, �, � ∈ ob(C) and 8 : � → �.

(i) A pseudoretraction for 8 consists of a 1-cell 9 : � → � with an invertible 2-cell U : 1� � 9 ◦ 8 .
(ii) A pseudosection for 8 consists of a 1-cell 9 : � → � with an invertible 2-cell V : 8 ◦ 9 � 1� .

(iii) A 1-cell 9 : � → � is right adjoint to 8 when there exist 2-cells [ : 1� ⇒ 9 ◦8 and n : 8 ◦ 9 ⇒ 1� ,
satisfying the appropriate triangular laws. In this case, we say that 8 is left adjoint to 9 and
that the tuple ⟨8, 9, [, n⟩ is an adjunction.

(iv) If 9 is both a pseudoretraction and a pseudosection for 8 , we say that ⟨8, 9⟩ is an equivalence.
(v) An equivalence that is also an adjunction is called an adjoint equivalence.

Given a cartesian closed bicategory C, we denote its products as � & �, the exponential objects
as �� and the associated evaluation morphism as ev�,� : �� &� → �. For every - ∈ ob(C), we
have an adjoint equivalence between C(-, ��) and C(- &�, �) given by ⟨ev�,� ◦ (− &�),Λ(−)⟩,
where Λ(−) denotes the currying functor. For a precise de�nition, we refer to [Saville 2020].

De�nition 3.4. A pseudore�exive object in a cartesian closed bicategory C is given by a tuple
⟨�, U, 8 : �� → �, 9 : � → ��⟩, where � is an object and 9, U a pseudoretraction for 8 .

3.2 The Coend Calculus

Coends are a universal categorical construction which is at the foundation of several structures
that we shall introduce. In the particular case we will consider, coends correspond to appropriate
quotient sums of sets.

De�nition 3.5. Given a category� and a functor � : �op×� → Set, the coend of � is the coequalizer
of the following diagram∑

2,2′∈�

� (2′, 2) × � (2, 2′) ⇒
∑
2∈�

� (2, 2) →

∫ 2∈�

� (2, 2)

where the parallel arrows⇒ are given by left and right actions of � on morphisms 5 ∈ � (2′, 2).
Since we work with coends in the category of sets, we have that this coequalizer is actually given
by the quotient

∑
2∈� � (2, 2)/∼ where the equivalence relation ∼ is generated by the rule

G ∼ ~ ⇐⇒ � (5 , 2′) (G) = � (2, 5 ) (~), for some 5 : 2′ → 2.

A formal calculus has been developed for coends, that we employ to prove some of our results.
We refer to [Loregian 2021] for a more detailed presentation of this calculus. A basic theorem of
coend calculus is the Yoneda lemma for coends:

Theorem 3.6 (Yoneda, Density Theorem). Let  : �op → � and � : � → � be two functors.

We have canonical natural isomorphisms

 (−) �

∫ 2∈�

 (2) ×� (−, 2), � (−) �

∫ 2∈�

� (2) ×� (2,−) .

3.3 Algebras of Cat Endofunctors

For �, � ∈ Cat a full embedding � : � ↩→ � is a fully faithful functor which is injective on objects.

De�nition 3.7. Let F : Cat→ Cat be an endofunctor.

(i) An algebra for F consists of a small category � equipped with a functor � : F�→ �.

(ii) A partial F-algebra on a small category � consists of a pair of a functor and a full embedding

�
�
← �

�
↩→ F(�).
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De�nition 3.8 (Construction of Free F-Algebras [Kelly 1980]). Given a functor F : Cat→ Cat that
preserves colimits ofl-chains and a small category�,we construct a canonical F-algebra as follows.
(Below, given a coproduct � ⊔ �, we denote by in� and in� the associated injections.)

• First, we de�ne an inductive family of small categories:

�0 = �, �=+1 = F�= ⊔�.

• Then, we construct a family of functors ]= : �= ↩→ �=+1, again by induction:

]0 = in�, ]=+1 = F(]=) ⊔�.

De�ne now �� = lim
−−→=∈N

�= . Then, we have a canonical algebra map ]� : F(��) → �� .

The small category �� is in particular the free F-algebra on �.

4 2-DIMENSIONAL SEMANTICS

We now introduce some basic de�nitions and results of 2-dimensional categorical semantics of
untyped _-calculus (§4.1). We show that the second dimension allows to explicitly model the
dynamics of computation (Theorem 4.5), an aspect which is hidden in the standard semantic setting.
We also present the bicategory of distributors (§4.2), originally introduced in [Benabou 1973], which
represents the core of our bicategorical investigations (see Section 5, and beyond).

4.1 Bicategorical Interpretation

The categorical framework for our semantic investigations is a cartesian closed bicategory C, where
each hom-category C(�, �) admits all �ltered colimits and an initial object ⊥�,� .

De�nition 4.1. (i) A bicategorical model of _-calculus is given by any pseudore�exive object
D = ⟨�, U, 8, 9⟩ in C, where ⟨8, 9⟩ represents the retraction pair and U : 83�� � 9 ◦ 8 .

(ii) An extensional bicategorical model is a bicategorical model where the pseudoretraction carries
the structure of an adjoint equivalence:

�� ⊥ �

8

9

In this setting, _-terms are interpreted by mimicking the standard 1-dimensional categorical
de�nition (see, e.g., [Amadio and Curien 1998, §4.6]). Fix a bicategorical model D = ⟨�, U, 8, 9⟩
living in the bicategory C. Given G1, . . . , G= ∈ Var, de�ne Λ

> (G1, . . . , G=) = {" ∈ Λ | FV(") ⊆ ®G}.

De�nition 4.2. The interpretation of a _-term" ∈ Λ> (G1, . . . , G=) in D is a 1-cell

⟦"⟧®G : �&= → � (= (� & · · · & �) → �)

de�ned by induction on" as follows:

⟦G8⟧®G = c=8 ,

⟦_~."⟧®G = 8 ◦Λ
(
⟦"⟧®G,~

)
, wlog assume ~ ∉ ®G,

⟦"#⟧®G = ev�,� ◦ ⟨ 9 ◦ ⟦"⟧®G , ⟦#⟧®G ⟩.

The de�nition of interpretation extends to _⊥-terms by setting ⟦⊥⟧®G = ⊥�&=,� .

Since we are dealing with cartesian closed bicategories, the denotation of a _-term is invariant
under V-conversion only up to canonical coherent isomorphisms.
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Lemma 4.3 ((de)Substitution). Consider" ∈ Λ> ( ®G,~) and # ∈ Λ> ( ®G), where ~ ∉ ®G = G1, . . . , G= .

The following canonical invertible 2-cell is built out of the cartesian closed structure:

sub",~,# : ⟦" [# /~]⟧®G � ⟦"⟧®G,~ ◦ ⟨1�&= , ⟦#⟧®G ⟩

Theorem 4.4 (Soundness). Let", # ∈ Λ> ( ®G) and D = ⟨�, U, 8, 9⟩ be a bicategorical model.

(i) If" →V # then we have a canonical invertible 2-cell (interpreting the V-reduction step)

⟦" →V #⟧®G : ⟦"⟧®G � ⟦#⟧®G

which is built out of the cartesian closed structure and the 2-cell U .

(ii) If" →[ # and the model D is extensional, then we also have a canonical invertible 2-cell

⟦" →[ #⟧®G : ⟦"⟧®G � ⟦#⟧®G

built out of the cartesian closed structure and the 2-cell U .

Thanks to the coherence theorem for cartesian closed bicategories proved by Fiore and Saville
[2020], the canonical interpretation of V-reduction steps enjoys con�uence. This means that the
interpretations of two reductions" →→V ! →→V # and" →→V !

′ →→V # coincide as 2-cells.

Theorem 4.5 (Semantic is sound with respect to confluence).

Consider reduction sequences d : " →→V !, d
′ : ! →→V # and a : " →→V !

′, a ′ : !′ →→V # . Then

⟦d ′⟧®G • ⟦d⟧®G = ⟦a ′⟧®G • ⟦a⟧®G ,

where − • − stands for vertical composition.

Proof. The main result of [Fiore and Saville 2020] is that, in the free cartesian closed bicategory
over a set - , given two di�erent 1-cells �,� there is at most one 2-cell between them. Therefore,
every “structural diagram” in a cartesian closed bicategory commutes. □

4.2 Distributors

We recall the de�nition of the bicategoryDist of distributors from [Benabou 1973]. See also [Borceux
1994] for a more recent presentation.

• 0-cells are small categories �, �,�, . . .
• 1 cells � : � ↛ � are functors � : �op × � → Set called distributors.
• 2-cells U : � ⇒ � are natural transformations.
• For �xed 0-cells � and �, the 1-cells and 2-cells are organized as a category Dist(�, �).
• For� ∈ Dist, the identity 1� : � ↛ � is de�ned as the Yoneda embedding 1� (0, 0

′) = �(0, 0′).
• For 1-cells � : � ↛ � and � : � ↛ � , the horizontal composition is given by

(� ◦ � ) (0, 2) =

∫ 1∈�

� (1, 2) × � (0, 1).

Associativity and identity laws for this composition are only up to canonical isomorphism.
For this reason Dist is a bicategory [Borceux 1994].
• There is a symmetric monoidal structure on Dist given by the cartesian product of categories:
� ⊗ � = � × �.
• The bicategory of distributors is compact closed and orthogonality is given by taking the
opposite category �⊥ = �op .

• The linear exponential object between two objects � and � is then de�ned as �op × �.
• Dist(�, �) = Cat(�op × �, Set) is a locally small cocomplete category. For �, � ∈ Dist the
initial object ⊥�,� ∈ Dist(�, �) is given by the zero distributor de�ned as follows: for all
⟨0, 1⟩ ∈ � × �,⊥�,� (0, 1) = ∅.
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De�nition 4.6.

(i) Given a functor � : �→ � we can de�ne distributors1 � : � ↛ � and � : � ↛ � by setting

� (0, 1) = �(� (0), 1)
� (1, 0) = �(1, � (0)).

(ii) Given a distributor � : � ↛ � the web of � is the set:

|� | =
⊔

⟨0,1 ⟩∈�×�

� (0, 1).

Given distributors �,� : � ↛ �, wewrite � ⊆ � if there is a pointwise inclusion � (0, 1) ⊆ � (0, 1).
Remark that this inclusion is trivially a natural transformation which is, in particular, monic in the
hom-category Dist(�, �).

Integers and permutations. Given = ∈ N, de�ne [=] = {1, . . . , =}. In particular, we have [0] = ∅.
We denote byS= the set of permutations over [=] .

De�nition 4.7. The category P of integers and permutations is de�ned as follows:

• the objects of P are sets of the form {[=] | = ∈ N};
• the hom-set from [=] to [<] is given by

P( [=], [<]) =

{
S=, if = =<;

∅, otherwise;

• composition of P is simply composition of functions and the identity on [=] is denoted by 1= .

The category P is symmetric strict monoidal, with tensor product given by addition: [=] ⊕ [<] =
[= +<] . Given :1, . . . , := ∈ N and f ∈ S= , de�ne:

f : [
∑

8∈[=] :8 ] → [
∑

8∈[=] :f (8 ) ] as f (
∑;−1

A=1 :A + ?) =
∑;−1

A=1 :f (A ) + ?,

where ; ∈ [=] and 1 ≤ ? ≤ :f (; ) .

Symmetric strict monoidal completion. Given a list ®0 = ⟨01, . . . , 0:⟩ over a set�, de�ne len( ®0 ) = : .

Given two lists ®0 and ®1 over a set �, their concatenation is denoted by ®0 ⊕ ®1.
Let � be a small category. For each object 0 ∈ ob(�), the identity morphism on 0 is denoted

by 10 . The symmetric strict monoidal completion !� of � is the category:

• ob(!�) = {⟨01, . . . , 0=⟩ | 08 ∈ � and = ∈ N};

• !�[⟨01, . . . , 0=⟩, ⟨0
′
1, . . . , 0

′
=′⟩] =

{
{⟨f, 58⟩8∈[=] | 58 : 08 → 0′

f (8 )
, f ∈ S=}, if = = =′;

∅, otherwise;

• for 5 = ⟨f, 58⟩8∈[=] : ®0 → ®1 and 6 = ⟨g, 68⟩8∈[=] : ®1 → ®2 their composition is de�ned as follows

6 ◦ 5 = ⟨gf, 6f (1) ◦ 51, . . . , 6f (=) ◦ 5=⟩;

• for ®0 = ⟨01, . . . , 0=⟩ ∈ ob(!�), the identity on ®0 is given by 1®0 = ⟨1=, 101 , . . . , 10= ⟩;
• the monoidal structure is given by list concatenation. The tensor product is symmetric, with
symmetries given by the morphisms of the shape (for f ∈ S=):

⟨f, ®1⟩ : ⟨01, . . . , 0=⟩ → ⟨0f (1) , . . . , 0f (=)⟩.

De�nition 4.8. Given f ∈ S= and ®01, . . . , ®0= ∈ ob(!�) with len( ®08 ) = :8 , de�ne

f★ :
⊕=

8=1 ®08 →
⊕=

8=1 ®0f (8 ) as ⟨f, 101 , . . . , 10: ⟩, where : =
∑

8∈[=] :8 .

1The two distributors are adjoint 1-cells in the bicategory Dist.
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As a matter of notation, we introduce the following abbreviations: !�= = (!�)= and !�op = (!�)op.
The previous construction naturally determines an endofunctor ! : Cat→ Cat, i.e. the 2-monad
on Cat for strict monoidal categories. We denote by CatSym the Kleisli bicategory of the pseudo-
comonad over Dist, obtained by lifting !(·) [Fiore et al. 2008; Gambino and Joyal 2017]. CatSym
is cartesian closed, the exponential object being given by �� = !� ⊸ �. This is the bicategory of
symmetric categorical sequences [Gambino and Joyal 2017], biequivalent to the generalized species
of structures [Fiore et al. 2008, 2017]. A functor � : �→ � determines also a pair of distributors

�★ : !� ↛ �, �★ : !� ↛ �

de�ned by precomposing �, � (see De�nition 4.6(i)) with the counit of !.

Proposition 4.9 (Seely eqivalence). For all �, � ∈ Cat, we have an equivalence of categories

!(� ⊔ �) ≃ !� × !�.

The proposition above extends to �nite products and coproducts of categories !(�1 ⊔ · · · ⊔�=) ≃
!�1 × · · · × !�= . We denote the two components of this equivalence respectively as

`0 : !(�1 ⊔ · · · ⊔�=) → !�1 × · · · × !�=,

`1 : !�1 × · · · × !�= → !(�1 ⊔ · · · ⊔�=).

5 INTERSECTION TYPE DISTRIBUTORS AND BÖHM TREES

We introduce the notion of categori�ed graph models (§5.1), generalizing the relational graph models
from [Manzonetto and Ruoppolo 2014] and, ultimately, the usual graph models [Engeler 1981]. We
show that categori�ed graph models can be presented “in logical form”, namely as appropriate
intersection type systems (§5.2). Finally, we prove that the interpretation of a _-term can be seen as
an intersection type distributor, and de�ne the interpretation of its Böhm tree by taking the �ltered
colimit of the denotations of its �nite approximants, which is available in the bicategory Dist (§5.3).

5.1 Categorified Graph Models

The class of categori�ed graph models will be the main subject of our semantic investigations.

De�nition 5.1 (Categori�ed graph pre-models). A categori�ed graph pre-model consists of a small
category � ∈ Cat equipped with a full embedding ] : !�op × � ↩→ �.

Theorem 5.2. Let ⟨�, ]⟩ be a categori�ed graph pre-model. Then, the canonical pair of symmetric

categorical sequences ⟨]★, ]★⟩ induces a pseudore�exive object structure on � in the bicategory CatSym.

If moreover ] is essentially surjective on objects, then ⟨]★, ]★⟩ is an adjoint equivalence.

Proof. We have ]★ : !(!�op × �) ↛ � and ]★ : !� ↛ !�op × � , de�ned as

]★(⟨⟨ ®01, 01⟩, . . . , ⟨ ®0: , 0:⟩⟩, 0) = !� (⟨] (⟨ ®01, 01⟩), . . . , ] (⟨ ®0: , 0:⟩)⟩, ⟨0⟩)
]★(0, ⟨⟨ ®01, 01⟩, . . . , ⟨ ®0: , 0:⟩⟩) = !� (⟨0⟩, ⟨] (⟨ ®01, 01⟩), . . . , ] (⟨ ®0: , 0:⟩)⟩).

In both cases the result is not empty only if : = 1. We now prove that we have a natural isomorphism
U : ]★ ◦CatSym ]

★
� 1!�op×� . By de�nition and the Yoneda lemma for coends (Theorem 3.6) we have

(]★ ◦CatSym ]
★) ( ®3,3) =

∫ 3∈�

!� (] ( ®3), ⟨3⟩) × !� (⟨3⟩, ] ( ®3)) � !� (] ( ®3), ⟨3⟩)

by the fact that ] is a full embedding we get !� (] ( ®3), ⟨3⟩) � (!�op×�) ( ®3, 3) = 1!�op×� ( ®3, 3). Finally,
if ] is essentially surjective on objects, then we also obtain ]★ ◦ ]★ � 1� by a similar argument. □

We call the bicategorical model ⟨�, U, ]★, ]★⟩ obtained in Theorem 5.2 a categori�ed graph model.
It is easy to check that if ] is essentially surjective on objects, then the induced model is extensional.
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5.2 System '→: Categorified Graph Models in Logical Form

We now show that the model induced by a categori�ed graph pre-model can be presented as a
non-idempotent intersection type system. Fix an arbitrary categori�ed graph pre-model ⟨�, ]⟩.

CatSym Semantics as Type System. The syntactic presentation of categori�ed graph models is
based on the intuition that, given a simple type �, the elements of !⟦�⟧ can be seen as resource
approximations of the type !�. Now, while !� represents the type of a resource that can be used
ad libitum, a list ⟨01, . . . , 0:⟩ ∈ !⟦�⟧ should be thought of as a choice of exactly : copies of resources
of type �. In fact, the list ⟨01, . . . , 0:⟩ corresponds to a type itself, in the form of an intersection type

where the intersection operator is not idempotent: 0 ∩ 0 ≠ 0. The intersection constructor 0 ∩ 1 is
indeed given by the tensor product of !�, that is, list concatenation (denoted here by ⊕):

01 ∩ · · · ∩ 0: := ⟨01⟩ ⊕ · · · ⊕ ⟨0:⟩ = ⟨01, . . . , 0:⟩.

Similarly, the elements populating ⟦!� ⊸ �⟧ = !⟦�⟧op × ⟦�⟧ can be seen as arrow types ®0 ⊸ 1.
We shall prove that this type-theoretic correspondence is more then just an analogy: the inter-
pretation of a _-term in a categori�ed graph model living in CatSym actually corresponds to the
collection of its type derivations in the associated intersection type system (cf. Theorem 5.13). Such
a type system is strict in the sense of [van Bakel 2011], hence the intersections only appear on the
left hand-side of an arrow—not as independent types. This re�ects the position of the promotion
!(−) in the linear logic translation of intuitionistic arrow�→ � = !� ⊸ � [Girard 1987]. Strictness
is also needed to obtain a syntax-directed type system, as _-calculus does not have a syntactic
constructor corresponding to the introduction of an intersection type.
This line of thought can be extended to the untyped setting, by looking at categori�ed graph

models as categories of types. Indeed, the embedding ] : !� ×� ↩→ � can be understood as a way of
de�ning ‘arrow types’ in �, just by letting ⟨01, . . . , 0:⟩ ⊸ 0 := ] (⟨01, . . . , 0:⟩, 0). The intersection
type constructor will be given again by the tensor product of !� . Standard intersection type systems
usually come equipped with a subtyping preorder ⪯, which in our setting becomes a category. Our
categorical subtyping is given by morphisms between elements of� , thus we prefer the notation→,
rather than ⪯. These morphisms are witnesses of the subtyping relation. Our approach gives then a
sort of operational subtyping: morphisms in the category of types � specify which operations are
allowed on a list of resources. In our case, the only possible operations are given by permutations
and atomic morphisms, but one could consider a more general setting, as done in [Olimpieri 2021].

Our point of view follows a well-established tradition [Olimpieri 2020, 2021], that is rooted in De
Carvalho’s type theoretic presentation of relational semantics [de Carvalho 2007] and, ultimately,
in the pioneering work on �lter models [Barendregt et al. 1983].

De�nition 5.3. We de�ne System '�→, which is parametric on a categori�ed graph pre-model � .
We shall keep the parameter � implicit and just write '→.

(i) The objects of� are seen as intersection types. Given ⟨®0, 0⟩ ∈ !�op×�,we set ®0 ⊸ 0 = ] (⟨®0, 0⟩).
As usual, we assume that the operation⊸ is right-associative, e.g.0 ⊸ 1 ⊸ 2 = 0 ⊸ (1 ⊸ 2).
Given = ∈ N, ⟨⟩= ⊸ 0 stands for ⟨⟩ ⊸ · · · ⊸ ⟨⟩ ⊸ 0 = ⟨⟩ ⊸ (· · · ⊸ (⟨⟩ ⊸ 0) · · · ).

(ii) Subtyping in System '→ is given by morphisms in the appropriate category of types � .
(iii) Finite lists of intersection types are called (type) environments and denoted by Γ,Δ. Formally,

type environments of length = are objects of the category !�= , the =-fold product of !� .
(iv) Since !� is monoidal, the category !�= of type environments admits a tensor product:

⟨®01, . . . , ®0=⟩ ⊗ ⟨®11, . . . , ®1=⟩ = ⟨®01 ⊕ ®11, . . . , ®0= ⊕ ®1=⟩

This tensor product inherits all the structure from ⊕, i.e., it is symmetric strict.
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Morphisms (the free construction):

5 ∈ �(>, > ′)

5 : > → > ′

⟨f, ®5 ⟩ : ®0′ → ®0 5 : 0 → 0′

⟨f, ®5 ⟩ ⊸ 5 : ( ®0 ⊸ 0) → (®0′ ⊸ 0′)

f ∈ S: 51 : 01 → 0′
f (1)

· · · 5: : 0: → 0′
f (: )

⟨f, 51, . . . , 5:⟩ : ⟨01, . . . , 0:⟩ → ⟨0
′
1, . . . , 0

′
:
⟩

(a) Multigraph of Intersection Types �� .

Note: the last rule targets lists of types.

Derivations:

5 : 0′ → 0
ax

G1 : ⟨⟩, . . . , G8 : ⟨0
′⟩, . . . , G= : ⟨⟩ ⊢ G8 : 0

Δ, G : ®0 ⊢ " : 0 5 : ( ®0 ⊸ 0) → 1
abs

Δ ⊢ _G ." : 1

Γ0 ⊢ " : ⟨01, . . . , 0:⟩ ⊸ 0 (Γ8 ⊢ # : 08 )
:
8=1 [ : Δ→

⊗:
9=0 Γ9

app
Δ ⊢ "# : 0

(b) Derivations and Typing of System '�→ .

Fig. 1. Type theoretic presentation of the semantics.

(v) A Derivation c of System '→, in symbols c ∈ '→, is constructed via the inference rules given
in Figure 1b (page 14). In case of ambiguity, we denote judgements in this system by ⊢CatSym.

(vi) Actions of morphisms on derivations are de�ned in Figures 2 and 3 (page 15).

We recall the type theoretic presentation of the graph model induced by the free algebra con-
struction on a small category � (see De�nition 3.8) for the functor ! −op ×− : Cat→ Cat already
presented in [Olimpieri 2021]. Let us denote by �� the multigraph where nodes are given by
elements of the set Ty�, inductively de�ned by the grammar

Ty� ∋ 0, 1, 2 ::= > ∈ � | ⟨01, . . . , 0:⟩ ⊸ 0,

and arrows are inductively generated as shown in Figure 1a. We denote by�� the free category over
��, which we call the free category of intersection types over � . Therefore we have ob(��) = Ty� .

The category �� is the free algebra over � for the endofunctor (!−)op × − : Cat → Cat (see
De�nition 3.8). We denote by 8� : � ↩→ �� the canonical inclusion. We also have a canonical full
embedding ]� : !�

op

�
× �� ↩→ �� de�ned by the map ⟨®0, 0⟩ ↦→ ®0 ⊸ 0.

Remark 5.4. (i) The rules of our system are induced by a �ne-grained analysis of the _-terms
interpretations in CatSym. In contrast to what happens in standard intersection type systems,
type derivations of variables in an environment are not unique in the bicategorical setting.
In fact, a type derivation of a variable corresponds to a particular witness of subtyping.

(ii) Every derivation rule incorporates a subtyping inference. This di�ers from what happens in
the systems presented in [Olimpieri 2021], where the abstraction rule did not contain any
additional subtyping. As the models under consideration are not just the free categories of
intersection types, subtyping is needed also at the abstraction level now. We chose not to
separate the subtyping rule from the other rules in order to keep our system syntax-directed
and closer to the semantics.

By mimicking the free completion of a partial pair which is often used to generate a graph model
(see, e.g., [Berline 2000]), we show how to complete a partial (! −op ×−)-algebra by lifting it to an
appropriate algebra. We call the resulting algebra its completion.

Let us consider a partial (! −op ×−)-algebra �
�
←↪ �

�
↩→ !�op × �. We denote by ��,�

�
the

multigraph whose nodes are elements of Ty� and arrows are the ones from Figure 1a, plus a family
of invertible arrows:

eG : (8� ◦ � ) (G) � (]� ◦ (!8
op

�
× 8�) ◦�) (G),

for G ∈ ob(� ), where we recall that 8� : � ↩→ �� and ]� : !�
op

�
× �� ↩→ �� .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 8. Publication date: January 2023.



Why Are Proofs Relevant in Proof-Relevant Models? 8:15

(
5 : 0′ → 0

⟨⟩, . . . , ⟨0′⟩, . . . , ⟨⟩ ⊢ 0

)
{6 : 1 → 0′} =

5 ◦ 6

⟨⟩, . . . , ⟨1⟩, . . . , ⟨⟩ ⊢ 0

©«

c
...

Δ, ®0 ⊢ 0 5 : ( ®0 ⊸ 0) → 1

Δ ⊢ 1

ª®®¬
{[} =

c{[ ⊕ ⟨1⟩}
...

Δ
′, ®0 ⊢ 0 5 : ( ®0 ⊸ 0) → 1

Δ
′ ⊢ ®0 ⊸ 0

©
«

c1
...

Γ0 ⊢ ®0 ⊸ 0

( c8
...

Γ8 ⊢ 08

):
8=1 \ : Δ→

⊗:
9=0 Γ9

Δ ⊢ 0

ª®®®
¬
{[} =

c1
...

Γ0 ⊢ ®0 ⊸ 0

( c8
...

Γ8 ⊢ 08

):
8=1 \ ◦ [

Δ
′ ⊢ 0

where ®0 = ⟨01, . . . , 0:⟩ and [ : Δ′ → Δ.

Fig. 2. Right action on derivations.

[6 : 0 → 1]

(
5 : 0′ → 0

⟨⟩, . . . , ⟨0′⟩, . . . , ⟨⟩ ⊢ 0

)
=

6 ◦ 5 : 0′ → 1

⟨⟩, . . . , ⟨0′⟩, . . . , ⟨⟩ ⊢ 1

[6 : 0′ → 1]
©
«

c
...

Δ, ®0 ⊢ 0 5 : ( ®0 ⊸ 0) → 0′

Δ ⊢ 0

ª®®
¬

=

c
...

Δ, ®0 ⊢ 0 6 ◦ 5 : ( ®0 ⊸ 0) → 1

Δ ⊢ 1

[6 : 0 → 1]
©«

c0
...

Γ0 ⊢ ®0 ⊸ 0

( c8
...

Γ8 ⊢ 08

):
8=1 [ : Δ→

⊗:
9=0 Γ9

Δ ⊢ 0

ª®®®¬
=

[1 ⊸ 6]c0
...

Γ0 ⊢ ®0 ⊸ 1

( c8
...

Γ8 ⊢ 08

):
8=1 [

Δ ⊢ 1

where ®0 = ⟨01, . . . , 0:⟩.

Fig. 3. Le� action on derivations.

De�nition 5.5 (Completion of Partial (!−op ×−)-Algebras). The completion of�
�
←↪ �

�
↩→ !�op ×�

is the category ��,�
�

de�ned as the categorical quotient of the free category over ��,�
�

by the
following coherence on morphisms:

� (0) � (0) � (1)

� (1)

e0

� (5 )

� (5 )

e1

for any 5 : 0 → 1 in the category � .

We remark that we have a canonical functor ]�,� : !(��,� )op × (��,� ) → ��,� de�ned again by
the map ⟨®0, 0⟩ ↦→ ®0 ⊸ 0.

De�nition 5.6. We construct some partial (! −op ×−)-algebras together with their completions.

(i) We observe that, given a small category�, we have a canonical partial algebra over� de�ned
by � ⊇ ∅ ⊆ !�op ×�. Then the completion of that pair is exactly �� .
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c0
...

Γ0 ⊢ ®1 ⊸ 0

©
«
[58 ]cf−1 (8 )

...
Γf−1 (8 ) ⊢ 18

ª®
¬
:

8=1
(1 ⊗ (f−1)★) ◦ [

Δ ⊢ 0

∼

[⟨f, ®5 ⟩ ⊸ 1]c0
...

Γ0 ⊢ ®0 ⊸ 0

( c8
...

Γ8 ⊢ 08

):
8=1 [

Δ ⊢ 0

c0{\0}
...

Γ0 ⊢ ®0 ⊸ 0

©
«
c8 {\8 }

...
Γ8 ⊢ 08

ª®
¬
:

8=1 [ : Δ→
⊗:

9=0 Γ9

Δ ⊢ 0

∼

c0
...

Γ
′
0 ⊢ ®0 ⊸ 0

( c8
...

Γ
′
8 ⊢ 08

):
8=1

(
⊗:

9=0 \ 9 ) ◦ [

Δ ⊢ 0

[6]c{1 ⊕ ⟨f, ®6⟩}
...

Δ, ®0′ ⊢ 0′ 5 : ( ®0 ⊸ 0) → 1

Δ ⊢ 1

∼

c
...

Δ, ®0 ⊢ 0 5 ◦ (⟨f, ®6 ⟩ ⊸ 6) : ( ®0′ ⊸ 0′) → 1

Δ ⊢ 1

where ⟨f, 51, . . . , 5:⟩ : ®0 = ⟨01, . . . , 0:⟩ → ®1 = ⟨11, . . . , 1:⟩,
⟨f, ®6 ⟩ : ®0′ → ®0, 6 : 0 → 0′ and \8 : Γ8 → Γ

′
8 . For (f

−1)★, see De�nition 4.8.

Fig. 4. Congruence on derivations.

(ii) Let � = {∗}, then we have the following two full embeddings:

k+� : �+ ↩→ �, ⟨⟨∗⟩, ∗⟩ ↦→ ∗, with �+ = {⟨⟨∗⟩, ∗⟩},

k∗� : �∗ ↩→ �, ⟨⟨⟩, ∗⟩ ↦→ ∗, with �∗ = {⟨⟨⟩, ∗⟩}.

(iii) Given = > 0, we consider the set [=] = {1, . . . , =} equipped with its linear order structure.
We see [=] as a posetal category. Now, consider the full subcategory of ![=]op × [=] induced
by the family [=]+ = ⟨⟨= − (8 − 1)⟩, 8⟩8∈[=] . We de�ne a functor k[=] : [=]+ ↩→ [=] as follows:

k[=] (⟨⟨= − (8 − 1)⟩, 8⟩) = 8 .

By construction, if there exists a morphism ⟨⟨= − (8 − 1)⟩, 8⟩ → ⟨⟨= − ( 9 − 1)⟩, 9⟩ then 8 ≤= 9 .
It is easy to verify that k[=] is a full embedding.

(iv) We set �+ = �k+,in!�op×� , �∗ = �k∗,in!�op×� , � [=] = �k[=] ,in![=]op×[=] , and write ]♠, with
♠ ∈ {+, ∗} ∪ N, for the respective algebra maps. Notice that � [1] = �+.

Theorem 5.7. The functor ]♠ : !(�♠)op × (�♠) → �♠ for ♠ ∈ {+, ∗} ∪ N is an equivalence of

categories.

Proof. Faithfulness is immediate by de�nition of ]♠. Moreover ]♠ is essentially surjective on
objects by construction, since each atomic type of �♠ is isomorphic to some arrow type. Fullness is
trickier and the proof consists of a �ne-grained analysis of morphisms between arrow types. □

Remark 5.8. The categories �+ and �∗ are categori�cations of extensional graph models living
in the relational semantics of _-calculus [Breuvart et al. 2018]. Intuitively, they are given by the
category � of types, where we add isomorphisms between atomic types in � and appropriate
arrow types. For instance, in �+ we obtain ∗ � ]+ (⟨∗⟩, ∗) = ⟨∗⟩ ⊸ ∗, while in �∗ we have
∗ � ]∗ (⟨⟩, ∗) = ⟨⟩ ⊸ ∗. In this way, every _-term which is typed with an atomic type can always
be seen as a “function” and—as a consequence—one obtains extensionality. The category � [2] is a
categori�cation of Coppo-Dezani-Zacchi’s model, �rst appeared in [Coppo et al. 1987].
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De�ne a congruence on derivations ∼ ⊆ '→ ×'→ as the least congruence generated by the rules
given in Figure 4. This congruence is the syntactic counterpart of the one generated by coends
in the composition of distributors—it can be seen as the congruence equating derivations up to
permutations that do not a�ect their computational information.

Notation. Let c ∈ '→ be a derivation.

• The ∼-equivalence class of c is denoted by c̃ = {c ′ ∈ '→ | c ∼ c
′} ∈ '→/∼.

• For a _-term" , an environment Γ and a type 0, write c ⊲Γ ⊢ " : 0 whenever c is a derivation
of Γ ⊢ " : 0.

Example 5.9. Let : ∈ N, f ∈ S: and c =

c0
...

Γ0 ⊢ ⟨01, . . . , 0:⟩ ⊸ 0

( c8
...

Γ8 ⊢ 08

):
8=1 [

Δ ⊢ 0

moreover, let [′ = (1 ⊗ (f)★) ◦ [ and c ′ =

c0 [f ⊸ 0]
...

Γ0 ⊢ ⟨0f (1) , . . . , 0f (: )⟩ ⊸ 0

( cf (8 )
...

Γf (8 ) ⊢ 0f (8 )

):
8=1

[′

Δ ⊢ 0

then c ∼ c ′ by the �rst rule of Figure 4. In fact, writing c ′0 for c0 [f ⊸ 0], we obtain c0 =

c ′0 [f
−1 ⊸ 0] . The two derivations have indeed the same computational meaning—they only di�er

by performing the same permutation on inputs and on the list of types in the implication.

The congruence on type derivations is what ensures the possibility of having a natural isomor-
phism ⟦"⟧®G � ⟦#⟧®G , whenever" →V # .

Example 5.10. Given" = (_G.G)~ and # = ~, we have" →V # .

Consider c1 =

1

G : ⟨0⟩ ⊢ G : 0 ⟨5 ⟩ ⊸ 6 : (⟨0⟩ ⊸ 0) → (⟨2⟩ ⊸ 1)

⊢ _G .G : ⟨2⟩ ⊸ 1

1

~ : ⟨2⟩ ⊢ ~ : 2 1

~ : ⟨2⟩ ⊢ (_G .G)~ : 1

and c2 =

6 ◦ 5

G : ⟨2⟩ ⊢ G : 1 1

⊢ _G .G : ⟨2⟩ ⊸ 1

1

~ : ⟨2⟩ ⊢ ~ : 2 1

~ : ⟨2⟩ ⊢ (_G .G)~ : 1

Then, consider the following derivation of ~, c3 :

6 ◦ 5

~ : ⟨2⟩ ⊢ ~ : 1

By congruence (Figure 4, second rule) we have that c1 ∼ c2. Indeed, we have that

⟦" →V #⟧®G (c̃1) = ⟦" →V #⟧®G (c̃2) = c3.

Left and right actions on derivations are preserved under congruence: [5 ]c̃=�[5 ]c and c̃{[}=�c{[}.
We are now able to de�ne the intersection type distributors, that will be the syntactic presentation

of our bicategorical semantics.
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De�nition 5.11. Let " ∈ Λ
> (G1, . . . , G=). De�ne the '→-intersection type distributor ( ITD, for

short) of" , written T®G (") : !�
= ↛ �, as follows:

(1) on objects:

T®G (") (Δ, 0) = {c̃ ∈ '→/∼| c ⊲ Δ ⊢ " : 0}

(2) on morphisms:

T®G (") (5 , [) : T®G (") (Δ, 0) → T®G (") (Δ
′, 0′) c̃ ↦→ �[5 ]c{[}

De�nition 5.12. (i) Given a derivation c ∈ '→, a V-redex of c is a subderivation of c of shape:

Γ0, ⟨01, . . . , 0:⟩ ⊢ 0

Γ0 ⊢ ⟨01, . . . , 0:⟩ ⊸ 0

...

(Γ8 ⊢ 08 )
:
8=1 [ : Δ→

⊗:
8=0 Γ8

Δ ⊢ 0

(ii) Assume that c ⊲ Δ ⊢ " : 0. We say that a redex ' of" is informative in c if it is typed by a
redex of c.

(iii) A derivation c is in V-normal form if it has no V-redexes as subderivations.

5.3 Intersection Type Distributors of Böhm Trees

We show that the bicategorical semantics previously introduced can be presented syntactically—up
to Seely equivalence (Proposition 4.9)—via intersection type distributors.

First, recall that `1 : !�×· · ·×!� → !(�⊔· · ·⊔�) is a component of Seely’s equivalence (see p. 12),
thus `1 : !� ⊗ · · · ⊗ !� ↛ !(�& · · ·&�) by De�nition 4.6(i). Also, since CatSym is a full subcategory
of Dist, the interpretation of a _-term can be seen as a distributor ⟦"⟧®G : !(� & · · · & �) ↛ � .

Theorem 5.13. For all" ∈ Λ⊥, there is a natural isomorphism

itd"
®G
: T®G (") � ⟦"⟧®G ◦Dist `1.

Proof. By structural induction on" , via lengthy but straightforward coend manipulations. □

By Theorem 4.4 we also get a natural isomorphism

⟦" →V #⟧®G ◦Dist `1 : ⟦"⟧®G ◦Dist `1 � ⟦#⟧®G ◦Dist `1

whenever" →V # . This straightforwardly induces an iso

T®G (" →V # ) : T®G (") � T®G (# ).

If � is an extensional model, then we have analogous isomorphisms in the case that" →[ # .

Now, note that the type assignment system generalizes to _⊥-terms without adding any rule
(thus, ⊥ is not typable). We also extend the notion of intersection type distributor to _⊥-terms in
the natural way, i.e. by setting T®G (⊥) = ∅!�=,� .

Lemma 5.14. Let", # ∈ Λ⊥. If" ≤⊥ # then ⟦"⟧®G ⊆ ⟦#⟧®G . Equivalently, T®G (") ⊆ T®G (# ).

Proof. By an easy induction on the structure of" . □

Let us consider ⟨A("), ≤⊥⟩ as a preorder category. By applying the preceding lemma, for every
" ∈ Λ> (G1, . . . , G=) there exists an evident functor

⟦−⟧®G : A(") → Dist(!(� & · · · & �), �),
% ↦→ ⟦%⟧®G ,

% ≤⊥ & ↦→ ⟦%⟧®G ⊆ ⟦&⟧®G .
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De�nition 5.15. Let" ∈ Λ> (G1, . . . , G=).

(i) Since Dist has cocomplete hom-categories, we can de�ne the interpretation of the Böhm tree

of" as the following �ltered colimit:

⟦BT(")⟧®G = lim
−−→

%∈A (" )

⟦%⟧®G .

(ii) We de�ne the '→-intersection type distributor of a Böhm tree T®G (BT(")) : !�
= ↛ � in the

following natural way.
(a) On objects: we set T®G (BT(")) (Δ, 0) =

⋃
%∈A (" ) T®G (%) (Δ, 0).

(b) On morphisms: for all [ : Δ′ → Δ, 5 : 0 → 0′, we set

T®G (BT(")) ([, 5 ) (c̃) = �[5 ]c{[}.
Theorem 5.16. Let" ∈ Λ.We have a natural isomorphism ⟦BT(")⟧®G ◦Dist `1 � T®G (BT(")).

Proof. It follows from an inspection of the de�nitions and basic category theory, showing that
T®G (BT(")) is a presentation of the �ltered colimit of the ITDs of the �nite approximants of" . □

6 A SEMANTIC APPROXIMATION THEOREM

We now study the behavior of intersection type distributors under reduction (§6.1). We prove that
the reduction strategy contracting redexes of" typed in a derivation c living in its interpretation is
strongly normalizing (Theorem 6.6). Moreover, we show that the normal form of c uniquely identi-
�es an approximant �c ∈ A(") (§6.2). By combining these properties, we provide a combinatorial
proof of the fact that every categori�ed graph model satis�es an Approximation Theorem 6.13
stating that the interpretation of a _-term is isomorphic to the interpretation of its Böhm tree. These
results constitute a 2-dimensional generalization of [Breuvart et al. 2018; Bucciarelli et al. 2014].

6.1 Typed Reductions

The following technique originates in [Bucciarelli et al. 2014]. Consider a _-term" . Notice that a
subterm occurrence # of" is uniquely identi�ed by a single-hole context� [] satisfying" = � [# ].

De�nition 6.1. Let c ∈ '→ be such that c̃ ∈ |T®G (") |.

(i) De�ne a measure s (c) = = if and only if the derivation c contains exactly = applications of
the rule (app).

(ii) The set tocc(c) of subterm occurrences of" that are typed in c is de�ned by induction on c ,
splitting into cases depending on the last rule applied:
• (ax) tocc(c) = {[]};
• (abs) tocc(c) = {[]} ∪ {_G.� [] | � [] ∈ tocc(c ′)}, where" = _G ." ′ and the derivation c ′

is the premise of the rule;

• (app) tocc(c) = {[]} ∪ {� []"1 | � [] ∈ tocc(c0)} ∪ {"0 (� []) | � [] ∈
⋃:

8=1 tocc(c8 )},
where" = "0"1, the derivation c0 is the premise corresponding to"0, and c1, . . . , c: are
those corresponding to"1 (if any).

(iii) We say that a subterm # of" is typed in c whenever" = � [# ], for some � [] ∈ tocc(").

Example 6.2. The redex II = (_G .G) (_G.G) is not typed in the following derivation c .

c =

5 : 0 → 0′

G : ⟨⟨⟩ ⊸ 0⟩ ⊢ G : ⟨⟩ ⊸ 0′

G : ⟨⟨⟩ ⊸ 0⟩ ⊢ G (II)

Thus, tocc(c) = {[], [] (II)}.

The redex occurrences of " that are typed in c correspond to the informative redexes of c.
Therefore, c is in normal form exactly when none of the redexes of" is typed in c.
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G : ⟨⟨0, 0⟩ ⊸ 0⟩ ⊢ G : ⟨0, 0⟩ ⊸ 0

~ : ⟨⟨⟩ ⊸ 0⟩ ⊢ ~ : ⟨⟩ ⊸ 0

~ : ⟨⟨⟩ ⊸ 0⟩ ⊢ ~I : 0

~ : ⟨⟨0⟩ ⊸ 0⟩ ⊢ ~ : ⟨0⟩ ⊸ 0 I : ⟨0⟩ ⊢ I : 0

~ : ⟨⟨0⟩ ⊸ 0⟩, I : ⟨0⟩ ⊢ ~I : 0

G : ⟨⟨0, 0⟩ ⊸ 0⟩, ~ : ⟨⟨0⟩ ⊸ 0, ⟨⟩ ⊸ 0⟩, I : ⟨0⟩ ⊢ G (~I) : 0

Fig. 5. Example of a normal derivation in '→.

Lemma 6.3 (Derivations of Approximants). Let % ∈ A . If c̃ ∈ |T®G (%) | then c is a normal form.

Proof. Immediate, since % does not contain any redex. □

Let c̃ ∈ T®G (") (Δ, 0) for some ⟨Δ, 0⟩ ∈ !� len( ®G ) × �. We say that c̃ is normalizable along " if
there exists # ∈ Λ such that" →→V # and T®G (" →→V # )Δ,0 (c̃) is a normal form. The unicity of
normal forms for typing derivations along a _-term" is guaranteed by the fact that the semantics
satis�es the diamond property (Theorem 4.5).

Proposition 6.4. Let", # ∈ Λ> ( ®G) and c̃ ∈ T®G (") (Δ, 0). Assume that" →V # because a redex

occurrence ' in" is contracted.

(1) If ' is typed in c then s
(
T®G (" →V # )Δ,0 (c̃)

)
< s (c̃) ,

(2) Otherwise, we have T®G (" →V # )Δ,0 (c̃) = c̃ .

Proof. Both items are proved by induction on a derivation of" →V # . The proofs consist in
making explicit the iso T®G (" →V # ). Due to the structure of the free symmetric strict monoidal
completion, no duplication of subderivations is allowed. □

De�nition 6.5. For" ∈ Λ> ( ®G), de�ne

nf (T®G (") (Δ, 0)) = {c̃ ∈ nf ('→) | ∃# ∈ Λ . " →→V # and c̃ ∈ ⟦#⟧®G (Δ, 0)}.

The previous construction naturally extends to a distributor that we shall denote by nf (T®G (")).

Notice that, by de�nition of normalization, c̃ ∈ nf (T®G (") (Δ, 0)) whenever there exists a _-term
# such that" →→V # and c̃ ∈ T®G (# ) (Δ, 0).

Theorem 6.6. The reduction strategy contracting typed redexes in type derivations along " is

strongly normalizing.

Proof. By Proposition 6.4, the measure s (c) strictly decreases when contracting a redex typed
in c . Therefore the reduction must terminate after a �nite amount of steps. □

Hence, normal forms along " always exist for typing derivations and they are unique by
con�uence. For c̃ ∈ |T®G (") | (=the web of T®G ("), by De�nition 4.6(ii)) we denote its normal form as
nf (c̃)" . In what follows, we shall keep the parameter" implicit, writing just nf (c̃). In particular,

nf (T®G (") (Δ, 0)) = {nf (c̃) ∈ '→ | c̃ ∈ ⟦"⟧®G (Δ, 0)}. (1)

Theorem 6.7. For" ∈ Λ> ( ®G), there is a canonical natural isomorphism

Norm®G (") : T®G (") � nf (T®G ("))

given by normalization c̃ ↦→ nf (c̃).

Proof. The injectivity and naturality of this map follow from Theorems 4.4 and 4.5. □
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6.2 Reconstructing Approximants

Consider a derivation c ⊲ Δ ⊢ " : 0. We have seen that not all subterms of " need to be typed
in a subderivation of c . Thus we might have c ⊲ Δ ⊢ # : 0 also for _⊥-terms # ≠ " , as untyped
subterms of" can be replaced by anything (even ⊥) without a�ecting the derivation validity. We
are going to show that every derivation c contains enough information to reconstruct the minimal
_⊥-term �c ≤⊥ " satisfying c ⊲ Δ ⊢ �c : 0.

De�nition 6.8. De�ne a map �®G− : '→ → Λ⊥ by induction on the structure of c as follows:

• if c is an axiom, then �®Gc = G8 , where 8 is the index of the only type appearing in the type
environment of c ;

• if c is an abstraction, then �®Gc = _~.(�
®G,~
c ′ ), where c

′ ∈ '→ is the unique premise of c ∈ '→
and we can assume ~ ∉ ®G (wlog, by U-conversion);

• if c is an application, then �®Gc = �®Gc0
(
∨:

8=1�
®G
c8
) where c0 ∈ '→ and c1, . . . , c: ∈ '→, for

some : ∈ N, are the premises of c ∈ '→.

Note that in the last case, when : = 0, we have
∨:

8=1�
®G
c8

= ⊥. This is a hidden base case.

Example 6.9. (i) Let c =

5 : 0′ → 0

G : ⟨⟨⟩ ⊸ 0′⟩ ⊢ G : ⟨⟩ ⊸ 0

G : ⟨⟨⟩ ⊸ 0′⟩ ⊢ GΩ : 0

. We have tocc(c) = {[], []Ω} and�G
c = G⊥.

(ii) Consider the derivation c in Figure 5. Then tocc(c) = {[], [] (~I), G [], G ( []I), G (~ [])} and

the associated approximant is �
⟨G,~,I⟩
c = G (~I) since G (~⊥ ∨ ~I) = G (~I).

Remark 6.10. By de�nition, we have�®Gc = �®G
c {[}

and�®G
[ 5 ]c

= �®Gc . Also, c ∼ c
′ implies�®Gc = �®Gc ′ .

Thus, we can extend �®G− to equivalence classes c̃ and write �®G
c̃
for the corresponding approximant.

Proposition 6.11. Let" ∈ Λ> ( ®G) and c ∈ '→ (").

(i) c ∈ '→ (�
®G
c ) and �

®G
c ≤⊥ " .

(ii) If c is a normal form then �®Gc ∈ A, whence �®Gc ∈ A(").

Proof. (i) By a straightforward induction on the structure of" .
(ii) By structural induction on" , using the fact that c has no V-redexes. □

We prove a semantic analogue of Ehrhard and Regnier’s theorem [2006] stating that the normal
form of the Taylor expansion of a _-term coincide with the Taylor expansion of its Böhm tree.

Theorem 6.12 (Commutation Theorem). For all" ∈ Λ> ( ®G),

nf (T®G (")) = T®G (BT(")) .

Proof. (⊆) Let c̃ ∈ nf (T®G (")) (Δ, 0). By de�nition of normalization along ", there exist
d̃ ∈ T®G (") (Δ, 0) and # ∈ Λ such that c̃ = nf (d̃) and c̃ ∈ T®G (# ) (Δ, 0) with " →→V # . By

Proposition 6.11, we get c̃ ∈ T®G (�
®G
c ) and�

®G
c ≤⊥ # is a V⊥-normal form. Thus we have�®Gc ∈ A(# ),

so we conclude c̃ ∈ T®G (BT(")) (Δ, 0).
(⊇) Let c̃ ∈ BT(") (Δ, 0). By de�nition, there exists a % ∈ A(") such that c̃ ∈ T®G (%) (Δ, 0).

By Lemma 6.3, such a c̃ is a normal form. From Lemma 5.14 and the de�nition of A("), we get
T®G (%) ⊆ T®G (# ) for some _-term # such that" →→V # . By Theorem 4.4, we conclude that there
exists d̃ ∈ T®G (") such that c̃ is the normal form of d̃ . □

The following result is a generalization of the Approximation Theorem for relational graph
models [Breuvart et al. 2018] to categori�ed graph models.
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Theorem 6.13 (Bicategorical Approximation Theorem).

Let" ∈ Λ> ( ®G).We have a natural isomorphism

appr®G (") : T®G (") � T®G (BT(")).

Proof. It is su�cient to compose the isomorphisms obtained by Theorems 6.7 and 6.12. □

From the above Approximation Theorem it follows the sensibility of the bicategorical model.

Corollary 6.14. For all" ∈ Λ> ( ®G), we have:

BT(") = ⊥ ⇐⇒ T®G (") � ∅!� ®G ,� .

Proof. (⇒) If BT(") = ⊥, then A(") = {⊥}. By the Approximation Theorem 6.13, we have
T®G (") � T®G ({⊥}) = ∅!� ®G ,� .

(⇐) Assume by contradiction that BT(") ≠ ⊥. Then, there is % = _~1 . . . ~< .G%1 · · · %: ∈ A(").
Suppose that G ∈ FV("), i.e. G = G8 for some 8 (1 ≤ 8 ≤ =), otherwise the argument can be easily
adapted. For every type 0 = ⟨⟩: ⊸ 1 with 1 ∈ � , we can construct the derivation c0 =

10

G1 : ⟨⟩, . . . , G8 : ⟨0⟩, . . . , G= : ⟨⟩, ~1 : ⟨⟩, . . . , ~< : ⟨⟩ ⊢ G8 : 0

G1 : ⟨⟩, . . . , G8 : ⟨0⟩, . . . , G= : ⟨⟩, ~1 : ⟨⟩, . . . , ~< : ⟨⟩ ⊢ G8%1 · · · %: : 1

G1 : ⟨⟩, . . . , G8 : ⟨0⟩, . . . , G= : ⟨⟩ ⊢ _®~.G8%1 · · · %: : ⟨⟩< ⊸ 1

By Theorem 6.13, we obtain c̃0 ∈ T®G ("). Contradiction. □

7 CHARACTERIZATION OF THE THEORY

In 1-categorical semantics, like the relational semantics or Scott’s continuous semantics [1976], the
fact that a model D satis�es the Approximation Theorem just allows to conclude that B ⊆�(D).
For instance, since the relational interpretation of a _-term is given by the set of its typings (Γ, 0),
and many derivations c of Γ ⊢ " : 0 may exist, one cannot univocally reconstruct an �c ∈ A(").
On the contrary, categori�ed graph models are proof-relevant in the sense that the interpretation of
a _-term in this settings is given by the ‘collection’ of all its type derivations. We now show that this
additional information is su�cient to obtain the characterization of the _-theory associated with
the model as an easy corollary of the Bicategorical Approximation Theorem (see Corollary 7.4).

7.1 Categorified Graph Models Induce as Theory B

In order to de�ne the theory of a model, we focus on isomorphisms that ‘behave well’ w.r.t.→V .
We say that a natural isomorphism W : ⟦"⟧®G � ⟦#⟧®G is coherent w.r.t. V-normalization when
the induced natural isomorphism W : T®G (") � T®G (# ) satis�es the following property: for all
c̃ ∈ T®G (") (Δ, 0) we have nf (c̃) = nf (WΔ,0 (c̃)) .

De�nition 7.1. The non-extensional theory of a bicategorical model D in CatSym is de�ned by

�(D) = {(", # ) | ", # ∈ Λ> ( ®G) and W : ⟦"⟧®G � ⟦#⟧®G with W ∈ ISO
V

",#
},

where ISO
V

",#
is the set of natural isomorphisms ⟦"⟧®G � ⟦#⟧®G coherent w.r.t. V-normalization.

It is readily proved that�(D) is a _-theory. We now show that all categori�ed graph models
have the same non-extensional theory, namely B. Note that the de�nition of theory induced by a
model depends on an appropriate choice of isomorphisms. This was not the case for the analogous
notion in the 1-categorical setting, since the only possible choice of isos in that case is the equality.
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Lemma 7.2. Let" ∈ Λ> (G1, . . . , G=) and % ∈ A("). If % ≠ ⊥ then there exists c̃ belonging to the

web |nf (T®G (")) | (see De�nition 4.6(ii) and Equation (1)) such that % = �®G
c̃
.

Proof. By structural induction on % . Since % ≠ ⊥, we must have % = _~1 . . . ~< .G%1 · · · %: with
FV(%8 ) ⊆ ®G, ®~. Wlog, assume = > 0 and G = G1 ∈ ®G . By de�nition, " →→V _~1 . . . ~< .G1"1 · · ·":

with % 9 ∈ A(" 9 ), for all 9 (1 ≤ 9 ≤ :). By IH, for all such 9 , % 9 ≠ ⊥ entails the existence of

c̃ 9 ∈ nf (T®G (" 9 )) (Δ 9 , 0 9 ) such that % 9 = %
®G, ®~
c̃ 9
. Setting

` 9 =

{
⟨⟩, if % 9 = ⊥,

⟨0 9 ⟩, else,
Γ9 =

{
⟨⟩, if % 9 = ⊥,

Δ 9 , else,

and 1 = `1 ⊸ · · · ⊸ `: ⊸ 2 , with 2 ∈ � , it is easy to construct

c̃ ′ ∈ nf (T®G (G1"1 · · ·": )) (⟨⟨1⟩, ⟨⟩, . . . , ⟨⟩⟩ ⊗
(⊗:

9=1 Γ9

)
, 2)

and therefore, by applying :-times the rule (app), the derivation c̃ we are looking for. Indeed, by
construction, we conclude c̃ ∈ |nf (T®G (")) | and �c = % . □

Theorem 7.3. T®G (") � T®G (# ) ⇐⇒ BT(") = BT(# ).

Proof. (⇒) Assume T®G (") � T®G (# ). By de�nition, this entails nf (T®G (")) = nf (T®G (# )).
Assume BT(") ≠ BT(# ) towards a contradiction. Say, there is � ∈ A(") \ A(# ). By Lemma 7.2

there is c̃ ∈ |nf (T®G (")) | = |nf (T®G (# )) | such that �®G
c̃
= % . By de�nition of normalization along # ,

we have c̃ ∈ |T®G (#
′) | for some # ′ such that # →→V #

′. By Proposition 6.11 we obtain % ≤⊥ #
′,

from which it follows % ∈ A(# ). Contradiction.
(⇐) AssumeBT(") = BT(# ). Then ⟦"⟧®G � T®G ("), by Theorem 5.13,

� T®G (BT(")), by Theorem 6.13,
= T®G (BT(# )), as A(") = A(# ),
� T®G (# ), by Theorem 6.13,
� ⟦#⟧®G , by Theorem 5.13. □

Corollary 7.4. �(D) = B.

Remark 7.5. The reader could be surprised by the prima facie paradoxical result of Corollary 7.4.
Our result works for arbitrary categori�ed graph models, while it is well-known that in the 1-
dimensional case no extensional model can have theory B, since B is not an extensional theory.
However, the 2-dimensional aspect of our semantics considerably re�nes the situation. At the
beginning of the section we restricted our attention to isomorphisms preserving V-normalization

of type derivations. It is easy to see that, if � is extensional, the canonical natural isomorphism

⟦" →[ #⟧®G : ⟦"⟧®G � ⟦#⟧®G

does not preserve V-normalization of type derivations. Indeed, take � = �+, " = _G .~G and # = ~.

Now, consider c =

e−1
⟨∗⟩⊸∗

: ∗ → (⟨∗⟩ ⊸ ∗)

~ : ⟨∗⟩ ⊢ ~ : ⟨∗⟩ ⊸ ∗ G : ⟨∗⟩ ⊢ G : ∗

~ : ⟨∗⟩, G : ⟨∗⟩ ⊢ ~G : ∗ e⟨∗⟩⊸∗ : (⟨∗⟩ ⊸ ∗) → ∗

~ : ⟨∗⟩ ⊢ _G.~G : ∗
and c ′ =

~ : ⟨∗⟩ ⊢ ~ : ∗
We have that T®G (" →[ # ) (⟨∗⟩, ∗)(c̃) = c̃

′ . Clearly, there is no V-reduction chain that produces
nf (c) = nf (c ′) so, by _-abstracting~ on both sides, we get that the model distinguishes ⟦1⟧ and ⟦I⟧.
In fact, our choice of isomorphisms automatically discards the isos induced by extensionality.
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8 DECATEGORIFICATION OF THE SEMANTICS

In this section we show how one can decategorify2 our results to derive consequences in the
1-dimensional setting where the relational models of _-calculus live [Bucciarelli et al. 2007]. We
start by de�ning the target category Polr (§8.1) of the decategori�cation pseudofunctor (§8.2), and
provide a type-theoretic description of the relational graph models living in Polr (cf. De�nition 8.4).
We then prove that the Approximation Theorem, for those relational graph models arising from the
decategori�cation, follows directly from its bicategorical analogue (Cor. 8.14). We conclude that the
theory of the categori�ed graph model is included in the theory of its decategori�cation (Cor. 8.15).

8.1 The Category Polr

We shall work within the category Polr [Ehrhard 2012, 2016] of preorders and monotonic relations,
of which we recall the basic structure. Notice that the category Rel of sets and relations is a full
subcategory of Polr, considering sets as discrete preorders.

De�nition 8.1. (i) Objects of Polr are preorders;
(ii) a morphism 5 : X → Y from X = ⟨|X|, ≤X⟩ to Y = ⟨|Y|, ≤Y⟩ is a monotonic relation from
|X| to |Y|, i.e., a relation 5 ⊆ |X|× |Y| such that ⟨G,~⟩ ∈ 5 entails ⟨G ′, ~′⟩ ∈ 5 , for all G ′ ≤X G
and ~ ≤Y ~

′. Composition is given by relational composition.
(iii) In Polr the productX1&X2 is the disjoint union of sets |X1 |⊔ |X2 | with the preorder ≤X1 ⊔ ≤X2

de�ned as ⟨8, G⟩ ≤X1&X2 ⟨ 9, ~⟩ whenever 8 = 9 and G ≤X8 ~.
(iv) The terminal object is ∅ with the empty order.
(v) Polr has a symmetric monoidal structure. The tensor X1 ⊗ X2 is the cartesian product of sets

with the product preorder. The endofunctor X ⊗ (−) admits a right adjoint (−) ⊸ Y de�ned
as follows: |X ⊸ Y| = |X| × |Y| and ⟨G,~⟩ ≤X⊸Y ⟨G

′, ~′⟩ if G ′ ≤X G and ~ ≤Y ~
′ .

The following remark is crucial to properly establish the decategori�cation.

Remark 8.2. The de�nitions above could be equivalently rephrased by taking the characteristic
function point of view, i.e. considering a monotonic relation 5 : X → Y as a monotonic function
5 : Xop × Y → {0, 1}.

The category Polr extends naturally to a bicategory by considering inclusions 5 ⊆ 6 as 2-cells.

The exponential modality. The exponential modality of Linear Logic is interpreted by exploit-
ing the free commutative monoid construction over a set. What happens here is again a direct
generalization of the well-known relational case, where the multiset construction is considered.
We denote byMf (- ) the free commutative monoid of �nite multisets over a set - . A �nite

multiset 0 over - is denoted as an unordered list [01, . . . , 0: ], possibly with repetitions. Given �nite

multisets 0 = [01, . . . , 0: ], 1 = [11, . . . , 1=] ∈ Mf (- ), their union is 0 + 1 = [01, . . . , 0: , 11, . . . , 1=].
We now detail the action on objects of the comonadic endofunctor that gives the interpretation

of the ! modality.

De�nition 8.3. (i) The endofunctor ! : Polr → Polr is given by !X = ⟨Mf ( |X|), ≤X⟩, where
[G1, . . . , G=] ≤!X [G

′
1, . . . , G

′
=′ ] holds if and only if = = =′ and there exists f ∈ S= such that

G8 ≤X G
′
f (8 )

, for all 8 (1 ≤ 8 ≤ =).

(ii) We denote by MPolr the Kleisli category of the comonad de�ned in (i).

It is worth noting that the construction above strongly recalls the one considered in Section 4.2.
Such a construction can indeed be seen as the decategori�cation of the free monoidal completion,
as we will detail in the next subsection.
2From the point of view of enriched category theory, we perform a change of base [Kelly 1982].
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Relational Graph Models and Their Type-Theoretic Presentation. In this section we extend the
notion of relational graph model introduced in [Breuvart et al. 2018] to the preordered setting.

De�nition 8.4 (Relational graph pre-models). A relational graph pre-model consists of a preorder
U equipped with a monotonic injection ] : !Uop ×U ↩→U .

It is easy to see that a relational pre-graph model canonically induces a re�exive object inMPolr.

We call this object a relational graph model.

Notation 8.5. A relational graph modelU can be presented as a non-idempotent intersection
type system R≤ (see Fig. 6), depending on a preordered set X = ⟨|X|, ≤X⟩ of atoms (ground types).
The types over |X| correspond to the elements of |U|. We let 0 ⊸ 0 be another notation for ] (⟨0, 0⟩).

(i) In this context the “non-idempotent intersection” is assumed to be commutative, therefore it
is represented by �nite multisets rather than ordered lists. The preorder ≤U associated with
U is obtained by lifting ≤X from atoms to multisets and to higher types as expected.

(ii) The elements of !U= are called (type) environments (of length =) and are denoted by Γ,Δ.
(iii) The tensor product of two type environments is de�ned by applying multiset union, denoted

by +, componentwise: ⟨01, . . . , 0=⟩ ⊗ ⟨11, . . . , 1=⟩ = ⟨01 + 11, . . . , 0= + 1=⟩.
(iv) We write ⊢MPolr to denote judgments in the associated type assignment system R≤ (Figure 6b).

Remark 8.6. Figure 6a actually describes a family of re�exive objects3 UX in MPolr, since U
is parametric over a preordered set X. The underlying set ofU is populated by non-idempotent
intersection types over the set |X| of atoms. As in the categori�ed setting of distributors, U is
given by a free algebra construction, which determines an inclusion of preorders !Uop ×U ⊆ U .

De�nition 8.7. (i) The interpretation of a _-term " ∈ Λ
> (G1, . . . , G=) in a relational graph

modelU living inMPolr is given by a monotonic relation

⟦"⟧MPolr
®G

: !U= →U, ⟦"⟧MPolr
®G
(Δ, 0) =

{
1, if Δ ⊢MPolr " : 0,

0, otherwise.

We also write (Δ, 0) ∈ ⟦"⟧MPolr
®G

for ⟦"⟧MPolr
®G
(Δ, 0) = 1.

(ii) The interpretation above is extended to approximants % ∈ A in the obvious way, and to
Böhm trees by setting:

(Δ, 0) ∈ ⟦BT(")⟧MPolr
®G

⇔ ∃% ∈ A(") . (Δ, 0) ∈ ⟦%⟧MPolr
®G

.

We remark that, if X is discretely ordered by =, then the construction boils down to the standard
one performed in the context of relational semantics [de Carvalho 2007].

8.2 Decategorification Pseudofunctor

We want to de�ne a pseudofunctor Dec : Dist → Polr. We now take the characteristic function
point of view on monotonic relations. The construction that we shall present corresponds to a
change of base in the sense of enriched category theory [Galal 2020; Laird 2017], passing from
Set-enriched distributors to {0, 1}-enriched distributors.

De�nition 8.8. (i) The preorder collapse Dec(�) of a small category � is de�ned by setting
|Dec(�) | = ob(�) and 0 ≤Dec(�) 1 whenever �(0, 1) ≠ ∅.

3This construction has been already explicitly considered in the context of bang calculus [Guerrieri and Olimpieri 2021]. It

derives from the type theoretic presentation of the Scott semantics in [Ehrhard 2012].
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Types (for G ∈ |X |):

TyX ∋ 0 := G | [01, . . . , 0: ] ⊸ 0

Free construction of ≤U depending on X:

G ≤X G ′

G ≤U G ′

0′ ≤U 0 0 ≤U 0′

(0 ⊸ 0) ≤U (0
′
⊸ 0′ )

f ∈ S: 01 ≤U 0′
f (1)

:∈N. . . 0: ≤U 0′
f (: )

[01, . . . , 0: ] ≤U [0
′
1, . . . , 0

′
:
]

(a) Graph of intersection types �X .

Derivation rules:

0′ ≤U 0

G1 : [ ], . . . , G8 : [0
′ ], . . . G= : [ ] ⊢ G8 : 0

Γ0 ⊢ " : [01, . . . , 0: ] ⊸ 0 (Γ8 ⊢ # : 08 )8∈ [: ] Δ ≤U=
⊗:

9=0 Γ9

Δ ⊢ "# : 0

Δ, G : 0 ⊢ " : 0 0 ⊸ 0 ≤U 1

Δ ⊢ _G." : 1

(b) Non-idempotent intersection type system R≤ .

Fig. 6. Type theoretic presentation of a relational graph model living in Polr.

(ii) Given small categories� and �, de�ne a functorDec�,� : Dist(�, �) → Polr(Dec(�),Dec(�))
by setting, for all � : � ↛ �,

Dec�,� (� ) = {⟨0, 1⟩ | ⟨0, 1⟩ ∈ |Dec(�)
op × Dec(�) | ∧ � (0, 1) ≠ ∅}.

The data above naturally de�ne a pseudofunctor Dec : Dist→ Polr, called the decategori�cation
of Dist to Polr, which also preserves the linear logic structure [Galal 2020].

Proposition 8.9. Let � ∈ Cat.We have an equivalence of categories D! : Dec(!�) ≃ !(Dec(�))
given by the map ⟨01, . . . , 0:⟩ ↦→ [01, . . . , 0: ] .

We work modulo the equivalence above, so we identify Dec(!�) with the multiset construction
over Dec(�). Remark that this equivalence extends to !�=, with = ∈ N, in the natural way.

We show that the decategori�cation of the free category of intersection types �� (as described
in Subsection 5.1) is exactly the free preorder on intersection typesUDec(�) .

Lemma 8.10. Let �� be a categori�ed graph model. Then Dec(��) = UDec(�) is a relational graph

model living in MPolr.

Proof. By exploiting the fact that the decategori�cation pseudofunctor preserve the linear logic
structure. □

Remark 8.11. Note that, if � is a set, we recover the standard construction of non-extensional
models used in the relational setting [de Carvalho 2007]. The decategori�cations of �∗ and �+

correspond to two extensional models in MRel, studied in [Breuvart et al. 2018], which can be seen
as a relational counterpart of classical �lter models of _-calculus.

Lemma 8.12. Let" ∈ Λ⊥.

(i) If Δ ⊢CatSym " : 0 then D! (Δ) ⊢MPolr " : D! (0).
(ii) Consider Δ ⊢CatSym " : 0, [ : Δ′ → Δ and 5 : 0 → 0′. We have D! (Δ

′) ⊢MPolr " : D! (0
′).

Proof. Both items follow easily by induction on a derivation of Δ ⊢CatSym " : 0. □

Theorem 8.13. Let" ∈ Λ⊥, we have Dec(T®G (")) = ⟦"⟧
MPolr
®G

.

Proof. It follows from the previous lemma. □

We show that the Approximation Theorem for UDec(�) is a direct consequence of the result
above and of the Bicategorical Approximation Theorem 6.13.
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Corollary 8.14 (Approximation Theorem for MPolr).

For all" ∈ Λ> ( ®G), we have ⟦"⟧MPolr
®G

= ⟦BT(")⟧MPolr
®G

, i.e.

(Δ, 0) ∈ ⟦"⟧MPolr
®G

⇐⇒ ∃% ∈ A(") . (Δ, 0) ∈ ⟦%⟧MPolr
®G

.

Proof. Corollary of Theorem 6.13 and Theorem 8.13. The central point of the proof is the remark
that, by Proposition 8.9, (Δ, 0) = D! (Δ

′, 0′) for some context and type of the system '→. Then,
one derives that (Δ, 0) ∈ ⟦"⟧MPolr

®G
if and only if T®G (") (Δ

′, 0′) ≠ ∅. We can therefore conclude by
applying the bicategorical Approximation Theorem. □

Note that the theory of the re�exive object Dec(�), for � categori�ed graph model, is the
standard 1-categorical notion de�ned as �(Dec(�)) = {(", # ) | ⟦"⟧MPolr

®G
= ⟦#⟧MPolr

®G
}.

Corollary 8.15. For all", # ∈ Λ> ( ®G), we have

T®G (") � T®G (# ) ⇒ ⟦"⟧
MPolr
®G

= ⟦#⟧MPolr
®G

.

Therefore B = �(�) ⊆�(Dec(�)).

9 CONCLUSIONS

In this paper we have shown that the interpretation of a _-term in a pseudore�exive object D
living in a cartesian closed bicategory of distributors carries more information than, say, the
Scott-continuous or the relational semantics. Indeed, from an element c̃ ∈ T®G (") it is possible
to reconstruct an approximant � of" having nf (c̃) in its interpretation and, in the speci�c case
under consideration, this property allows to characterize the theory of the model. We conclude
with some more speculative discussions about possible future developments.

9.1 Perspective I : Towards 2-Dimensional _-Theories

Giving a suitable categorical characterization of the isomorphisms we considered in Section 7 will
be the �rst step of our future investigations. In order to do so, it seems natural to start from Fiore
and Saville works [2019; 2020] on cartesian closed bicategories. One could consider the _-calculus
Λ⊥ (- ) corresponding to the free cartesian closed bicategory with pseudore�exive object � on
a set - , where each hom-category has an initial object that is preserved by composition and by
the cartesian closed structure in an appropriate sense. We conjecture that the isomorphisms we
characterized syntactically in Section 7 correspond to the ones in the free cocompletion under

�ltered colimits of Λ⊥ (- ) (�
=, �). In this way one could de�ne, in full generality, the free non-

extensional theory of a model as the one that arises from those appropriate structural isomorphisms.
For the extensional case we would proceed analogously, taking an extensional � . In particular,
this means that an extensional bicategorical model will determine both free non-extensional and
extensional theories, that will not coincide. Besides these free constructions, one could consider
also other relevant classes of isomorphisms between interpretations. Some questions immediately
arise, which depend both on the choice of isos and on the particular model considered: can these
isos be characterized via appropriate structural isomorphisms of some sort? What is the equational
theory associated with those isomorphisms? Moreover, we will try to elaborate these ideas in a
2-dimensional extension of Hyland’s operadic approach to _-calculus [Hyland 2014, 2017].

9.2 Perspective II: Second Dimension and Extensionality

We will then study the possible extension of the method introduced in this paper to study the
extensional theory of the models �+, � [=] and �∗, individually introduced in De�nition 5.6(iv), and
the relationship between these models and other constructions of extensional models introduced
in [Fiore et al. 2008; Galal 2020]. Of course, as an approximation theory one shall consider Lévy’s
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extensional Böhm trees, as in [Breuvart et al. 2018; Manzonetto and Ruoppolo 2014], or Nakajima
trees as done for Scott’sD∞ model [Hyland 1976]. We conjecture that our technique can be adapted
to prove that the extensional models such as �+ and � [=] do satisfy an approximation theorem
w.r.t. Lévy’s extensional approximants and that, as a corollary, one gets �(D) = H+, whereH+

is the _-theory equating two _-terms having the same Böhm tree up to countably many �nite
[-expansions4. Our conjecture is motivated by analogous results available in the relational setting
[Breuvart et al. 2018]. In Section 7 we presented a direct proof of �(D) = B, which constitute the
�rst characterization of the _-theory induced by a bicategorical model. In [Breuvart et al. 2018] a
relational graph model E having theory B is presented, thus, by Corollary 8.15 all bicategorical
models D having E as decategori�cation satisfy �(D) ⊆ �(E) = B. Since B ⊆ �(D) is a
corollary of the Approximation Theorem, this gives an indirect proof of�(D) = B for thesemodels.
Now, in [Olimpieri 2021] the construction of the bicategory of distributors is more parametrized
and allows to obtain also Scott-continuous models by decategori�cation, and many theories of
continuous models are known (see [Berline 2000], for a survey). Since �(D) ⊆ T is usually5 the
di�cult direction in proving �(D) = T , we believe that these results can be transferred from the
categorical to the bicategorical setting using the decategori�cation and the above reasoning.

9.3 Perspective III: 2-Dimensional Semantics in Logical Form

Abramsky has introduced a logical presentation of denotational semantics induced by categories
of domains [Abramsky 1991]. Simple types are interpreted by propositional theories, which are
shown to be syntactic presentations of the continous semantics. In particular, Abramsky shows that
a propositional theory corresponds to an appropriate notion of domain prelocale. He shows that
there is a Stone duality between the interpretation of types as dcpos and the one via propositional
theories. Filter models and their type-theoretic presentation constitute an instance of this duality:
there is an order-reversing isomorphism between elements of these models and intersection types.
In future works, we shall investigate the categori�cation of Abramsky’s construction. The �rst

step would be to establish the proper categori�cation of the notion of dcpo and of domain prelocale
(as de�ned by Abramsky). For the former, a natural choice is to consider �nitely accessible categories.
For the latter—domain prelocales—we will probably need some sort of pretopos. Karazeris’ work
[Karazeris 2001] on the categorical theory of domains could be very useful at this stage. A simple
type would then be seen as a categori�ed propositional theory (that is, a domain pretopos). Of course,
we do expect isomorphisms between theories and their spectra to be replaced with appropriate
adjoint equivalences. At this point, a conceptually interesting question arises: in order to exploit
the linear logic decomposition, we should consider propositional theories that are not (distributive)
lattices, contrary to what happens in Abramsky’s paper. This makes sense since intersection types
are not necessarily idempotent. We hope that this can be nicely expressed parametrically, thus
generalizing Olimpieri’s construction [Olimpieri 2021].
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