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Abstract19

To enhance the local resolution of global waveform tomography models, particularly in20

areas of interest within the Earth’s deep structures, a higher-resolution localized tomog-21

raphy approach (referred to as ”box tomography”) is crucial for a more detailed under-22

standing of the Earth’s internal structure and geodynamics. Because the small-scale fea-23

tures targeted by box tomography are finer than those in global reference models, dis-24

tinct spatial meshes are necessary for global and local (hybrid) forward simulations. Within25

the spectral element method (SEM) framework, we employ the intrinsic Lagrangian spa-26

tial interpolation to compute and store hybrid inputs (displacement/potential) in the global27

numerical simulation. These hybrid inputs are subsequently imposed into the localized28

domain during the iterative box tomography. However, inaccurate spatial Lagrange in-29

terpolation can lead to imprecise hybrid inputs, and this error can propagate from the30

global simulation to the hybrid simulation. It is essential to quantitatively analyze this31

error propagation and control it to ensure the credibility of box tomography. We intro-32

duce a unique spatial window function into the conventional ”direct discrete differenti-33

ation” hybrid method. When the local mesh and structure align with those in the global34

simulation, the synthetic hybrid waveforms match the global ones, serving as a reference35

for quantitatively assessing error propagation stemming from changes in the local spa-36

tial mesh during hybrid simulation. Significantly, the relative waveform error, arising due37

to spatial Lagrange interpolation, is around 5% when employing the traditional SEM with38

five Gauss-Lobatto-Legendre (GLL) points per minimum wavelength in the 3D global39

simulation through SPECFEM3D GLOBE. Ultimately, by increasing the spectral ele-40

ments by about 1.5 times in the standard global simulation, we achieve hybrid waveforms41

with an accuracy of about 1.5%.42

1 Introduction43

In recent decades, owing to the development of powerful computer clusters and the44

extensive global deployment of receivers, global waveform tomography has obtained seis-45

mic imaging of Earth with an unprecedented resolution (French & Romanowicz, 2015;46

Bozdag et al., 2016; Fichtner et al., 2018; Lei et al., 2020). Numerical simulation of the47

elastic/acoustic wave equation for the multi-scale Earth is a key aspect of imaging tech-48

niques such as the full-waveform inversion (FWI) (Tarantola, 1984; Pratt et al., 1998;49

Virieux & Operto, 2009; Capdeville & Métivier, 2018; Tromp, 2019; Lyu, Capdeville, Al-50

Attar, & Zhao, 2021). However, capturing globally multi-scale structures by applying51

FWI using band-limited data (e.g., ≥ 1 s) requires thousands of global simulations, which52

are on the 4th power of frequency and computationally prohibitive.53

The concept of ”Box Tomography” provides a framework that holds promise for54

improved image solutions of target small-scale objects located in the deep Earth. In this55

approach, a two-step method can be adopted based on the domain decomposition as fol-56

lows. A global numerical solver is used to compute the teleseismic wavefield outside of57

a remote target region (or ”box”) in the reference model with large-scale structures. The58
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wavefields (displacement or potential adopted in this study and named after hybrid in-59

puts) at the box boundaries are calculated and stored as the equivalent sources and then60

imposed into the multi-scale local target model as the second (hybrid) simulation using61

a regional solver. After finishing the global simulations from the remote sources side and/or62

the remote receiver side once and for all, the wavefield and the models are updated only63

within the box at each iteration of the tomographic inversion, significantly increasing the64

efficiency of the imaging process (Masson & Romanowicz, 2017a, 2017b).65

As the forward part of box tomography, the hybrid simulation is basic and signif-66

icant. Popular hybrid simulations of wave propagation are divided into three main cat-67

egories. Based on the physical representation theorem, the first category explicitly ap-68

proximates surface integral(s) to obtain the physical hybrid inputs (physical quantities69

displacement plus traction in the elastic case), and it is referred to as the “multiple point70

sources method” (Monteiller et al., 2012; Tong, Chen, et al., 2014; Tong, Komatitsch,71

et al., 2014; Zhao et al., 2016; Wang et al., 2016; Lin et al., 2019; Meng et al., 2021). The72

second category constructs the numerical hybrid inputs (only displacement in the elas-73

tic case) using a spatial window function and the discrete wave equation, and it is re-74

ferred to as the “direct discrete differentiation method” (Masson et al., 2014; Masson &75

Romanowicz, 2017b, 2017a; Clouzet et al., 2018; Adourian et al., 2022). The third cat-76

egory combines the physical and numerical representation theorems to calculate the com-77

bined hybrid inputs (displacement, acceleration, and traction in the elastic case), and78

a review of the benchmark of implementation of different hybrid methods is listed in Lyu79

et al. (2022). Note that only displacement/potential are needed in the second category,80

and they are both continuous and differentiable at the element connections under the81

framework of the spectral element method (SEM). It is the necessary condition we must82

meet when one adopts the global spatial interpolation to calculate the hybrid inputs in83

the global simulation, physical quantities like traction in SEM are discontinuous and non-84

derivable across the interfaces connected by spectral elements, and can only be calcu-85

lated in the single element (Monteiller et al., 2012; Lyu et al., 2022).86

Notably, in this study, we adopt the second category to perform all the hybrid sim-87

ulations. For hybrid simulation with the same large-scale structures and mesh as the global88

simulation, it is the only hybrid method that could fully recover the local wavefield (the89

same as the global solution) in the sense that no additional error is introduced into the90

reconstructed wavefield except for the rounding errors (Masson et al., 2014). Therefore,91

the direct discrete differentiation method can be used as a reference method to help an-92

alyze the respective error propagation in the hybrid simulations.93

In research on the forward hybrid simulation of box tomography, there are still many94

questions that require further exploration. The hybrid simulation is affected by the spatial-95

and temporal interpolation errors of both the global and hybrid simulations. However,96

how the accuracy of the intermediate quantity of hybrid inputs, obtained in the global97

Earth scale, affects the accuracy of the hybrid waveform lacks detailed analysis in the98

literature. The imaging resolution to be pursued in box tomography is generally finer99
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than that of the global reference model, so different spatial grids of the global and hy-100

brid simulations are always needed. Under this mesh flexibility, it is still unclear whether101

we can obtain hybrid waveforms in the hybrid simulation the same as those in the global102

simulation, or whether there are errors in the hybrid inputs that are calculated and saved103

in the global simulation of the large-scale structure. In addition, if there is an error, the104

error source requires further investigation. Additional unknowns include how this error105

propagates from the global simulation into the hybrid simulation of multi-scale struc-106

tures. As we know, the imposing operations of the hybrid inputs will be performed many107

times and this kind of error will be accumulated during the tomographic inversion be-108

cause each hybrid simulation is independent of the other, so it is significant to reduce109

this error in the hybrid inputs and then perform the hybrid simulation as accurately as110

possible with a completely flexible local spatial mesh for the multi-scale structures. It111

is also significant to reduce the hardware storage of hybrid inputs obtained in the first112

global simulation because a large number of distant sources will be used in box tomog-113

raphy. All these questions are of great significance and will be discussed in this study.114

The remainder of this article is structured as follows. In the methodology section,115

we first list the acoustic/elastic wave equations and analyze the common direct discrete116

differentiation hybrid method, and a slightly different hybrid method is proposed for the117

subsequent error analysis. Then, the associated error propagation from the global sim-118

ulations of large-scale structures to the hybrid simulations of multi-scale structures is119

analyzed, followed by two ways to reduce this kind of error. In the subsequent numer-120

ical experiments section, a series of 2D/3D hybrid simulations of the elastic wave equa-121

tion in homogeneous and heterogeneous Earth models demonstrate the validation of the122

proposed ways of reducing the spatial interpolation error.123

2 Methodology124

In this section, we present the elastic and acoustic wave equations in the Earth and125

a brief explanation of the principle of SEM (for a detailed introduction, please refer to126

Komatitsch and Vilotte (1998)). Then, the commonly used nomenclatures and the over-127

all workflow of the hybrid simulation are described. Next, we briefly introduce the com-128

mon direct discrete differentiation hybrid method “YM” (after author Yder Masson; Masson129

et al. (2014)), and a modified hybrid method “MYM” (the Modified YM) to be used as130

a reference method to subsequently analyze the source of error of hybrid simulation. The131

brief benchmark of these two hybrid methods and the workflow of the MYM method are132

listed (for their detailed benchmark, please refer to the Supplementary file).133

2.1 Elastic and acoustic wave equation134

In this study, we investigate the error propagation of the hybrid simulation of the135

elastic and acoustic wave equation. The propagation of seismic waves in the solid part136
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of Earth (the crust, mantle, and inner core) is governed by the equations of motion:137 
ρü = ∇ · σ + f

σ = C : ε

ε = 1
2 [∇u+ (∇u)T ],

(1)

where u(x, t) is the displacement field vector, ρ(x) is the density, σ(x) is the stress ten-138

sor, ε(x) is the strain tensor, and f(x, t) are the body forces in the elastic domain Ω; u139

is subject to boundary conditions on ∂Ω (i.e., traction vanishes at the Earth’s surface).140

In the fluid part of the Earth (the ocean and outer core), the propagation of acous-141

tic waves is supported by142 {
1
κ q̈ = ∇ · ( 1ρu) + f

u = ∇q,
(2)

where q is the displacement potential, κ(x) is the bulk modulus, ρ(x) is the density, u(x, t)143

is the displacement, q̈ is the second derivative of the displacement potential q with re-144

spect to time, and f(x, t) is a scalar source term. In general, the lossless acoustic medium145

is fully described by only two parameters: density ρ(x) and speed V (x) such that κ(x) =146

ρ(x)V 2(x).147

2.2 Principle of SEM148

SEM is a finite-element method that is based on the weak form of multiplying the149

wave equation with any test function. A discrete approximation of the continuous dis-150

placement u is required to numerically solve this weak form. Then, the original domain151

is discretized into nonoverlapping quadrilateral and hexahedral spectral elements in 2D152

and 3D cases. The numerical integration of the corresponding weak form is calculated153

using Gauss-Lobatto-Legendre (GLL) points (Komatitsch & Vilotte, 1998). Take the154

elastic wave equation as an example, the resultant matrix expression of the standard dif-155

ferential equation (ODE) can be written as156

MÜ+KU = F, (3)

where M is the diagonal global mass matrix that can enable explicit temporal iteration157

and K is the sparse global stiffness matrix. In practical applications, K is not assem-158

bled but the internal force KU is calculated by the tensor product element by element.159

F is the source vector, and U and Ü are the unknown displacement and its acceleration160

vectors, respectively. Then, the Newmark scheme (Newmark, 1959) with second-order161

temporal accuracy is used to update Un, U̇n, and Ün to Un+1, U̇n+1, and Ün+1, re-162

spectively, as follows:163 
Un+1 = Un +∆tU̇n + 0.5∆t2Ün

U̇n+1 = U̇n + 0.5∆t
[
Ün + Ün+1

]
Ün+1 = M−1(Fn+1 −KUn+1).

(4)
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2.3 Nomenclatures and workflow for the hybrid simulation164

The nomenclatures often used in the hybrid simulation are illustrated below and165

displayed in Figure 1. These mainly include the domains (Ωg, Ωe, and Ωl), models (Mg0,166

Mg1, Me0, Ml0, and Ml1), and the hybrid interface S.167

1. Domains: Ωg represents the Global Domain containing the Local Domain168

(closed box inside the global domain) Ωl, and the External Domain Ωe. It should169

be noted that Ωe + Ωl = Ωg for the domains.170

2. Models: Mg0 represents the known 1D or 3D Global Reference Model with171

large-scale structures from previous studies assigned to the global domain Ωg and172

includes the known External Model Me0 and Local Reference Model Ml0.173

Mg1 is the Global Target Model also assigned to the global domain Ωg, and in-174

cludes the known external model Me0 and the unknown Local Target Model Ml1175

with small-scale structures. It is important to note that Me0 + Ml0 = Mg0176

and Me0 + Ml1 = Mg1 for the models.177

3. Hybrid Interface S: the interface separates the external domain Ωe and the lo-178

cal domain Ωl.179

It is worth noting that the external model Me is assumed to be unperturbed during it-180

erative box tomography. The workflow for forward solving the wave equation in box to-181

mography is based on the hybrid simulation. For the case with a source outside and a182

receiver inside or outside the local domain, the hybrid simulation involves the following183

two or three steps of modeling:184

1. First, we calculate and save the hybrid inputs using a global solver in the global185

reference model Mg0 from the source side.186

2. Then, we impose the hybrid inputs recorded in the first step into the local target187

model Ml1 as the equivalent sources and perform a hybrid simulation of multi-scale188

structures using a local numerical solver. At the same time, we obtain the hybrid189

outputs due to the existence of local anomalies.190

3. In the final, if the receiver is positioned outside the localized box, we calculate and191

save the Green’s Functions using a global solver in a global reference model Mg0192

from the remote receiver side. After that, we can get the residual hybrid wave-193

form by the convolution between hybrid outputs and Green’s Functions.194

One of the targets of our study is to determine how the error of hybrid inputs is prop-195

agated from the global simulation to the hybrid simulations. To help analyze the error196

propagation in detail, we need a hybrid method that does not generate any error (ex-197

cept for rounding error) during the hybrid simulation when the global and local struc-198

ture and mesh are the same. The following subsection briefly elaborates on the two slightly199

different direct discrete differentiation methods.200
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2.4 Hybrid methods201

In the 2D/3D heterogeneous background models, Bielak et al. (2003) and Yoshimura202

et al. (2003) directly operate on the discrete wave equation using an auxiliary variable203

(scattered wavefield) and obtain hybrid inputs in the temporally implicit finite element204

method framework. Masson et al. (2014) utilize this method of calculating the hybrid205

inputs and propose a more compact numerical hybrid method in a temporally explicit206

SEM framework using a window function. Hereafter, we refer to this method as the ”YM”207

hybrid method. The conceptual illustration of the local target model Ml1 associated with208

the YM method is displayed in Figure 1b. The explicit mathematic expression of the hy-209

brid inputs Fl can be derived as:210

Fl = W · F−W · (K ·U) +K · (W ·U)

=
∑
e

(
We · Fe −We · (Ke ·Ue) +Ke · (We ·Ue)

)
, (5)

where
∑
e

denotes the assembly of all the elemental with nonzero hybrid inputs using the211

SEM, Ue, Ke, U, and K are the elemental and assembled potential/displacement vec-212

tors and stiffness matrices, respectively, and We and W are the elemental and assem-213

bled diagonal matrix that acts as the discrete window function used to choose the GLL214

points for the hybrid simulation. In this study, we propose a modified YM (MYM) hy-215

brid method in Figure 1c by using a different window function. The new window func-216

tion is defined and plotted in the Supplementary file. Please consult the Supplementary217

file for a detailed benchmark comparison between the YM and MYM hybrid methods.218

2.5 Error propagation and control219

Based on the proposed MYM hybrid method, we further investigate how the er-220

ror is propagated from the global simulation to the hybrid simulation, under the frame-221

work of the 2D acoustic wave equation. The full regeneration of the hybrid wavefield de-222

picted in Figure 2abd and the hybrid waveforms presented in Figure 3a show that the223

MYM hybrid method does not introduce any error except for the rounding error dur-224

ing the imposing of hybrid inputs when the local and global mesh and structures are the225

same. However, when the local and global structures are the same and their mesh is dif-226

ferent, the hybrid inputs obtained by the MYM hybrid method will carry inevitable er-227

rors, leading to the regeneration with errors of the hybrid wavefield and waveform, as228

shown in Figure 2ce and Figure 3b. The only difference between these two cases is the229

usage of the different GLL points from the different hybrid elements of the same local230

model to calculate the hybrid inputs with the spatial Lagrange wavefield interpolation.231

To analyze and determine ways to reduce this error, we first evaluate the analyt-232

ical precision of Lagrange wavefield interpolation of different global mesh. We aim to de-233

termine why and how the inaccurate Lagrange wavefield interpolation affects the pre-234

cision of the hybrid inputs. The error analysis in Figure 4 shows that the Lagrange wave-235

field interpolation upsampling wavefields from coarse spectral elements to fine spectral236

elements is not appropriately accurate, thereby introducing errors into the hybrid inputs237
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(the potential or displacement calculated by Lagrange interpolation) and thus leading238

to inaccurate hybrid waveform in the hybrid simulation. In Figure 4, the reverse solid239

black triangles represent the values of the cos(πx) function at the GLL points in the ref-240

erence element [−1, 1]. The red points represent the output points between [−1, 1] by241

the spatial Lagrange interpolation of the solid black triangles. The residual error enlarged242

by a factor of times between the interpolated values in red points and the accurate cos(πx)243

values in black circles is shown as blue points. Figure 4a illustrates that the relative in-244

terpolation error with a traditional SEM with NGLL = 5 in each element could be as245

large as 3.89%, e.g., when calculating the waveform of a given receiver in an element, or246

calculating the hybrid inputs of all the local GLL points during the global simulation.247

The relative interpolation error is calculated by the ratio between the L1 norm of the248

residual waveform (difference between the interpolated and accurate cos(x) function) and249

the L1 norm of the accurate cos(x) function.250

Figures 4b and 4c illustrate the two proposed methods for decreasing the Lagrange251

interpolation error using more spectral elements (e.g., two elements per minimum wave-252

length, G = 9 with NGLL = 5 in Figure 4b) or a high-order spectral element to per-253

form the global simulation and Lagrange interpolation (e.g., G = 8 with NGLL = 8 in254

Figure 4c). The corresponding relative errors are 0.62% and 0.18%, respectively, which255

are acceptable and much smaller than the traditional case shown in Figure 4a (G = 5256

with NGLL = 5). For the second method, to offer more references, we also find that in-257

terpolated errors by Lagrange interpolation with NGLL = 5, 6, 7, 8, 9, and 10 in one258

element per minimum wavelength are approximately 3.89%, 3.92%, 0.17%, 0.18%, 0.0049%,259

and 0.0052%, respectively. Although the interpolated accuracy of an even order (say N260

= 4) is almost the same as that of an odd order (say N = 5), the relative error of the261

simulated hybrid waveform is larger because fewer numerical integration GLL points are262

used to compute the mass and stiffness matrices.263

In the supplementary file, we adopt a series of hybrid simulations to quantify how264

the error propagates from the global simulation to the hybrid simulation and how the265

error can be controlled in the proposed two ways, under the framework of 2D acoustic266

hybrid simulation. However, in global seismology, increasing the polynomial degree sig-267

nificantly extremely reduces the available time step for numerical simulations, due to the268

thickness of the Earth’s Crust generally being much smaller than the minimum wave-269

length. Note that the available time step is inversely proportional to the square of the270

spectral element polynomial order (Lyu et al., 2020). Thus the first method by increas-271

ing the number of elements will be more suitable in the global simulation for calculat-272

ing the hybrid inputs. In the future, when we can easily conduct very high-frequency (≈ 1 Hz)273

global and hybrid numerical simulations of the Earth models, increasing the polynomial274

degree within the elements will also be a very efficient method.275
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3 Numerical experiments276

To numerically validate the proposed MYM hybrid method and apply the proposed277

way to control the error of hybrid simulation, we conduct a series of 2D and 3D hybrid278

numerical simulations with the PREM (Dziewonski & Anderson, 1981) as the background279

model.280

3.1 2D hybrid simulations in the PREM model281

First, we validate the method’s applicability in a 2D Earth model under two sce-282

narios: one with the source outside and the receiver inside the box (referred to as SORI),283

and the other with both the source and receiver located outside the box (referred to as284

SORO). Then, we assess the different accuracies of hybrid simulations using various max-285

imum frequency sources, while with invariable settings of the global and local model and286

mesh.287

In this 2D case, we select part of PREM as our global and local reference models.288

The global mesh is different from the local mesh in the local domain. The global and lo-289

cal simulation involves a free surface, and 10 elements are used for the absorbing bound-290

ary condition near the left, right, and bottom boundaries, as illustrated in Figure 5. To291

verify the proposed algorithm, we construct a localized Gaussian anomaly below the sur-292

face, as detailed in Figure 5c. As in simulating a real application scenario, a constant293

stable Courant number 0.5 is used both in all the global and local simulations. The time294

step of all the following global simulations of each Ricker wavelet with different frequency295

bands is the same 0.081 s, and the time step of all the local simulations is 0.047 s be-296

cause the mesh of the local model is denser than the global one. So the waveform dif-297

ference due to the different time steps of the global and local time steps will be the same298

for all sets of global and local simulations with different minimum periods. The global299

mesh is designed based on a minimum period of 6 seconds (NGLL=6, points per wave-300

length G=6). The ocean part of the PREM model (Dziewonski & Anderson, 1981) is re-301

placed with the crust below.302

Figure 6 presents the global and hybrid wavefields at around 1100 seconds. Even303

though the mesh is designed with a parameter of G = 6 for the S wave, some spatial304

dispersion error is noticeable after the surface wave in Figure 6a. Notably, in Figure 6b,305

scattered waves are seen extending beyond the boundary, primarily due to inaccuracies306

in the hybrid inputs for the S wave with a similar wavelength to the element, as indi-307

cated by the black arrows. Apart from the previously marked scattered waves on both308

sides in Figure 6c, there is a noticeable outgoing phase at the bottom due to a local Gaus-309

sian anomaly, marked by the black arrow. These scattered waves are employed for cal-310

culating the waveforms at receivers outside the boundary through convolution (Adourian311

et al., 2022). To perform the hybrid simulation accurately for the S-wave phases, we need312

to increase the number of elements in the global model, as proposed in the above sec-313

tion, to provide more accurate hybrid inputs. Thus, the number of elements required for314
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a global simulation in the box tomography would exceed the number utilized in a stan-315

dard numerical simulation.316

Figures 7 and 8 are the waveforms and associated errors of the receivers inside and317

outside the local model in various frequency bands under the background PREM. From318

the bottom to the upper, the minimum periods of the ricker wavelet are from 6 s to 11.6319

s. For the PREM model, we first conduct a spatial global mesh for calculating the min-320

imum period of about 6 seconds. Once the model’s mesh is fixed, as we gradually increase321

the minimum period of the simulation, it becomes evident that errors decrease. The hy-322

brid waveforms in Figure 8 are computed by adding the waveform obtained from the global323

reference model to the scattered waveform. The scattered waveform of the receiver out-324

side the local domain is obtained by the convolution between the scattered hybrid out-325

puts forces and Green’s Functions of the GLL points, which are shown in red in Figure 8abc.326

For details on the convolution calculation of the hybrid waveform resulting from the lo-327

cal anomaly between a remote source and a remote receiver, please refer to Adourian et328

al. (2022). This example demonstrates the significant importance of increasing the num-329

ber of elements in global simulations for practical 2D applications of hybrid simulations.330

In the SORI case, the error is decreased from about 10% to 1.5% for the x component.331

In the SORO case, the error is decreased from about 3.25% to 0.5% for the x compo-332

nent. Hybrid waveforms with around 1.5% accuracy can be obtained with the hybrid in-333

puts from the global simulation in the program SPECMAT (Spectral Element Method334

in Matlab, used in Lyu et al. (2022)) by increasing the number of spectral elements re-335

quired for standard numerical simulation by about 1.5 times (from 6 s to about 9 s), as336

shown in Figures 7 and 8. Note that the remaining errors, such as the Ux error below337

1.5% in SORI, should be explainable by the different temporal dispersion errors of global338

and local simulations because the spatial-dispersion error and temporal-dispersion er-339

ror are independent of each other (Lyu, Capdeville, Lu, & Zhao, 2021). It demonstrates340

the significant importance of increasing the number of elements in global simulations un-341

der the framework of hybrid simulation in box tomography, both for receivers located342

inside and outside the box.343

3.2 3D hybrid simulations in the PREM model344

In this section, we further validate the way of controlling the error of hybrid sim-345

ulation in the PREM model with 3D hybrid simulation under the SORI case. We use346

different local and global mesh configurations, following the same procedure as in the347

above subsection.348

The program SPECFEM3D GLOBE is used to calculate hybrid inputs within the349

PREM Earth model, with the ocean part replaced by the upper crust. Note that the global350

mesh in SPECFEM3D GLOBE is unstructured, unlike the local mesh within the con-351

fined domain. So spatial interpolation is required to calculate the hybrid inputs for hy-352

brid simulation. A remote source is located at (40◦, 0◦, 6271km), 100 km below the Earth’s353

surface, defined by latitude, longitude, and the Cartesian height coordinate. Inside the354
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local domain, we place a single receiver on the Earth’s surface. A filtered Heaviside wavelet355

source with four cutoff corner periods is used. Each global and hybrid simulation pair356

uses a different source but retains the global and local mesh configurations. Specifically,357

the first cutoff corner period ranges from 27, 30 to 48 s, while the other three remain fixed358

at 53, 250, and 400 s.359

In the hybrid simulations, we consider a free surface, and four elements are used360

to apply absorbing boundary conditions near the five boundaries: left, right, front, back,361

and bottom, as illustrated in Figure 9a. To validate our proposed way of controlling the362

error propagation from the 3D global numerical simulation to the hybrid numerical sim-363

ulation, we use a consistent global time step of 0.1425 s for all global simulations and364

a local time step of 0.2 s for all hybrid simulations. Similar to the 2D case, this ensures365

that the temporal dispersion error differences between the global and corresponding hy-366

brid simulations pair are consistent. The global mesh is designed based on the number367

of spectral elements along one side of a chunk in the cubed sphere (NEX XI=160), which368

is accurate to the shortest period of roughly 27 seconds. The hybrid GLL points displayed369

in black in Figure 9a, are used to impose the hybrid inputs, which are obtained by the370

program SPECFEM3D GLOBE from the teleseismic event. Figure 9bcd displays the hy-371

brid wavefields corresponding to arrival times of P, S, and Surface wave phases respec-372

tively. Figure 10 illustrates the waveforms of three components and associated errors of373

the receivers inside the local model in various frequency bands in the PREM model. From374

the bottom to the upper, the first cutoff corner periods of the Heaviside wavelet are from375

27, 30 to 48 s. The error decreases from about 5% to 1.5%. Hybrid waveforms with around376

1.5% accuracy can be obtained with hybrid inputs obtained from the global simulation377

in the program SPECFEM3D GLOBE by increasing the number of spectral elements378

required for standard numerical simulation by 1.5 times (from 27 s to about 40 s). The379

remaining ≈ 1.5% of the SORI waveforms can be explained by the different temporal380

dispersion errors in global and local simulations. It demonstrates the significant impor-381

tance of increasing the number of elements in global simulations in the program SPECFEM3D GLOBE382

for practical 3D applications of hybrid simulations during box tomography.383

4 Discussion384

4.1 Credibility of Box Tomography385

Box Tomography is specifically designed to enhance the resolution of targeted lo-386

calized domains that exhibit richer or better data illustration compared to those used387

in global waveform tomography. Additionally, Global waveform tomography is obtained388

by the global minima of the misfit between the synthetics and real data. However, Box389

Tomography focuses on the minima solely within the localized box domain. The medium390

outside the box is the 3D reference model from global waveform tomography (e.g. GLAD M25,391

SEMUCB WM1), they are not ideally spherically symmetric (with the ellipticity, topog-392

raphy, and ocean mass load). The 3-D reference models are generated using band-limited393

real waveform data at approximately 20 seconds. The globally distributed small-scale394
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structures have been proven to contribute effectively to smooth anisotropic structures395

(Capdeville & Métivier, 2018). Ensuring the credibility of box tomography requires align-396

ment between the structures defining the boundaries of the box and those of the global397

3D tomography. Multi-scale structures, such as the subducting slabs, have been effec-398

tively replaced by smooth structures, maintaining consistency between the global model399

and the box boundaries. In addressing the solid-fluid coupling at the ocean-continent400

boundary, core-mantle boundary, and inner-core boundary, incorporating identical solid401

and fluid structures at the box’s boundary same as the global model is an important step402

to be solved under the framework of box tomography.403

4.2 Error propagation and control404

Through the proposed MYM hybrid method and the error analysis of the hybrid405

simulations, we can now answer all the questions raised in the Introduction section. When406

the local and global models have the same structures and meshes, we can obtain the same407

hybrid waveform in the hybrid simulation as the global simulation. However, when the408

mesh is different between the local and global models, even for the same structures, the409

hybrid inputs that are calculated and saved in the global simulation still have errors. The410

source of this error originates from the inaccurate spatial Lagrange interpolation of the411

potentials of the GLL points. The obtained hybrid inputs with error, as the equivalent412

sources, are imposed into the hybrid simulation of the multi-scale structures, leading to413

hybrid waveforms with error. To reduce the error of the hybrid inputs and then perform414

the hybrid simulation as accurately as possible with a completely flexible spatial mesh415

in the local multi-scale structures, we suggest two methods: i) increase the number of416

elements with traditional NGLL = 5 in the global simulation, and ii) increase the poly-417

nomial degree of the global mesh. However, for the second method, there are limitations418

in the case of global seismology because considering very thin crust results in extremely419

small time steps.420

4.3 Computational cost421

For the computational complexity analysis of the hybrid simulation, if the local tar-422

get structures are large-scale, the computational complexity of our proposed hybrid sim-423

ulation is proportional to λ4
min (minimum wavelength), including three spatial dimen-424

sions and one temporal dimension. In this kind of hybrid simulation with the same lo-425

cal mesh as that in the global simulation, only the displacements and internal forces of426

the GLL points exactly on the hybrid interface are needed. Thus, this is memory-saving427

and suitable for 3D hybrid simulation owing to the 2D distribution of the related hybrid428

inputs.429

If the local target structures are small-scale, which is much smaller than λmin, for430

instance, being one-tenth the size of the background large-scale structures. A lower-degree431

SEM (such as N = 1 or 2) can be used to precisely describe the model, ensure the ac-432

curacy of the simulation, and simultaneously reduce the computational complexity. Ow-433
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ing to the locally limited domain, we can limit the costly simulation to a small region,434

avoiding computation over the entire space. To save the corresponding memory storage435

of the hybrid inputs in the first global simulation, the hybrid inputs of all the GLL points436

in the hybrid elements are required. The memory of the hybrid inputs is acceptable if437

a lower-degree SEM (such as N = 2) is used because it will be proportional to N3 for438

the 3D hybrid simulations.439

4.4 Temporal compression440

In this study, we do not discuss the impact of time-domain compression storage of441

numerical hybrid inputs on the hybrid simulations. In an ideal scenario, the time step442

employed in the local simulation remains entirely independent of the global time step.443

Within the local simulation, hybrid inputs undergo interpolation or recovery to align with444

a locally optimal time step for a specific target structure. However, note that when deal-445

ing with high upsampling ratios, the conventional spline interpolation method (Monteiller446

et al., 2020), as demonstrated by Zhang and Yao (2017), faces limitations. To address447

this challenge, Shen et al. (2022) introduced Fourier interpolation into the framework448

of hybrid simulation within the time domain, incorporating tapering operations at the449

end of each time series. Their work exhibits promising results in terms of achieving com-450

pressed ratios. Based on previous research (Adourian et al., 2022), we can achieve com-451

pression storage at twice the Nyquist sampling rate using B-spline interpolation. Then,452

during hybrid numerical simulations, we can resample the compressed hybrid inputs ac-453

cording to the distribution of the local meshing. Existing hybrid numerical simulations454

have shown that this compression storage and recovery almost do not introduce addi-455

tional errors to hybrid inputs, leading to very accurate hybrid waveforms (Adourian et456

al., 2022). Furthermore, the time compression algorithm can be naturally combined with457

the way of reducing the spatial-dispersion error by increasing the number of elements458

or polynomial degrees in the global simulation during the proposed hybrid numerical sim-459

ulation method.460

4.5 Absorbing condition461

Regarding local models containing anomalies, we need to implement the absorb-462

ing boundary or layer conditions to absorb the scatter waves going outside. However,463

the development of stable and highly efficient perfectly matched layers (PML, (Xie et464

al., 2014)) with good adaptability for models with complex geometry remains an open465

question. For rectangle PML meshes, as we use in the 2D acoustic cases in the supple-466

mentary file, the PML absorption works very well and is stable. However, for 2D/3D Earth467

models, we use absorption layer boundary conditions (Kosloff & Kosloff, 1986) because468

they are more stable than PML but require more elements for absorption compared to469

PML. To better fit the real data shortly, our solver SPECMAT for hybrid numerical sim-470

ulation needs to implement the same attenuation expression as the program SPECFEM3D GLOBE.471
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4.6 Second-order scattering472

The MYM hybrid method proposed in this study only works on a 1st-order prob-473

lem, not on a 2nd-order problem. Because the outgoing scattered waveform will be ab-474

sorbed by the absorbing layers, and can’t propagate outside of the domain and scatter475

with the outside heterogeneities. However, considering the geometry and material at-476

tenuation of wave propagation, and the relatively long period data used, the amplitude477

of the second-order scattering, compared to the 1st-order scattering, could be safely ne-478

glected. Note that for studies involving extremely high frequencies (e.g., 2Hz), further479

research and discussion are needed on the second-order scattering in hybrid numerical480

simulations, owing to the inaccurate 1D/3D background models. Nevertheless, second-481

order scattering often exhibits a delayed arrival compared to first-order scattering, and482

researchers typically focus on studying first-order scattering.483

4.7 Generality484

It should be noted that this study focuses only on the hybrid simulation and er-485

ror propagation of seismic cases using the SEM. However, the proposed ways of increas-486

ing the number of elements or polynomial degrees, and fixing the global and local meshes487

but changing the minimum period, are universal and can be used to understand the er-488

ror propagation of other numerical methods, such as the finite difference method (Pienkowska489

et al., 2020). The proposed MYM hybrid method and ways of controlling the error of490

hybrid simulations can also be directly used to implement the accurate hybrid simula-491

tion of the visco-elastic wave equation or more widely used to study Maxwell’s equation.492

5 Conclusion493

By analyzing the conventional direct discrete differentiation hybrid method (YM494

method), we propose a slightly modified version (MYM method) by introducing a new495

spatial window function and combining it with the spatial Lagrange wavefield interpo-496

lation, which is well-designed for hybrid simulations in local multi-scale structures. Com-497

pared with the global brute-force calculation, the computational complexity of these meth-498

ods is substantially reduced owing to the large reduction of the computational domain.499

The different simulated results of the proposed hybrid method indicate that the imper-500

fect Lagrange interpolation results in inaccurate hybrid inputs and introduces certain501

but controllable errors propagated in the hybrid simulations. In global seismology, this502

error can be reduced by increasing the number of elements of standard simulation by 1.5503

times, and accurate waveforms for the stations inside and outside the box can be achieved,504

laying an important foundation for box tomography with real data.505

6 Data and Resources506

All data used in this paper came from published sources listed in the references.507

In the Electronic Supplementary Material, we initially enumerate the intricate distinc-508
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tions between the preceding YM and the newly proposed MYM hybrid methods. Sub-509

sequently, we delve into the analysis of relative hybrid waveform errors through a sequence510

of global and hybrid simulations. Finally, to furnish a benchmark for the hybrid numer-511

ical simulation of three-dimensional elastic wave propagation, we present hybrid numer-512

ical simulations featuring both large-scale and small-scale anomalies within a two-dimensional513

homogeneous acoustic background model.514
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Figure 1. Nomenclatures of the global and hybrid simulations. (a) The global reference model

Mg0 contains the external model Me0 and the local reference model Ml0 which are assigned to

the global domain Ωg, external domain Ωe, and local domain Ωl, respectively. The green line

represents the hybrid interface S. (b) The global target model Mg1 contains the same external

model Me0 and the local target model Ml1, which are also assigned to the domains Ωg, Ωe, and

Ωl. The gray Cartesian circle represents the local target multi-scale heterogeneities. (c) The local

target model Ml1 and its hybrid interface S (green line) of the YM hybrid method, as well as

the hybrid inputs, are imposed into the blue layer (hybrid elements for calculating the hybrid

inputs). (d) The local target model Ml1 and its hybrid interface S (green line) of the proposed

MYM hybrid method, as well as the hybrid inputs, are imposed into the red layer (where the

hybrid elements are located). The white layers in (c) and (d) represent the perfectly matched

layer (PML) domains.
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Figure 2. Wavefields of the global and hybrid simulations in the 2D reference homogeneous

model. (a) 2D global homogeneous domain Ω0 and wavefields. One source and five receivers

are represented by the black star and inverse triangles, respectively. The mesh of 160 × 80 ele-

ments is displayed. The wavefields at the 24 tmin, 48 tmin, and 72 tmin time steps are superposed

(tmin = 1/fmax). The green line comprising GLL points is the hybrid interface S of the local

domain, and the blue and red elements are the hybrid elements used to implement the hybrid

simulations in Masson et al. (2014) and this study, respectively. (b, c) 2D local homogeneous hy-

brid pressure (q) wavefields at 48 tmin. (b) Hybrid wavefields calculated using the MYM method

and the mesh of 32 × 16 elements associated with eight GLL points are displayed. (c) Local

wavefields calculated using the MYM method based on spatial Lagrange interpolation and a

different local mesh of 320 × 160 elements associated with three GLL points are displayed. The

associated hybrid inputs are imposed on the green line around the red elements. (d, e) Pressure

Wavefields at 63 tmin in hybrid simulations, (d) using the same local mesh as the global one, (e)

using a different local mesh.
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Figure 3. Waveform comparison between the global and hybrid simulations in the 2D homo-

geneous model. The solid black, the dashed red, and the dashed blue lines represent the global

simulation, hybrid simulation, and their residual waveforms, respectively. (a) MYM method with

the same local mesh as that in the global simulation. (b) MYM method with a different local

mesh from that in the global simulation.
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Figure 4. Error analysis of Lagrange interpolation in the spectral element method (SEM)

framework for different spatial mesh. The reverse solid black triangles are the values of the

cos(πx) function at the GLL points in the reference element [−1, 1]. The red points represent

the output points between [−1, 1] by Lagrange interpolation of the solid black triangles. The

residual error between the red points and the accurate cos(πx) values (in black circles) are shown

as blue points. (a) Only one element with NGLL = 5 in the reference element. (b) Two elements

with NGLL = 5 in the reference element. (c) Only one element with NGLL = 8 in the reference

element.
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(m/s)

↑

Figure 5. Models used in 2D global and hybrid numerical simulations. (a) Global refer-

ence model (P-wave velocity in PREM (Dziewonski & Anderson, 1981)) with the dimensions

(160◦, 2891km + 250km) including the entire Crust, Mantle, and 250km Outer Core below the

CMB and 490 × (44 + 12) structural elements. (b) Local reference model (P-wave velocity in

PREM) with the dimensions (20◦, 1200km) containing the entire Crust and part of the Mantle

and 174 × 55 structural elements. (c) Local target model (P-wave velocity in PREM plus a Gaus-

sian anomaly below the free surface). The size of the Gaussian anomaly is located 20km below

the receiver with -20% Vp, -10% Vs, and -5% ρ reduction. The source and receiver are displayed

in the black star and triangles. We use a remote Ricker wavelet source, with the main frequen-

cies set from f0 = 1/15 to f0 = 1/29 Hz and the largest frequency fmax = 2.5f0. The source

Se is located at (−50◦, 6271 km), 100km below the surface, where the angle is defined with the

z-axis. Two receivers are placed: one Ri inside the box located at (0◦, 6371km), on the surface

and another Re outside the box located at (50◦, 6371 km). All the GLL points used to impose

the hybrid inputs are in black, and the GLL points used to calculate the hybrid outputs for the

receiver outside the box are in red. The black and red GLL points in (a), (b), and (c) are the

same, which are all originally from the local domain. The global mesh is prepared to accurately

simulate a minimum period of 6 seconds.
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Figure 6. The wavefields at approximately 1100 seconds are depicted in (a) the global refer-

ence PREM model, (b) the local reference model, and (c) the local target (Gaussian) model.

–25–



manuscript submitted to Bulletin of the Seismological Society of America

6 7 8 9 10 11 12

Minimum Period (s)

0

1

2

3

4

5

6

7

8

9

10

E
rr

o
r 

(%
)

Ux

Uz

(a)

(b)

(c)

Figure 7. Waveforms and errors of the Receiver inside the local model in various frequency

bands under the 1D PREM (Dziewonski & Anderson, 1981) with 2D numerical simulation: (a, b)

The x and z displacements in solid black are calculated using the global reference PREM model,

while the x and z in dashed red displacements are computed using the local reference PREM

model within the hybrid simulation. The residual waveforms in solid green are magnified by a

factor of 10. (c) The L1 norm of the errors in the x and z components exhibits an inverse rela-

tionship with the minimum periods of the Ricker wavelet used. Note that the global and local

meshes differ from each other, they remain consistent for each minimum period. The global mesh

is designed for a minimum period of 6 seconds, and the local mesh is denser than the global one

for generating small-scale structures.
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Figure 8. Waveforms and errors of the receiver outside the local model in various frequency

bands within a global target model (PREM plus Gaussian anomaly), using 2D numerical sim-

ulation. (a, b) The x and z displacements in solid black are calculated within the global target

model, while the x and z displacements in dashed red are obtained by summing the hybrid wave-

form (via convolution (Adourian et al., 2022)), and global reference waveform. The residual

waveforms in solid green are magnified by a factor of 10. (c) The L1 norm of the errors in the

x and z components exhibits an inverse relationship with the minimum periods of the Ricker

wavelet used. The global and local meshes are the same as Figure 7. The proposed method for

enhancing the accuracy of hybrid simulation also applies to receivers located outside the box.
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Figure 9. Local mesh, hybrid GLL points, and wavefields of Z component that are gen-

erated in 3D hybrid numerical simulations. (a) The local domain covers dimensions of

(30◦, 30◦, 2000km), including the entire crust and part of the mantle. The local simulations

use the structured mesh consisting of 49 × 49 × 20 elements, designed to simulate a minimum pe-

riod of 27 seconds. The receiver is depicted as a green reversed triangle, Ri, at (90◦, 0◦, 6371km),

while the 328125 GLL points used to impose the hybrid inputs are shown in black. Three hybrid

wavefields, corresponding to arrival times of P, S, and Surface wave phases at around 520, 980,

and 1460 seconds, are plotted in (b), (c), and (d), respectively. Four elements are used as the

absorbing layer. The hybrid inputs are calculated by the program SPECFEM3D GLOBE from a

teleseismic event.
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Figure 10. Waveforms and errors of the receiver inside the local model in various frequency

bands under the 1D PREM (Dziewonski & Anderson, 1981) with the 3D hybrid numerical simu-

lations. (a,b,c) The displacements of N, E, and Z components in solid black are calculated using

the global reference PREM model, while the dashed red displacements are computed using the

local reference PREM model during the hybrid simulation. The residual waveforms in solid green

are magnified by a factor of 10. (d) The L1 norm of the errors in the N, E, and Z components

exhibit an inverse relationship with the first cutoff corner period of the Heaviside wavelet used,

from 27, 30, to 48 s. Note that the global and local meshes differ from each other, but they re-

main consistent for each different cutoff corner period, both being designed for a main period of

27 seconds.
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