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We implement experimentally a method for characterizing the two-point coherence properties of fields in two dimensions 

from measurements of their irradiance at different propagation distances. This method is a form of phase space 

tomography, based on a definition of the ambiguity function that is appropriate beyond the paraxial regime. In the 

experiment, a combination of two cylindrical lenses is used to create focused fields that vary slowly in one direction, so 

they behave approximately like two-dimensional fields. Four types of light sources (an incandescent lamp, a white LED, 

a green LED, and a green laser) with different coherence properties were measured. The results of the method for 

nonparaxial fields are compared to those based on the paraxial approximation.  

 

1. INTRODUCTION 

It is an honor to be invited to contribute to this Special Issue that celebrates the many contributions of Prof. 

Anna Consortini both to optical science and its dissemination throughout the world. One of us (MAA) has had the 

privilege of knowing Prof. Consortini for almost 30 years. During my student years we had a few discussions at a 

couple of conferences. Immediately following my PhD defense I traveled to Italy, and I visited Prof. Consortini at 

the University of Florence. She showed me her laboratory and the very interesting work she was doing. One thing 

that I will always remember is that she was the first person to introduce me to her colleagues as “Dr. Alonso”. Since 

then, I’ve been extremely lucky to collaborate extensively with Prof. Consortini, not on research (yet) but on optics 

education aimed especially at young scientists from economically developing countries. At these events, I typically 

teach theoretical aspects, while she coordinates laboratory sessions to illustrate optical phenomena such as 

diffraction. An expert in the propagation of light through the atmosphere, Prof. Consortini always stresses the 

importance of understanding the mathematical foundations of wave propagation and the corresponding statistical 



 

aspects [1, 2]. We therefore thought that it would be appropriate to contribute to this Special Issue a description of 

the experimental implementation of a method for characterizing partially coherent light through its propagation 

properties. 

Phase space tomography is a technique used in a range of different physical contexts for characterizing 

partially coherent wave fields in space or time, as well as quantum mixed states [3–9]. Let us focus on the context of 

spatially partially coherent optical fields, where the spatial coherence of a beam in the frequency domain is 

characterized by a quantity known as the cross-spectral density [10]. Phase space tomography allows retrieving the 

cross-spectral density from measurements of the local spectral density (i.e. the irradiance component at the 

corresponding frequency) at planes corresponding to different propagation distances. Each of these measurements 

gives access to projections or sections of a phase space representation such as the Wigner function [11, 12] or the 

ambiguity function [12, 13]. 

The mathematical framework of phase space tomography was suggested in 1987 by Bertrand and Bertrand 

[3]. The idea is that different measurements correspond to projections of the Wigner function in different directions in 

phase space, so that this function can be estimated from a number of such measurements by using the inverse Radon 

transform [14]. This method was first used to characterize temporal coherence in short pulses [5], as well as the 

quantum state of a light mode [6]. Its use for the characterization of the spatial coherence of paraxial optical fields 

was proposed by Nugent [4] and implemented by Raymer’s group [7, 8], who also noted that the direct use of phase 

space tomography is limited to one transverse dimension, and that its extension to two transverse dimensions would 

require also many measurements with different sets of cylindrical lenses. Cámara et al. [15] implemented a method 

where the cylindrical lenses are replaced with spatial light modulators, allowing a more efficient characterization of 

the Wigner function and hence the field. 

A formally equivalent but mathematically simpler approach to phase space tomography was proposed by Tu 

and Tamura [16] based on the ambiguity function [13], which is the Fourier transform in both the position and direction 

variables of the Wigner function. In this approach, one-dimensional (1D) Fourier transforms of the measured 

irradiances of a two-dimensional (2D) paraxial field at different distances give directly slices of the ambiguity function 

along radial lines in phase space. The ambiguity function can then be estimated by interpolating from these slices. The 

spatial coherence of the paraxial field is then found as the Fourier transform of the ambiguity function over the angular 

separation direction [16]. Whether it is based on the Wigner or ambiguity functions, the standard formalism for phase 



 

tomography is limited to the paraxial domain. A theoretical generalization to the nonparaxial regime was proposed by 

Cho and Alonso [17], based on a generalized ambiguity function for nonparaxial fields. 

The goal of this study is to provide an experimental implementation of phase space tomography for light 

sources with different coherence levels, and extract their cross-spectral density by employing both the paraxial [16] 

and nonparaxial [17] approaches, such that their results are compared for real sources whose light is not strictly 

paraxial. Furthermore, Wigner functions are also calculated to verify the reconstructed ambiguity functions. Section 

2 discusses the methods of calculation. Section 3 demonstrates the experimental setups and results. Section 4 

discusses the findings of the study. Finally, Section 4 provides some concluding remarks. 

2. THEORETICAL BACKGROUND 

A. Partially coherent beams in 2D 

Consider a stationary partially coherent scalar field with cylindrical symmetry, such that it only depends on 

a transverse variable x and the propagation direction z. The field is assumed to propagate towards larger values of z 

but it is not necessarily paraxial. To within second-order coherence theory, this field is described by the cross-

spectral density [10], W(x1, x2; z; ω), which describes the statistical correlation of the field at the points (x1, z) and 

(x2, z) at the frequency ω. This function is defined as 

 𝑊(𝑥!, 𝑥"; 𝑧; ω) = ⟨𝑈∗(𝑥!; 𝑧; ω)𝑈(𝑥"; 𝑧; ω)⟩, (1) 

where the brackets represent a time average, and U(xi; z; ω) is the scalar complex field amplitude at position (xi; z) for 

frequency ω. When the two points x1 and x2 coincide, the cross-spectral density reduces to the spectral density, which 

is the component of the irradiance at frequency ω measured at the point in question: 

 𝑆(𝑥; 𝑧;ω) = 𝑊(𝑥, 𝑥; 𝑧;ω) = ⟨|𝑈(𝑥; 𝑧; 𝜔)|"⟩. (2) 

In what follows we drop the dependence in ω for brevity. 

B. Phase Space Tomography for Paraxial Fields 

The ambiguity function is a phase space distribution proposed within the context of radar that was later 

introduced for the study of optical fields [13]. For a paraxial partially coherent optical field, it can be defined in terms 

of the cross-spectral density as 

  



 

  

                                                  𝒜p(𝑥%, 𝑧; 𝑝%) =
&
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"
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where the variables x′ and p′ can be regarded as separations in the spatial and directional domains, respectively, and k 

= ω/c = 2π/λ is the free space wavenumber, with c being the speed of light and λ the wavelength. The ambiguity 

function has the property of describing paraxial propagation in terms of a simple rearrangement of its arguments: 

                                                                𝒜p(𝑥%, 𝑧; 𝑝%) = 𝒜p(𝑥% − 𝑧𝑝%, 0; 𝑝%).																																																											     (4) 

These two equations are the key to Tu and Tamura’s phase space tomography approach [16]: by setting x′ = 0 we see 

that the Fourier transform of the spectral density at propagation distance z gives the ambiguity function at z = 0 (or 

z0) at a radial slice with slope −z in the phase space (x′, p′), that is 

 𝒜p(−𝑧𝑝%, 0; 𝑝%) =
&
")∫𝑆(𝑥, 𝑧) exp(−𝑖𝑘𝑥𝑝

%) 𝑑𝑥. (5) 

Figure 1 illustrates the relationship between the spectral density and the ambiguity function. Therefore, if the spectral 

density is measured at a sufficient number of propagation distances, the ambiguity function is determined at a series 

of radial slices, from which the remaining values can be estimated through interpolation. The cross-spectral density 

can then be estimated from the inverse of Eq. (3), namely 

 𝑊3𝑥 − (!

"
, 𝑥 + (!

"
; 𝑧6 = ∫𝒜p(𝑥%, 𝑧; 𝑝%) exp(−𝑖𝑘𝑥𝑝%) 𝑑𝑝%. (6) 

 
 (a) (b) 

Fig. 1. Relationship between (a) spectral density and (b) an ambiguity function: the Fourier transform of the cross-sections of 
constant z of the spectral density correspond to radial slices of the ambiguity function. 

 



 

C. Phase Space Tomography for Nonparaxial Fields 

Note that the approach just described cannot be applied in the nonparaxial regime, since for the ambiguity 

function defined in Eq. (3), nonparaxial propagation does not simply correspond to a rearrangement of arguments, as 

in Eq. (4). However, a nonparaxial version of the ambiguity function can be defined in terms of the correlation of the 

plane-wave components of the field [17]. This nonparaxial generalization does satisfy an argument rearrangement 

property: 

 𝒜np(𝑥%, 𝑧; τ%) = 𝒜np(𝑥% − 𝑧τ%, 0; τ%). (7) 

where the variable τ′ corresponds to a difference in the tangents of the angles of propagation of two plane wave 

components of the field. It is this nonparaxial generalization that is related to the spectral density through a Fourier 

transform: 

 𝒜np(−𝑧τ%, 0; τ%) =
&
") ∫𝑆(𝑥, 𝑧) exp(−𝑖𝑘𝑥τ

%) 𝑑𝑥. (8) 

The correlation of plane wave components of field is the inverse Fourier transform of the nonparaxial ambiguity 

function [17]: 
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" 456" 0 ∫𝒜np(𝑥%, 0; τ%) exp(−𝑖𝑘𝑥% tan θ)𝑑𝑥%																	(9) 

where θ is the angle between the direction of propagation of plane waves and the z axis, and  

is a function of τ′ and θ from a change of variables. The cross-spectral density can then be calculated from the angular 

spectrum correlation as [17] 

                 𝑊(𝑥!, 𝑧; 𝑥", 𝑧) = ∬⟨𝐴∗(𝜃!)𝐴(𝜃")⟩ exp{ik[x" sin θ" − 𝑥! sin θ! + 𝑧(cos θ" − cos θ!)]} dθ!dθ".						(10)  

D. The Wigner Function 

The Wigner function is a phase space distribution introduced within the context of quantum physics [11] and 

then applied (or introduced independently) to a range of other fields, including optics a wave-optical foundation for 

the heuristic formalism of radiometry [12, 18–20], given that its properties resemble those of the radiance [21, 22]. 

Let us consider first the paraxial regime. The Wigner function, written here as Bp(x, z; p), is related through 

Fourier transformation over both x′ and p′ to the ambiguity function 

                       𝐵p(𝑥, 𝑧; 𝑝) =
&
")∬𝒜p(𝑥%, 𝑧; 𝑝%) exp[𝑖𝑘(𝑥𝑝% − 𝑥%𝑝)] 𝑑𝑥%𝑑𝑝%, (11) 



 

where x represents a position and p a propagation direction. As mentioned earlier, the Wigner function behaves like a 

radiance, that is, as a weight for the rays specified by their position (x, z) and direction p. The integral of the Wigner 

function over all directions (that is, projecting it onto the position axis) gives the spectral density, 

                                                                         ∫𝐵p(𝑥, 𝑧; 𝑝)  𝑑𝑝 = 𝑆(𝑥, 𝑧).                                   (12) 

Paraxial propagation corresponds also to an argument rearrangement for the Wigner function according to the 

rectilinear propagation of rays: 

𝐵p(𝑥, 𝑧; 𝑝) = 𝐵p(𝑥 − 𝑧𝑝, 0; 𝑝).            (13) 

These expressions allow calculating the spectral density from the knowledge of the Wigner function at any plane z = 

z0. 

While the description above is valid for paraxial fields, a nonparaxial version of the Wigner function, denoted 

here as Bnp(x, z; τ), has been defined [23] that is related to the nonparaxial ambiguity function through a relation 

identical to Eq. (11) with 𝒜p  replaced with 𝒜np . This nonparaxial Wigner function satisfies the analogue of the 

projection property in Eq. (12) and of the rectilinear propagation property in Eq. (13), both with p replaced by τ. 

 

3. EXPERIMENT RESULTS 

A. Experiment Setups 

In the experiment, a green LED (λp = 555nm, U = 2.8V, I = 20mA), a white LED (V = 3.0V, I = 20mA), an 

incandescent lamp (U = 1V, I = 260mA), and a laser (λp = 532nm, P = 6mW), are selected as test light sources. Figure 

2a shows the experiment setup for measuring the first three (partially coherent) sources. A horizontal slit (HS) is 

placed in front of the light source (LS) to confine the field into a general line shape. An iris is used to block the stray 

light not falling onto the following lenses. The combination of a horizontal cylindrical lens, CL1 (f = 150mm), and a 

vertical cylindrical lens, CL2 (f = 100mm), creates the 2D light fields. A 2D charge-coupled device (CCD) array 

(Imagingsource DMK-31BF03, 1024X768) moves near the focus distance z0 along the z axis to detect the spectral 

density. The entire line-shaped field is captured by the CCD array, so there is no need to move the CCD along the x 

direction. Figure 2b illustrates the experiment setup for measuring a coherent source (a green laser). A neutral density 

filter (ND) is inserted in front of the laser to minimize the CCD saturation. Additionally, a beam expander (BE), which 

consists of two collimating lenses and a pinhole, is placed after the ND to expand the laser beam. 



 

 
(a) 

 
(b) 

Fig. 2. Experimental setups for measuring optical fields of (a) partially coherent and (b) laser sources. 

B. Irradiance Distribution 

Each light source is measured at a number of distances N before and after the focusing position z0. In the 

experiment, Nincandescent = 63, NwhiteLED = 69, NgreenLED = 61, and Nlaser = 57. The increments for the displacements are of 

d = 200µm near z0 and d = 500µm into the far field. Table 1 summarizes the measurement distance ranges and the 

estimated nonparaxial angles. 

Table 1. Measurement Distance Ranges and Nonparaxial Angles of Each Light Source 

Parameters Incandescent White LED Green LED Laser 

Distance z (mm) [-15.8, 9.8] [-17.8, 10.8] [-12.8,11.5] [-14.8,7.5] 

Half beam angle (◦) 9 7 11 9 
 

Figure 3 shows the cross-sections of the irradiance distribution of light sources near z0 captured by a CCD. 

Figure 4 shows top views of irradiance distributions in the x and the z directions. The irradiance values of each 

measurement are summed over the narrow width along the y axis to obtain a 1D distribution along the x axis. 

Subsequently, a stacking of the 1D distributions gives the 2D distribution. 



 

 
(a)                                          (b) 

 
(c)                           (d) 

Fig. 3. Cross-sections of irradiance distribution at the plane z = z0 measured on a CCD in unit of mm of (a) an incandescent lamp, 
(b) a white LED, (c) a green LED, and (d) a laser. 

 

 
(a)     (b) 

 
(c) (d) 

Fig. 4. Top views of the irradiance distribution for (a) an incandescent lamp, (b) a white LED, (c) a green LED, and (d) a laser. 
 

The procedure that follows for calculating the ambiguity function and from it the cross-spectral density 

requires specifying the wavelength of the light. For the green LED and the laser, the quasi-monochromatic 



 

approximation is valid, so we can simply use their central wavelengths (555nm and 532nm, respectively). The white 

LED and the incandescent lamp, on the other hand, have broader spectra. To process the data, we make a gray world 

approximation in which we assume that the spectral density distribution is approximately the same for all frequency 

components. The calculations then focus on the retrieval of the cross-spectral density for λ = 500nm. 

C. Reconstruction of the Ambiguity Function 

To calculate the ambiguity function, a discrete Fourier transform (DFT) is taken on each 1D irradiance 

distribution at different distance. Then, the coordinates of p′ (or τ′) and x′ of the discrete ambiguity function values are 

identified. Finally, a combination of the DFT radial slices leads to the ambiguity functions. To avoid an oversampling 

at x′ = 0, only the DFT value at x′ = 0 measured at z0 is taken. Figure 5 illustrates the top views of the real part of the 

reconstructed ambiguity functions at z0. Notice that up to now the reconstruction is independent of whether the paraxial 

or nonparaxial approaches are being used. 

 

 
(a)             (b)  (c) (d) 

Fig. 5. Real part of the ambiguity functions at z0 reconstructed from (a) an incandescent lamp, (b) a white LED, (c) a green LED, 
and (d) a laser. 

D. Cross-Spectral Density 

If we assume we are in the paraxial regime, the cross-spectral density at z = z0 is calculated from the 

reconstructed ambiguity function by taking the Fourier transform over p′. Figure 6 illustrates the amplitude and phase 

of the results. The horizontal axis represents the x coordinate in mm and the vertical axis represents the x′ coordinate 

in mm. 

 



 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. Amplitude and phase of the cross-spectral density function at z0 based on a method for a paraxial field reconstructed from 
(a) an incandescent, (b) a white LED, (c) a green LED, and (d) a laser. Here, x is the centroid of the two points and 𝑥! their 

separation. 



 

To extract the cross-spectral density based on the method for a nonparaxial field, the angular spectrum 

correlation is first calculated by taking one-dimensional Fourier transform over an ambiguity function and then 

applying an envelope over the Fourier transformed ambiguity function. Figure 7 illustrates the amplitudes of angular 

spectrum correlations. One axis represents the 𝛼Y	coordinate and the other axis represents the θ coordinate. 

 
(a) (b) 

 
(c) (d) 

Fig. 7. Amplitude of the angular spectrum correlation reconstructed from (a) an incandescent, (b) a white LED, (c) a green LED, 
and (d) a laser. 

 
The nonparaxial cross-spectral density is then calculated from angular spectrum correlations and is compared 

with those calculated by using the paraxial method. Table 2 lists amplitude errors of normalized cross-spectral density 

of each light source based on the paraxial method. The cross-spectral densities calculated by using the two methods 

are normalized, and then the difference is estimated by ∆CSDpeak = |CSDpeak−p − CSDpeak−np|. The shapes of the cross-

spectral densities resulting from both methods look similar, which might due to the relatively small half beam angles 

created in the experiment. Figure 8 illustrates the amplitude difference of the cross-spectral density by using the 

paraxial and nonparaxial methods. 

 

Table 2. Amplitude Errors of Normalized Cross-spectral Density of Light Sources based on the Paraxial Method 

Parameters Incandescent White LED Green LED Laser 

Error 0.01 0.006 0.015 0.08 

 



 

 

 
 (a) (b) 

 
 (c) (d) 

Fig. 8. Amplitude of the cross-spectral density by using the paraxial method, reconstructed from (a) an incandescent, (b) a white 
LED, (c) a green LED, and (d) a laser. 

Note that there can be some experimental sources residual error. One of them is the possible misalignment 

of the two cylindrical lenses, which would cause asymmetrical beams down the optical path. Another is saturation of 

the CCD occurring near the focal point of the two cylindrical lenses. Finally, some light leaks outside the CCD toward 

the far end of the measurement range for the incandescent lamp, the white LED, and especially for the green LED. 

E. Result Verification 

Wigner functions are calculated by a 2D DFT on the ambiguity functions. Figure 9 illustrates the top views 

of reconstructed Wigner function at z0. The horizontal axis represents the x coordinate in mm and the vertical axis 

represents slope (which is dimensionless). 



 

 
(a)     (b) 

 
(c)               (d) 

Fig. 9. Wigner function at z0 reconstructed from (a) an incandescent, (b) a white LED, (c) a green LED, and (d) a laser. 

 

As discussed in Section 2, the projection of a Wigner function on the x axis gives the irradiance distribution 

of a linear field. Here, projections of the Wigner function at different distances z are calculated by shearing the 

Wigner function at z0 following Eq. (12). Then, the field is recovered for verifying the ambiguity functions. The 

measured fields and the reconstructed fields from Wigner functions are firstly normalized, and then one is subtracted 

from the other. Figure 10 shows the estimated errors. The reconstructed fields, except that of the laser, have an error 

within 15%. The reconstructed laser field has more significant errors due to its spiky and noisy shape. 

 



 

(a)                                                                   (b) 

 
(c) (d) 

Fig. 10. Isometric views of difference between measured field distributions and those recovered from Wigner functions of (a) an 
incandescent, (b) a white LED, (c) a green LED, and (d) a laser. 

4. DISCUSSION AND CONCLUSION 

This study provides a review of the technique of phase space tomography for the retrieval of the cross-

spectral density for fields with cylindrical symmetry, and reports on the first experimental implementation of one such 

technique valid in the nonparaxial regime. The results of this method are compared with those based on the paraxial 

approximation. Both methods rely on taking the inverse Fourier transform of the measured irradiance distributions 

over a range of propagation distances. In the experiment, four types of light sources with narrow and broad spectrum 

are measured. 

The resulting cross-spectral density estimates for both methods are fairly similar, probably because of the 

relatively narrow half-angles of the beams. The errors are up to 0.015% for the partially coherent sources with a 11º 

half-angle, and 0.08% for the laser source with a 9º half-angle. These errors are below the level of error introduced by 

the numerical approximations coming from the sampling and interpolation, as well as from the experimental 

limitations mentioned earlier. It would be interesting to compare the two approaches for a more strongly focused 

partially coherent field. 

The advantages of the phase space tomography technique are that no interferometric setup is required; it 

suffices to measure the irradiance at different propagation distances, and the results are valid for measuring both 

paraxial and nonparaxial fields of any level of spatial coherence. The drawback is that the approach is limited to fields 

with cylindrical symmetry, that is, which are (at least approximately) independent of y. 

The experiment results demonstrate the spherical aberration of the optical path in both the field distribution 

plots and the reconstructed Wigner functions. The irradiance distributions show that the spherical aberration causes 



 

the optical beams at the edge of the field to converge faster than those near the center. This aberration is easily 

visualized in the plots of the Wigner functions, which present an s-shaped distribution. 

The differences in coherence level of the four types of light sources are clearly demonstrated by the plots of 

ambiguity functions. In particular, the plots for the laser source demonstrate strong oscillations in phase space, while 

these oscillations are washed out for partially coherent light sources. The results of ambiguity and Wigner functions 

are consistent with the theoretical prediction [17]. 
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