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ABSTRACT
In this paper, we consider the problem of system identification with output ampli-
tude constraints for the case of a multisine excitation. The main contribution of the
paper is to provide an LMI optimization problem to verify whether the output am-
plitude constraint is satisfied for all systems in an uncertainty region containing the
unknown true system. In addition, input amplitude constraints can also be verified
using the results of this paper.
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1. Introduction

In this paper, we consider system identification with a multisine excitation and we
develop a methodology to verify whether a given multisine excitation respects input
and output amplitude constraints. For this purpose, we make use of an uncertainty
region for the unknown true system.

Besides a model Ĝ of the unknown true system G0, prediction error identification
(Ljung, 1999) allows to derive an uncertainty region D for G0. Different types of
uncertainty regions have been considered in the literature. When the identification is
performed in a full-order model structure, the obtained uncertainty region D is a set of
parametrized transfer functions G(θ) whose parameter vector θ is constrained to lie in
an ellipsoid U in the parameter space (Bombois, Gevers, Scorletti, & Anderson, 2001;
Ljung, 1999). When the model structure is not full-order, the obtained uncertainty
region D is a set of systems G whose frequency response is, at each frequency ω,
constrained to lie in an ellipse U(ω) in the Nyquist plane (Bombois, Gevers, & Scorletti,
2000; Goodwin, Gevers, & Ninness, 1992; Hakvoort & Van den Hof, 1997; Reinelt,
Garulli, & Ljung, 2002).

With respect to the uncertainty regions that are generally considered in robust-
ness analysis (Zhou & Doyle, 1998), the uncertainty regions D delivered by system
identification are rather non-standard. However, in the last twenty years, numerous
robustness analysis tools have been developed for these types of uncertainty regions
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(mainly for the parametric uncertainty region). In (Barenthin, Bombois, Hjalmarsson,
& Scorletti, 2008; Bombois et al., 2000, 2001), we have, e.g., developed an LMI op-
timization procedure to verify whether the worst-case H∞ performance achieved by
a given controller over the plants in D is acceptable. The case of the worst-case H2

performance is treated in (Bombois, Hjalmarsson, & Scorletti, 2010). In (Hjalmarsson,
2009), it is shown that more complex robust perfomance criteria can be addressed at
the cost of a second-order Taylor approximation. Note that many of these robustness
tools have been integrated into optimal experiment design schemes aiming at obtain-
ing optimal models for control (Barenthin et al., 2008; Bombois et al., 2010; Bombois,
Scorletti, Gevers, Van den Hof, & Hildebrand, 2006; Hjalmarsson, 2009).

In relation with these developments around optimal experiment design, robust
output power constraints have also been considered i.e., robustness analysis tools have
been developed to verify whether a given excitation will not lead to an excessive output
power during an identification experiment. Since the output obviously depends on the
unknown true system G0, it is in fact verified whether the output for all systems G ∈ D
has an acceptable power. The case of multisine excitation is treated in (Bombois,
Morelli, Hjalmarsson, Bako, & Colin, 2021), while robust output power constraints
for filtered white noise excitation can be addressed using the tools in (Bombois et al.,
2010).

In many applications though (see, e.g., (Manchester, 2012) for an example), the
constraints are not formulated as constraints on the power of the output signal, but as
constraints on the amplitude of the time-domain sequence of this signal. As mentioned
above, in this paper, we will therefore develop a methodology to handle robust output
amplitude constraints. Since the (robust) output amplitude constraint can easily be
translated into a (robust) output power constraint for filtered white noise excitation,
we will here only consider the case of multisine excitation. Such robust amplitude
constraints could until now only be treated via an approximation of the uncertainty
set D i.e., the output constraint is only verified for a limited number of grid points
in D (see, e.g., (Manchester, 2010)). In this paper, we use the robustness analysis
philosophy to avoid the approximation of the uncertainty region D and we develop
an LMI optimization problem which allows, for a given multisine excitation, to verify
whether the output amplitude constraint is satisfied for the outputs of all systems
G ∈ D. We do that for both types of uncertainty regions D delivered by system
identification. Since amplitude constraints must be respected at each time instant, we
treat, in this LMI formulation, the time similarly as the systems G ∈ D i.e., as an
uncertain variable varying in a set. Using the same philosophy, we also develop an
LMI optimization problem to verify whether an input amplitude constraint is verified
at each time instant.

Notations. Continuous-time signals will be denoted x(t) where t ∈ R is the time
index. The variable s is the Laplace variable while z will denote both the Z-transform
variable and the shift operator. We use j to represent

√
−1. For a complex number a

(i.e., a ∈ C), |a|, ∠a, Re(a), Im(a) will denote, respectively, its modulus, its argument,
its real part and its imaginary part. For a real number a (i.e., a ∈ R), |a| is the abolute
value of a. For a matrix A, AT (resp. A∗) is its transpose (resp. conjugate transpose).
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With some abuse, we will use 0 both for zero and for zero matrices. The matrix X1 0 0

0
. . . 0

0 0 Xn


will be denoted diag(X1, ..., Xn) if the elements Xi (i = 1, ..., n) are scalar quantities,
while it will be denoted bdiag(X1, ..., Xn) if the elements Xi (i = 1, ..., n) are matrices.
In addition, In represents the identity matrix of dimension n×n and ⊗, the Kronecker
product. The unit ball of dimension n is denoted Bn i.e., Bn = {δ ∈ Rn | δT δ ≤ 1}. For
two matrices ∆ and M =

(
M11 M12

M21 M22

)
with ∆ ∈ Cm×n and M11 ∈ Cn×m, ∆ ⋆ M is

given by ∆⋆M
∆
= M22+M21∆(In −M11∆)−1M12 (the symbol ⋆ stands thus here for

the Redheffer product). Moreover, the relation y = (∆ ⋆ M)u (with vectors y and u)
can always be represented via internal vectors p and q in the following LFT expression:

p = ∆q and

(
q
y

)(
M11 M12

M21 M22

)(
p
u

)
.

2. Problem statement

We consider input-output amplitude constraints for the identification of a discrete-
time model of a stable single-input single-output true system which can be described
by a continuous-time transfer function Gc

0(s) with input u and output y. The discrete-
time data for the identification of the discrete-time model of Gc

0(s) will be gathered
in open loop by sampling the continuous-time input-output signals at a rate Ts (after

the application of an anti-aliasing filter). The obtained discrete-time model Ĝ(z) will
therefore be an estimate of a discrete-time transfer function G0(z) which satisfies
G0(e

jωTs) = Gc
0(jω) for ω ∈ [0, π

Ts
]. We also suppose that we have an uncertainty

region D containing the true discrete-time system G0(z). This uncertainty region will
typically originate from an initial identification experiment.

In order to, e.g., reduce this initial uncertainty, we wish to perform a second
identification experiment using a multisine excitation i.e., the continuous-time true
system Gc

0(s) will be excited by a (continuous-time) multisine excitation signal having
the general expression:

u(t) =

L∑
i=1

(ai,s sin(ωit) + ai,c cos(ωit)) , (1)

where ai,s, ai,c (resp. ωi) (i = 1, ..., L) are user-chosen amplitudes (resp. frequencies).
The fundamental frequency of this multisine will be denoted ω0. Each of the L fre-
quencies ωi (i = 1, ..., L) thus satisfies the following relation:

ωi = αi ω0 (2)

for an integer αi ̸= 0 (i = 1, ..., L). Since the discrete-time data will be gathered with
a sampling rate Ts, we will suppose that ωL < π

Ts
. For the sequel, it is important to
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notice that the multisine (1) can be equivalently written in the following phasor form:

u(t) = Re
(
AT U(t)

)
, (3)

where U(t) and A are complex column vectors of dimension L whose ith entries are
respectively given by Ui(t) = ejωit and Ai = ai,c − j ai,s (i = 1, ..., L). Using the same
phasor notation and the fact that G0(e

jωTs) = Gc
0(jω) for ω ∈ [0, π

Ts
], the (noise-free)

steady-state output of Gc
0(s) under this multisine excitation is given by:

y(t, G0)
∆
= Re

(
AT diag(G0(e

jω1Ts), ...., G0(e
jωLTs)) U(t)

)
. (4)

Even though the frequency response of Gc
0(s) could also have been used in (4), the

discrete-time version G0(z) of Gc
0(s) is used instead since it is this transfer function

which lies in D. Note that both u(t) and y(t, G0) are periodic signals with period
T0 =

2π
ω0
. This will also be the case for the signal y(t, G) obtained by replacing, in (4),

G0(z) by a system G(z) ∈ D. In the sequel, we will denote TP = [0, 2π
ω0
] the time

interval corresponding to a period of these multisines.
In the sequel, we will suppose that we have the following input and output am-

plitude constraints:

−ūmax ≤ u(t) ≤ ūmax ∀t ∈ TP
−ȳmax ≤ y(t, G0) ≤ ȳmax ∀t ∈ TP

(5)

for some given thresholds ūmax > 0 and ȳmax > 0. Note that the output amplitude
constraint here pertains to the noise-free steady-state output1 y(t, G0).

In order to verify (5) before the application of the multisine u(t) to the true
system, we wish to evaluate the following quantities:

uwc = max
t∈TP

|u(t)|, (6)

ywc = max
t∈TP

max
G(z)∈D

|y(t, G)|, (7)

with y(t, G) defined in (4). The amplitude constraints will indeed be respected if
uwc ≤ ūmax and ywc ≤ ūmax (since the unknown transfer function G0(z) lies in D).

In order to be able to evaluate uwc and ywc in a tractable manner, we will intro-
duce the following change of variable:

τ
∆
= ejω0t, (8)

with ω0 the fundamental frequency of u(t). Using (2), we have Ui(t) = ejωit = ταi

1Since ȳmax bounds the noise-free output, if we wish to bound the noisy output of the system, ȳmax must be
chosen considering the (maximal) amplitude of the disturbance acting on the system (that can, e.g., be deter-

mined using an experiment with u(t) = 0). Moreover, to ensure as much as possible that the output constraint

is also satisfied during transient, the excitation signal (1) can be slowly ramped up (e.g., by multiplying (1) by
a function γ(t) which slowly grows from zero to one).
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(i = 1, ..., L). Consequently, introducing Ũ(τ) = (τα1 , τα2 , ..., ταL)T , (6) and (7) can
be equivalently rewritten as:

uwc = max
τ∈T

|Re(xu(τ))| with xu(τ) = AT Ũ(τ) (9)

ywc = max
τ∈T

max
G∈D

∣∣∣Re
(
ATdiag(G(ejω1Ts), ...., G(ejωLTs))Ũ(τ)

)∣∣∣ (10)

with

T = {τ ∈ C | τ∗τ = 1}. (11)

Observe that, in the same way as G is an uncertain system lying in D, the variable τ
can also be seen as an uncertain variable which lies in the set T .

3. Uncertainty region D

As indicated in the previous section, we suppose that an initial identification experi-
ment has led to an initial uncertainty region D for the unknown true system G0(z).
The uncertainty regions delivered by prediction error identification are generally de-
termined by bounding the so-called variance and bias errors. The variance error is due
to the unavoidable presence of measurement and process noise and the bias error is
present in the case where the chosen model structure is not rich enough to describe
the true system (Ljung, 1999).

Let us first consider the case where the only source of uncertainty is the noise:
we therefore suppose that the true transfer function G0(z) can be parametrized
by an unknown parameter vector θ0 ∈ Rk in a given model structure G(z, θ) i.e.,
G0(z) = G(z, θ0). In this case, prediction error identification allows to determine an

estimate θ̂ of θ0 as well as an ellipsoid centered in θ̂ that contains the unknown θ0
at any user-chosen probability level (Ljung, 1999). Let us, e.g., denote this ellipsoid

U = {θ ∈ Rk | (θ − θ̂)TP−1(θ − θ̂) ≤ 1} for some matrix P > 0. Since robust analysis
is generally formulated for uncertain parameters lying in a ball centered at zero, we
observe that U can also be rewritten as U = {θ ∈ Rk | θ = θ̂ + V δ, δ ∈ Bk} with
P = V V T and δ ∈ Rk an uncertain vector constrained to lie in the ball Bk (see the no-
tations at the end of Section 1). Knowing that the model structures used in prediction
error identification are generally rational in θ i.e., G(z, θ) = (ZN (z)θ)/(1 + ZD(z)θ)
with ZN (z) and ZD(z) row vectors containing only zeros and delays (Bombois et al.,
2001, 2021), the parametric uncertainty region Dpar for G0(z) has then the following
form:

Dpar = {G(z, θ) =
ZN (z)θ

1 + ZD(z)θ
| θ = θ̂ + V δ, δ ∈ Bk}. (12)

The uncertainty region Dpar in (12) thus contains transfer functions G̃(z, δ)
∆
= G(z, θ̂+

V δ) with δ ∈ Bk.
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As mentioned above, in order to derive (12), prediction error identification has
to be performed in a full-order model structure. Even though efficient techniques
exist to determine such a full-order model structure (see (Ljung, 1999, Chapter 10)),

uncertainty regions can also be built in the case where the (stable) model Ĝ(z) of G0(z)
is identified in a model structure whose order is too low to describe G0(z) (Bombois et
al., 2000; Goodwin et al., 1992; Hakvoort & Van den Hof, 1997; Reinelt et al., 2002).
Using these methods, given a user-chosen probability level, it can be derived that, at
each frequency ω, ∆G(ejωTs) = G0(e

jωTs)− Ĝ(ejωTs) has the following property:(
Re(∆G(ejωTs))
Im(∆G(ejωTs))

)
∈ U(ω),

where U(ω) = {ξ ∈ R2 | ξTP (ω)−1ξ ≤ 1} is an ellipse in the Nyquist plane defined
by a matrix P (ω) > 0 (the ellipses U(ω) are different at each frequency i.e., the
matrices P (ω) are different at each frequency). Observe that U(ω) is also equal to
U(ω) = {ξ ∈ R2 | ξ = V (ω)δ(ω), δ(ω) ∈ B2} with P (ω) = V (ω)V (ω)T and with
δ(ω) ∈ R2 the (normalized) vector describing the uncertainty at frequency ω and
which is constrained to lie in the ball B2. Consequently, the uncertainty region Ddyn

for G0(z) has the following form:

Ddyn = {G(z) | G(z) is stable and G(ejωTs) = Ĝ(ejωTs)+vTP (ω)δ(ω), δ(ω) ∈ B2} (13)

with vTP (ω)
∆
= (1 j)V (ω) (j =

√
−1).

Remark. As shown in (Bombois, Anderson, & Gevers, 2005; Ljung, 1999), modulo a
first-order Taylor approximation, the parametric uncertainty region Dpar (see (12)) can
be projected into a dynamic uncertainty region Ddyn of the form (13). The obtained
uncertainty set Ddyn will therefore also contain systems with higher order than G(z, θ).

Remark. After the initial experiment, it is thus not guaranteed that G0(z) lies
in the uncertainty region delivered by system identification. This indeed only
holds modulo a certain probability level (say 99 %). Consequently, we can only
verify the output amplitude constraint modulo this user-chosen probability level.
Even though this probability level could be seen as a drawback, we in fact deem
it an advantage. Indeed, in the robust control literature, the uncertainty region is
just posed without mentioning how the assumption G0 ∈ D can be verified in practice.

Remark. The fact that the true system G0(z) is a stable transfer function justifies
the restriction to stable systems in the definition (13) of Ddyn. This restriction in
turn ensures that y(t, G) with the expression (4) is indeed the steady-state output
of G under (1). In order to guarantee the same property for Dpar, it is necessary to
verify that all systems G(z, θ) ∈ Dpar are stable (using, e.g., the tools in (Bombois et
al., 2001)). In the sequel, we will assume that this stability condition is indeed verified.

Now that we have defined the uncertainty regions we will consider in this paper,
we can particularize the expression (10) of ywc for Dpar and Ddyn. For the uncertainty
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region Dpar in (12), (10) is equivalent to:

yparwc = max
τ∈T

max
δ∈Bk

∣∣Re
(
xpary (τ, δ)

)∣∣ (14)

xpary (τ, δ) = ATdiag(G̃(ejω1Ts , δ), ...., G̃(ejωLTs , δ)) Ũ(τ) (15)

with G̃(z, δ)
∆
= G(z, θ̂ + V δ). Conversely, for the uncertainty region Ddyn in (13), we

rewrite (10) as

ydynwc = max
τ∈T

max
δ(ωi)∈B2(i=1,...,L)

∣∣∣Re
(
xdyny (τ, δ(ω1), ..., δ(ωL))

)∣∣∣ (16)

xdyny (τ, δ(ω1), ..., δ(ωL)) = ATdiag(G(δ(ω1)), ...., G(δ(ωL)))) Ũ(τ)

with G(δ(ωi))
∆
= Ĝ(ejωiTs) + vTP (ωi)δ(ωi) i = 1, ..., L

(17)

It is important to note that the dependence of xpary (resp. xdyny ) on a system G in
the uncertainty region Dpar (resp. Ddyn) is restricted to the frequency response of this
system at the frequencies ωi (i = 1, ..., L) present in the multisine (1). For Dpar, these
L frequency response values can all be described by one unique uncertain vector δ ∈ Bk
while, for Ddyn, these L frequency response values are described by L (independent)
uncertain vectors δ(ωi) ∈ B2 (i = 1, ..., L).

Let us also note that (16) is equal to (10) for D = Ddyn if, for any G(δ(ωi)) with
δ(ωi) ∈ B2 and i = 1, ..., L, there exists a stable G(z) ∈ Ddyn such that G(ejωiTs) =
G(δ(ωi)) (i = 1, ..., L). If this property does not hold, (16) is an upper bound for (10).

This situation is classical for dynamic uncertainty regions such as Ddyn and ydynwc can
be used to verify the output constraint in (5).

4. LFT representations for xu, x
par
y and xdyn

y

In (9), (14) and (16), we see that the quantities we wish to evaluate have a similar form
i.e., the maximization over uncertain variables of the absolute value of the real part of a

complex scalar quantity x (respectively xu(τ), x
par
y (τ, δ) and xdyny (τ, δ(ω1), ..., δ(ωL))).

These three scalar quantities x are rational in the uncertain variables of which they
are function. This property is crucial to be able to address the maximization problem
in a tractable way i.e., using the tools of robustness analysis.

Since xu(τ), x
par
y (τ, δ) and xdyny (τ, δ(ω1), ..., δ(ωL)) are rational in the uncertain

variables of which they are function, these uncertain variables can be separated from
the other parts in an LFT expression. As shown in Appendix A, we can thus determine
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complex matrices Mu, M
par
y and Mdyn

y such that:

xu(τ) = (τ IαL
) ⋆ Mu

xpary (τ, δ) = (bdiag (τIαL
, IL ⊗ δ)) ⋆ Mpar

y

xdyny (τ, δ(ω1), ..., δ(ωL)) = (bdiag (τIαL
, diag(δ(ω1), ..., δ(ωL)))) ⋆ M

dyn
y

(18)

with αL as in (2) and where ⋆ is defined at the end of Section 1.
We have already mentioned the similarity between the quantities uwc , y

par
wc and

ydynwc that we wish to evaluate. Let us formalize this in the following proposition whose
proof is straightforward.

Proposition 1. Consider (18) and the following worst-case quantity

xwc = max
∆i∈∆i (i=0,...,r)

|Re(x(∆0,∆1, ...,∆r))| (19)

where x(∆0,∆1, ...,∆r) = (bdiag(∆0,∆1, ...,∆r)) ⋆ M with M a known matrix and
∆i (i = 0, ..., r) known uncertainty sets. Then, uwc defined in (9) is a particular case
of (19) with x = xu(τ), M = Mu, r = 0 and ∆0 = {∆0 = τIαL

| τ ∈ T }. The quantity
yparwc in (14) is also a particular case of (19) with x = xpary (τ, δ), M = Mpar

y , r = 1,

∆1 = {∆1 = IL ⊗ δ | δ ∈ Bk} and the same ∆0 as for uwc. Finally, y
dyn
wc in (16) is

also a particular case of (19) with x = xdyny (τ, δ(ω1), ..., δ(ωL)), M = Mdyn
y , r = L,

∆i = {∆i = δ(ωi) | δ(ωi) ∈ B2} (i = 1, ..., L) and the same ∆0 as for uwc and yparwc .

5. Computation of an upper bound for xwc

5.1. Unifying result

Proposition 1 shows that the computation of ywc (see (10)) can be formulated as (19)
for Dpar and Ddyn. Note that this is also the case for many other uncertainty sets
such as the additive or multiplicative uncertainty sets which are classically used in
the robustness analysis literature (Zhou & Doyle, 1998). In this section, we will
present a methodology to evaluate xwc for an arbitrary complex scalar quantity
x(∆0,∆1, ...,∆r) = (bdiag(∆0,∆1, ...,∆r)) ⋆ M (i.e., for an arbitrary matrix M and
for arbitrary uncertainty sets ∆i (i = 0, ..., r)). Consequently, the results of this paper
are not restricted to the the case of the uncertainty sets delivered by prediction error
identification.

As such, the optimization problem in (19) is NP-hard in almost all cases (Zhou
& Doyle, 1998). Robustness analysis however allows to formulate convex (and thus
tractable) optimization problems which yield an upper bound xubwc for xwc. As shown
in the robustness analysis literature, the obtained upper bounds are generally tight
(Zhou & Doyle, 1998).

Let us first introduce the internal vectors p = (pT0 , ..., p
T
r )
T and q =

(qT0 , ..., q
T
r )

T of the LFT x(∆0,∆1, ...,∆r) = (bdiag(∆0,∆1, ...,∆r)) ⋆ M i.e., p =
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bdiag(∆0,∆1, ...,∆r)q (see the end of Section 1). We then have:

pi = ∆i qi (i = 0, ..., r)

qi = Mi

(
p
1

)
(i = 0, ..., r)

x(∆0,∆1, ...,∆r) = Mx

(
p
1

)
, (20)

with M = (MT
0 ,M

T
1 , ...,M

T
r ,M

T
x )

T .
Like in classical robustness anlaysis, we associate with each set ∆i (i = 0, ..., r)

a so-called set of multipliers Πi (i = 0, ..., r). In a nutshell, the set of multipliers
Πi is an explicit and affine parametrization of the quadratic constraints satisfied by
(pTi , q

T
i )

T when pi = ∆iqi with ∆i ∈ ∆i (Goh & Safonov, 1995; Megretski & Rantzer,
1997; Safonov, 1980).

Definition 1. Consider an uncertain variable ∆i constrained to lie in the set ∆i. We
define the set of multipliers Πi as a set of affinely parametrized Hermitian matrices
Πi that all have the following property:(

∆i

I

)∗
Πi

(
∆i

I

)
≥ 0 ∀∆i ∈ ∆i. (21)

In other words, Πi ∈ Πi =⇒ (21).

Using the sets of multipliers Πi (i = 0, ..., r), we can now develop the following
LMI optimization problem whose solution is an upper bound xubwc for xwc.

Proposition 2. Consider a complex scalar quantity x(∆0, ...,∆r) depending as in (20)
on r+ 1 uncertain variables ∆i ∈ ∆i (i = 0, ..., r) and consider the sets of multipliers
Πi (i = 0, ..., r) for each uncertainty set ∆i (i = 0, ..., r) (see Definition 1). Then, an
upper bound xubwc for xwc (see (19)) is the solution γopt of the following LMI optimiza-
tion problem having as decision variables a real scalar γ ≥ 0 and two matrices Π1

i , Π
2
i

within each of the sets of multipliers Πi (i = 0, ..., r):

min γ s.t. (22)

G∗
x

(
−γ 0.5
0.5 0

)
Gx +

r∑
i=0

G∗
i Π1

i Gi ≤ 0 (23)

0 ≤ G∗
x

(
γ 0.5
0.5 0

)
Gx −

r∑
i=0

G∗
i Π2

i Gi (24)

with Gx =
(
ZTxM

T
x

)T
and Gi =

(
ZTi M

T
i

)T
(i = 0, ..., r) (Zx and Zi (i = 0, ..., r) are

selection matrices such that Zx(p
T 1)T = 1 and Zi(p

T 1)T = pi (i = 0, ..., r)).
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Proof. The result follows from the fact that (23) and (24) imply

−γ ≤ Re(x(∆0, ...,∆r)) ≤ γ ∀∆i ∈ ∆i (i = 0, ..., r) (25)

Let us thus prove this result. For this purpose, let us consider one value of ∆ =
bdiag(∆0,∆1, ...,∆r) in the LFT (20) and let us consider the corresponding internal
vectors p = (pT0 , ..., p

T
r )
T and q = (qT0 , ..., q

T
r )

T . Let us then pre- and post-multiply
with (p∗, 1) and (pT , 1)T the LMI constraints (23) and (24). Using (20), this yields

Re(x(∆0, ...,∆r)) +

r∑
i=0

g∗i Π1
i gi ≤ γ (26)

−γ ≤ Re(x(∆0, ...,∆r))−
r∑
i=0

g∗i Π2
i gi (27)

with gi = (pTi , q
T
i )

T (i = 0, ..., r). The above reasoning can be done for any value
of ∆ = bdiag(∆0,∆1, ...,∆r) with ∆i ∈ ∆i (i = 0, ..., r). In other words, for the
multipliers Π1

i , Π
2
i (i = 0, ..., r) found by the optimization problem, (26) and (27) hold

true for all ∆i ∈ ∆i (i = 0, ..., r). Observe also that, because of (20), gi =
(
∆T
i I

)T
qi.

Consequently, due to Definition 1, we have that
∑r

i=0 g
∗
i Π1

i gi in (26) is positive for
all ∆i ∈ ∆i (i = 0, ..., r). Similarly, −

∑r
i=0 g

∗
i Π2

i gi in (27) is negative for all ∆i ∈ ∆i

(i = 0, ..., r). We have thus proven that (23) and (24) imply (25).

It is clear that the more general the parametrization of the sets of multipliers
Πi (i = 0, ..., r), the tighter the upper bound of xwc delivered by the LMI opti-
mization problem (22)-(24) (Goh & Safonov, 1995; Megretski & Rantzer, 1997; Sa-
fonov, 1980). In the next section, we will make use of the fact that, for all the
quantities we wish to evaluate in this paper, the uncertainty set ∆0 is given by
∆0 = {∆0 = τIαL

| τ ∈ T } i.e., a simple uncertainty set based on a scalar un-
certain variable τ ∈ T . The fact that ∆0 has a simple structure allows to use ∆0-
dependent multipliers Πi for all other uncertain variables ∆i ∈ ∆i (i = 1, ..., r).
Even though this will lead to a slightly more complex LMI optimization problem,
the upper bound xubwc for xwc obtained in this way will generally be tighter (see, e.g.,
(Bliman, 2004)). In order to justify this approach, let us consider, for any ∆0 ∈ ∆0,
the quantity xwc(∆0) = max∆i∈∆i (i=1,...,r) |Re(x(∆0,∆1, ...,∆r))| and let us note that
xwc = max∆0∈∆0

xwc(∆0). If we evaluate the upper bound of xwc(∆0) via a multiplier
approach similar to the one in Proposition 2, the multipliers Π1

i and Π2
i (i = 1, ..., r)

can be different for each value of ∆0 and this thus advocates to consider ∆0-dependent
multipliers Πi (i = 1, ..., r) to compute xubwc.

5.2. Improvement based on the simple uncertainty set ∆0 in this paper

Let us thus particularize the LFT (20) to p0 = τIαq0 for some integer α and let
us consider the following factorization of the multipliers Πi (i = 1, ..., r) given in
Definition 1.

Definition 2. Consider the variable τ lying in the set T (see (11)) and the set Πi

of multipliers for the uncertain variable ∆i ∈ ∆i (see Definition 1). The τ -dependent
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factorization corresponding to Πi is defined via a matrix Ψi(τ) rational in τ and a set
Pi of affinely parametrized (τ -independent) Hermitian matrices Pi. These elements
are detemined in such a way that, for each τ ∈ T and for each Pi ∈ Pi, Ψ

∗
i (τ)PiΨi(τ)

are elements of Πi.

Using the matrices Ψi(τ) introduced in Definition 2, the LFT (20) and the quan-
tity Gi defined below (24), we pose:

gΨ,i = Ψi(τ)Gi
(

p
1

)
(i = 1, ..., r). (28)

Since all Ψi(τ) (i = 1, ..., r) are rational in τ , gΨ = (gTΨ,1, ..., g
T
Ψ,r)

T can be expressed
as:

gΨ =

(τIβ) ⋆

(
M11 M12

M21 M22

)
︸ ︷︷ ︸

=M


(

p
1

)
(29)

for some integer β and for some matrixM. For further use, let us introduce the internal
signals pΨ and qΨ of the LFT (29):

pΨ = τIβ qΨ

qΨ = M11 pΨ +M12

(
p
1

)
gΨ,i = M21,i pΨ +M22,i

(
p
1

)
(i = 1, ..., r), (30)

with (M21,i M22,i) = Ri(M21 M22) where Ri is a selection matrix such that
gΨ,i = Ri gΨ (i = 1, ..., r). We have now all the ingredients to obtain an alternative
LMI optimization problem yielding an upper bound for xwc. If the factorization in
Definition 2 is chosen with care (the more general, the better), we can expect that
this upper bound will be tighter than the one given in Proposition 2 since it is derived
with τ -dependent multipliers (Bliman, 2004).

Proposition 3. Consider the framework of Proposition 2 with ∆0 = {∆0 = τIα | τ ∈
T }. Consider also the factorization of the multipliers Πi (i = 1, ..., r) (see Definition 2)
and the notations (28)-(30). Consider finally the set of multiplier Π̃0 corresponding to
∆̃0 = {∆̃0 = τIρ | τ ∈ T } with ρ = α+β (see Definition 1). Then, an upper bound for
xwc is the solution γopt of the following LMI optimization problem having as decision

variables a real scalar γ ≥ 0, two matrices Π̃1
0 and Π̃2

0 in Π̃0 and two matrices P1
i , P2

i
within each set Pi (i = 1, ..., r) (see Definition 2):

min γ s.t. (31)

11



V∗
1

(
−γ 0.5
0.5 0

)
V1 + V∗

2 Π̃
1
0V2 +

r∑
i=1

R∗
i P1

iRi ≤ 0 (32)

0 ≤ V∗
1

(
γ 0.5
0.5 0

)
V1 − V∗

2 Π̃
2
0V2 −

r∑
i=1

R∗
i P2

iRi, (33)

where V1 = (0 Gx), Ri = (M21,i M22,i) and

V2 =

 bdiag(Iβ, Z0)(
M11 M12

0 M0

) 
with Gx and Z0 defined below (24) and with M0 defined in (20).

Proof. The result follows here also from the fact that (32) and (33) imply (25). Let us
thus prove this result. For this purpose, let us consider one value of ∆ = bdiag(∆0 =
τIα,∆1, ...,∆r) in the LFT (20) and let us consider the same τ in the LFT (30). With
the corresponding internal vectors p = (pT0 , ..., p

T
r )
T and q = (qT0 , ..., q

T
r )

T (see (20))
and the corresponding vectors pΨ and qΨ (see (30)), let us pre- and post-multiply
with (p∗ψ, p

∗, 1) and (pTψ , p
T , 1)T the LMI constraints (32) and (33). Using (20), (28)

and (30), this yields

Re(x(τ,∆1, ...,∆n)) + g∗τ Π̃1
0 gτ +

r∑
i=1

g∗i Ψ∗
i (τ)P1

i Ψi(τ) gi ≤ γ (34)

−γ ≤ Re(x(τ,∆1, ...,∆n))− g∗τ Π̃2
0 gτ −

r∑
i=1

g∗i Ψ∗
i (τ)P2

i Ψi(τ) gi (35)

with gτ = (pTψ , p
T
0 , q

T
ψ , q

T
0 )

T and gi = (pTi qTi )
T = Gi(pT 1)T (i = 1, ..., r). The above

reasoning can be done for any value of τ ∈ T and of ∆i ∈ ∆i (i = 1, ..., r). In other
words, for the multipliers Π̃1

0, Π̃
2
0, P1

i and P2
i (i = 1, ..., r) found by the optimization

problem, (34) and (35) hold true for all τ ∈ T and for all ∆i ∈ ∆i (i = 1, ..., r). Observe

also that, because of (20) and (30), gi =
(
∆T
i I

)T
qi and gτ = (τIρ Iρ)

T (qTψ , q
T
0 )

T . Con-

sequently, due to Definitions 1 and 2, we have that g∗τ Π̃
1
0gτ +

∑r
i=1 g

∗
iΨ

∗
i (τ)P1

i Ψi(τ)gi
in (34) is positive for all τ ∈ T and for all ∆i ∈ ∆i (i = 1, ..., r). Similarly,
−g∗τ Π̃

2
0gτ −

∑r
i=1 g

∗
i Ψ∗

i (τ)P2
i Ψi(τ) gi in (35) is negative for all τ ∈ T and for all

∆i ∈ ∆i (i = 1, ..., r). We have thus proven that (32) and (33) imply (25).

6. Upper bounds for uwc, y
par
wc and ydyn

wc

We will now use the results of the previous section to derive tight upper bounds for

uwc, y
par
wc and ydynwc . For this purpose, we however still need to present the sets of

multipliers corresponding to the type of uncertainties encountered in (18). Let us
start with the set of multipliers corresponding to ∆0 = {∆0 = τIα | τ ∈ T } for an

12



arbitrary α (in Proposition 1, α = αL).

Proposition 4. Consider ∆0 = {∆0 = τIα | τ ∈ T } with the set T defined in (11)
and an arbitrary scalar α. Then,(

∆0

I

)∗
Ξα

(
∆0

I

)
≥ 0 ∀∆0 ∈ ∆0 (36)

when Ξα = bdiag(S,−S) with S any Hermitian matrix of dimension α × α. The set
of matrices Ξα having this structure will be denoted Ξα in the sequel.

Proof. For any Ξα = bdiag(S,−S), we have that the quadratic expression in (36) is
equal to (τ∗τ − 1)S and this quantity is indeed positive semi-definite for all τ ∈ T
(since it is in fact identically equal to the zero matrix for all τ ∈ T ).

Let us also present the set of multipliers corresponding to ∆i = {∆i =
Im ⊗ δ | δ ∈ Bn} for arbitrary integers m and n (in Proposition 1, m = L and n = k

for the case of yparwc and m = 1 and n = 2 for the case of ydynwc ). A very general
parametrization of the set of multipliers corresponding to this uncertainty has been
developed in our previous contribution (Barenthin et al., 2008).

Proposition 5 ((Barenthin et al., 2008)). Consider the set Bn = {δ ∈ Rn | δT δ ≤ 1}
and an arbitrary integer m. Then,(

Im ⊗ δ
Im

)T
Σm,n

(
Im ⊗ δ
Im

)
≥ 0 ∀δ ∈ Bn (37)

when Σm,n has the following structure

Σm,n =

 −Q⊗ In + B̃ + j D̃ P̃ T − j Z̃T

P̃ + j Z̃ Q

 (38)

where Q is any positive semi-definite Hermitian matrix of dimension m ×m and B̃,
D̃, P̃ , Z̃ real matrices having the structure given in Appendix B. The set of matrices
Σm,n having the structure (38) will be denoted Σm,n in the sequel.

In order to be able to use Proposition 3 to improve the upper bound for yparwc

and ydynwc , we develop in the next proposition a τ -dependent factorization of the set
of multipliers introduced in Proposition 5. This factorization is more general than the
one given in (Bombois et al., 2010). In this proposition, we will use the following vector
N (τ) = (1, τ, τ2, ..., τ b)T where b is an arbitrary integer and which can be written as
the LFT N (τ) = (τ Ib) ⋆ N̄ with
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 N̄11 N̄12

N̄21 N̄22


︸ ︷︷ ︸

=N̄

=


(

0 0
Ib−1 0

)
(1, 0, ..., 0)T

(0, Ib)
T (1, 0, ..., 0)T

 (39)

Proposition 6. Consider the set of multipliers Σm,n linked to Im⊗δ with δ ∈ Bn (see
Proposition 5). Consider also the variable τ that varies in the set T (see (11)). Using
τ and some user-chosen integer b ≥ 1, define the vector N (τ) = (1, τ, τ2, ..., τ b)T and
the matrix ΨΣm,n

(τ):

ΨΣm,n
(τ) =


N (τ)⊗ Inm 0

0 N (τ)⊗ Im
Inm 0
0 Im

 . (40)

Then, for each τ ∈ T , the τ -dependent matrices Ψ∗
Σm,n

(τ) PΣm,n
ΨΣm,n

(τ) with PΣm,n
∈

PΣm,n
are all elements Σm,n of Σm,n. The set PΣm,n

contains all matrices PΣm,n
having

the following structure:

PΣm,n
=

[−Λ⊗ In 0
0 Λ

]
PT
21

P21 P22

 with Λ =

 Q0 · · · Qb
... 0 0
Q∗
b 0 0



P21 =


(
B̃0, ..., B̃b

)
+
(
0, D̃1, ..., D̃b

)  P̃0

...

P̃b

T

−

 0

Z̃1

Z̃b

T

(
0, Z̃1, ..., Z̃b

)
+
(
P̃0, ..., P̃b

)
0



P22 =

(
jD̃0 −jZ̃T0
jZ̃0 0

)
.

The real matrices B̃i, D̃i, P̃i and Z̃i (i = 0, ..., b) of the parametrization of PΣm,n
can

take any values provided that they have, respectively, the same structure as the real
matrices B̃, D̃, P̃ and Z̃ in (38). Finally, the elements of the matrix Λ are constrained
as follows: Qi ∈ Cm×m (i = 1...b), Q0 = Q∗

0 ∈ Cm×m and there must exist a matrix
Ξbm ∈ Ξbm (see Proposition 4) such that the following LMI is satisfied:

0 ≤ −
(

I 0
N̄m,11 N̄m,12

)∗
Ξbm

(
I 0

N̄m,11 N̄m,12

)
+
(
N̄m,21 N̄m,22

)∗
Λ
(
N̄m,21 N̄m,22

)
(41)
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where N̄m,11 = N̄11⊗ Im, N̄m,12 = N̄12⊗ Im, N̄m,21 = N̄21⊗ Im and N̄m,22 = N̄22⊗ Im
(see (39)).

Proof. See Appendix C.

We have now all the ingredients to derive upper bounds for uwc, y
par
wc and ydynwc

defined, respectively, in (9), (14) and (16). Let us begin with uwc. Using Proposition 1,
it is clear that the upper bound for uwc is the solution γopt of the LMI optimization
problem (22)-(24) with r = 0, Π0 = ΞαL

(see Proposition 4) and with Mx, M0

(see (20)) obtained from the decomposition of Mu. Note that we have here in fact a
stronger result.

Proposition 7. Consider the LMI optimization problem (22)-(24) with r = 0, Π0 =
ΞαL

(see Proposition 4) and with Mx, M0 (see (20)) obtained from the decomposition
of Mu. Then, the solution γopt of (22)-(24) is equal to uwc.

Proof. See Appendix D.

Let us now turn to yparwc and ydynwc . Using Propositions 1, 2 and 3, we have the
following results whose proofs are straightforward:

Proposition 8. Consider the LMI optimization problem (22)-(24) with r = 1,
Π0 = ΞαL

(see Proposition 4), Π1 = ΣL,k (see Proposition 5) and with Mx, M0, M1

(see (20)) obtained from the decomposition of Mpar
y . Then, the solution γopt of (22)-

(24) is an upper bound for yparwc (see (14)). We can also consider the procedure in
Section 5.2 to try to improve this upper bound. Since r = 1 and Π1 = ΣL,k, we
have that Ψ1(τ) = ΨΣL,k

(τ) (see Proposition 6) and thus (29) can be written with
β = bL(k + 1) and with a matrix M that can be derived from the LFT of N (τ)
(see (39)). A (generally tighter) upper bound for yparwc can thus be obtained as the
solution γopt of the LMI optimization problem (31)-(33) with r = 1, Π̃0 = Ξρ (see
Proposition 4), ρ = αL + bL(k + 1) and with P1 = PΣL,k

(see Proposition 6).

Proposition 9. Consider the LMI optimization problem (22)-(24) with r = L, Π0 =
ΞαL

(see Proposition 4), Πi = Σ1,2 for i = 1, ..., L (see Proposition 5) and with Mx,

Mi (i = 0, ..., L) obtained from the decomposition of Mdyn
y . Then, the solution γopt

of (22)-(24) is an upper bound for ydynwc (see (16)). We can also consider the procedure
in Section 5.2 to try to improve this upper bound. Since r = L and Πi = Σ1,2 for
i = 1, ..., L, we have that Ψi(τ) = ΨΣ1,2

(τ) for i = 1, ..., L and thus (29) can be
written with β = 3bL and with a matrix M that can be derived from the LFT of

N (τ) (see (39)). A (generally tighter) upper bound for ydynwc can thus be obtained as
the solution γopt of the LMI optimization problem (31)-(33) with r = L, Π̃0 = Ξρ,
ρ = αL + 3bL and with Pi = PΣ1,2

for i = 1, ..., L.

Remark. The LMI constraint (41) on the parametrization of the elements of PΣL,k

(resp. PΣ1,2
) in Proposition 8 (resp. in Proposition 9) can be easily added as an extra

LMI constraint in the LMI optimization problem (31)-(33).
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Remark. We can verify the tightness of the obtained upper bound yubwc for ywc (i.e.,

either yparwc or ydynwc ) by computing a lower bound ylbwc for ywc using a gridding of the
uncertainty region D (i.e., either Dpar or Ddyn) and a gridding of the interval TP i.e.,
ylbwc = maxt∈TP,grid

maxG(z)∈Dgrid
|y(t, G)| where TP,grid is a discrete set containing a

finite number of the time instants t ∈ TP and where Dgrid is a discrete set which
contains a finite number of the systems lying in D.

Remark. Note also that, as opposed to its upper bound yubwc, the lower bound
ylbwc for ywc is not sufficient to verify the output amplitude constraint in (5). This
constraint can indeed be verified by checking that yubwc ≤ ȳmax since the latter implies
ywc ≤ ȳmax. As opposed to this, ylbwc ≤ ȳmax does not imply ywc ≤ ȳmax since
ylbwc ≤ ywc. The above reasoning of course assumes that G0 ∈ D. In the rare cases
where that will not be the case (the uncertainty region D only contains G0 modulo
a certain probability level), it can then happen that the largest value of |y(t, G0)|
is larger than yubwc. However, in these cases, the upper bound yubwc remains a closer
estimate of the largest value of |y(t, G0)| than ylbwc since yubwc > ylbwc.

Remark. Besides uwc, y
par
wc and ydynwc , the results in Section 5 allows to compute upper

bounds for other quantities. First, as already mentioned, they allow to compute upper
bounds for ywc (see (7)) for other types of uncertainty regions. They also allow to
evaluate an upper bound for the worst case output amplitude at a given time instant t
i.e., ywc(t) = maxG(z)∈D |y(t, G)|. As another example, using a similar procedure as for
the computation of uwc, Proposition 2 also allows to compute the worst case output
amplitude for a given plant Ggiven i.e., ywc(Ggiven) = maxt∈TP

|y(t, Ggiven)|.

7. Numerical illustration

We consider here a second-order true system G0(z) = G(z, θ0) = (θ0,1z
−1 +

θ0,2z
−2)/(1 + θ0,3z

−1 + θ0,4z
−2) with θ0 = (θ0,1, θ0,2, θ0,3, θ0,4)

T = (0.8988, 0.1034,
−0.9723, 0.8385)T . The sampling rate is Ts = 1 s. An initial identification exper-

iment in a full-order model structure has delivered an identified model G(z, θ̂) with

θ̂ = (0.8 0.01 −0.9854 0.8187)T as well as an ellipsoid U = {θ | (θ− θ̂)TP−1(θ− θ̂) ≤ 1}
described by the matrix P−1:

P−1 =


33.1902 19.8594 −49.0182 28.3717
19.8594 33.1902 −98.2813 −49.0182
−49.0182 −98.2813 435.6784 258.1596
28.3717 −49.0182 258.1596 435.6784

 .

These elements define the parametric uncertainty region Dpar in (12) which here con-
tains the true system G0(z) (i.e., θ0 ∈ U). In Figure 1, we represent the magnitude

plot of both G0 and G(z, θ̂).
We consider a multisine excitation u(t) (see (1)) of fundamental frequency

ω0 = 0.1π rad/s (the period T0 is thus 20 s) and containing L = 3 frequencies i.e.,
ω1 = ω0, ω2 = 3ω0 and ω3 = 5ω0. The complex amplitude vector A in the phasor nota-
tion (3) is here chosen as A = (0.2212+0.0688j, −0.0120+0.0662j, 0.4621+0.5075j)T .
This amplitude vector has been determined using the an optimal experiment design
procedure similar to the one in Manchester (2010). Using the LMI procedure of Propo-
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Figure 1.: Magnitude plot of G0(z) (red solid) of G(z, θ̂) (blue dashed) and of Gpar
grid(z)

(black dashdot). The magenta dots indicate |Gdyn
grid(e

jωiTs)| for ωi (i = 1, 2, 3).

Figure 2.: One period of u(t) (blue dashed), of y(t, Ĝ) (red solid) and of y(t, Gpar
grid)

(black dashdot). The dashed magenta lines indicate ± 0.986550.
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sition 7 for this multisine u(t), we obtain uwc = 0.9385 which is consistent with what
can be observed in Figure 2 where the maximal value of |u(t)| is indeed 0.9385.

As shown in Figure 2, when applied to Ĝ(z) = G(z, θ̂), this multisine u(t) yields

a multisine output y(t, Ĝ) with a maximal amplitude of 0.7425. The maximal am-
plitude of y(t, G0) is equal to 0.9070. Let us now consider the worst-case amplitude
yparwc in Dpar (see (14)). This quantity will be larger than 0.9070 since G0 ∈ Dpar. If
we use the LMI optimization problem (22)-(24) (see Proposition 8), we obtain the

following upper bound for yparwc : y
par,ub
wc = 1. If we use the LMI optimization prob-

lem (31)-(33) with the τ -dependent multiplier for b = 1 (see Proposition 8), we obtain

ypar,ubwc = 0.986550. Let us analyze the tightness of these upper bounds. For this pur-
pose, we observe (see Figure 2) that the output y(t, Gpar

grid) corresponding to a system

Gpar
grid(z) ∈ Dpar has a maximal amplitude equal to 0.986535 i.e., ypar,lbwc = 0.986535.

The conservatism linked to the LMI procedure (22)-(24) is thus in this example less
than 1.4 % (which is small) and the one linked to the LMI procedure (31)-(33) with
b = 1 is less than 0.001 % (which is negligible). This shows the efficiency of the
proposed procedure to evaluate the worst case amplitude of the output over the sys-
tems in Dpar. It is to be noted that the system Gpar

grid(z) has been determined by a

smart gridding procedure called Bayesian optimization (Gardner, Kusner, Xu, Wein-
berger, & Cunningham, 2014). This system is described by Gpar

grid(z) = G(z, θgrid)

with θgrid = (1.007, 0.072, −0.9152, 0.7842)T ∈ U . See Figure 1 for the magnitude
plot of Gpar

grid(z). It is important to note that this smart gridding procedure is not a
valid alternative for the approach developed in this paper. The main reason for that
is that it only delivers a lower bound for yparwc while an upper bound is necessary to
verify the output amplitude constraint in (5) (see the third remark at the end of Sec-
tion 6). Another reason is that this smart gridding procedure is twenty times more
time consuming than the LMI optimization problem (22)-(24) and two times more
time consuming than the LMI optimization problem (31)-(33).

Let us now consider ydynwc when Ddyn is the dynamic uncertainty region (13) ob-
tained by projecting Dpar into the Nyquist plane (see the first remark in Section 3).
Since this Ddyn will not only contain systems of the second order, but also systems

of higher order, we therefore expect that ydynwc > yparwc . If we use the LMI optimiza-
tion problem (22)-(24) (see Proposition 9), we obtain the following upper bound for

ydynwc : ydyn,ubwc = 1.1388. If we use the LMI optimization problem (31)-(33) with the

τ -dependent multiplier for b = 1 (see Proposition 9), we obtain ypar,ubwc = 1.1065.
Let us analyze the tightness of these upper bounds. For this purpose, we have deter-

mined, using Bayesian optimization, three points Gdyn
grid(e

jωiTs) (i = 1, 2, 3) such that

(Re(Gdyn
grid(e

jωiTs), Im(Gdyn
grid(e

jωiTs))T ∈ U(ωi) (i = 1, 2, 3) where U(ωi) is the ellipse

U(ω) defining Ddyn for the frequency ωi in the multisine (i = 1, 2, 3). For these points,

we determine, via (4), the multisine y(t, Gdyn
grid) which has a maximal amplitude of

1.106342 i.e., ydyn,lbwc = 1.106342. The conservatism linked to the LMI procedure (22)-
(24) is thus in this example less than 2.9 % (which is small) and the one linked to
the LMI procedure (31)-(33) with b = 1 is less than 0.017 % (which is negligible).
This shows the efficiency of the proposed procedure to evaluate the worst case am-
plitude of the output over the systems in Ddyn. For the sake of completion, let us

mention that Gdyn
grid(e

jω1Ts) = 1.4279− 0.2057j, Gdyn
grid(e

jω2Ts) = 1.1002− 4.76999j and

Gdyn
grid(e

jω3Ts) = −1.009 − 0.4841j (see Figure 1). Note also that, since the worst-case
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amplitude of y(t, Gdyn
grid) is larger than yparwc , there is thus no second-order system G(z, θ)

with θ ∈ U that has such a frequency response at ωi (i = 1, 2, 3).
We have repeated the above procedure for a number of other complex amplitude

vectors A and the observed conservatism for yparwc and ydynwc (using Proposition 2 or
Proposition 3) is always small or negligible.

8. Conclusions

We have developed a methodology inspired by robustness analysis to verify robust
amplitude constraints. The developed framework considers the case where the iden-
tification is performed in open loop and when the considered true system has one
input and one output. In future work, we will extend the framework to closed-loop
identification and to multivariable systems.
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Appendix A. Matrices Mu, M
par
y and Mdyn

y

Let us first note that the complex vector Ũ(τ) can expressed as the following LFT in
τIαL

:

Ũ(τ) = (τIαL
) ⋆

(
M11,U M12,U
M21,U 0

)
(A1)

with M12,U = (1, 0, ...., 0)T , M21,U a matrix whose entries are equal to zero except
the entries (i, αi) for i = 1, ..., L which are equal to one, and with M11,U a matrix of
dimension αL × αL given by

M11,U =

(
0 0

IαL−1
0

)
.

Consequently, we obtain the following LFT for xu(τ)

xu(τ) = AT Ũ(τ) = (τIαL
) ⋆

 M11,U M12,U

ATM21,U 0


︸ ︷︷ ︸

=Mu

,

from which the matrix Mu in (18) can be determined. Let us now turn to the LFT
representation of xpary (τ, δ). Let us first note that, for an arbitrary frequency ω, the
frequency response G(ejωTs , θ) of an arbitrary plant in Dpar (see (12)) can be written
as the following LFT in θ:

G(ejωTs , θ) = (θ) ⋆

(
−ZD(e

jωTs) 1

ZN (e
jωTs) 0

)
.
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Applying the linear change of variable θ = θ̂+V δ, we obtain the LFT of G̃(ejωTs , δ) =

G(ejωTs , θ̂ + V δ):

G̃(ejωTs , δ) = (δ) ⋆

(
M11,par(ω) M12,par(ω)
M21,par(ω) M22,par(ω)

)
,

with M11,par(ω) = −σ(ejωTs)ZD(e
jωTs)V , M12,par(ω) = σ(ejωTs), M22,par(ω) =

ζ(ejωTs)σ(ejωTs), M21,par(ω) = (ZN (e
jωTs) − ζ(ejωTs)σ(ejωTs)ZD(e

jωTs))V , and with

σ(ejωTs) = (1+ZD(e
jωTs)θ̂)−1 and ζ(ejωTs) = ZN (e

jωTs)θ̂. Considering the above LFT
for each frequency ωi (i = 1, ..., L) present in the multisine (1), we see that the matrix
diag(G̃(ejω1Ts , δ), ...., G̃(ejωLTs , δ)) in the expression (15) for xpary (τ, δ) is equal to:

(IL ⊗ δ) ⋆

 M̄11,par M̄12,par

M̄21,par M̄22,par

 ,

with M̄mn,par = bdiag(Mmn,par(ω1), ...,Mmn,par(ωL)) (m = 1, 2, n = 1, 2).

Using this expression and the LFT (A1) for Ũ(τ), xpary (τ, δ) (see (15)) is then
given by the LFT in (18) with

Mpar
y =


M11,U 0 M12,U

M̄12,parM21,U M̄11,par 0

AT M̄22,parM21,U AT M̄21,par 0

 .

Let us now turn to the LFT representation of

xdyny (τ, δ(ω1), ..., δ(ωL)). Let us first note that, for an arbitrary frequency ω,
the frequency response G(ejωTs) of an arbitrary plant in Ddyn (see (13)) can be
written as the following LFT in δ(ω):

G(ejωTs) = (δ(ω)) ⋆

 0 1

vTP (ω) Ĝ(ejωTs)

 . (A2)

Considering the above LFT for each frequency ωi (i = 1, ..., L) present in the multi-
sine (1), we see that the matrix diag(G(δ(ω1)), ...., G(δ(ωL)))) in the expression (17)

for xdyny (τ, δ(ω1), ..., δ(ωL)) is equal to:

(diag(δ(ω1), ..., δ(ωL))) ⋆

 0 IL

M̄21,dyn M̄22,dyn

 ,

with M̄21,dyn = bdiag(vTP (ω1), ..., v
T
P (ωL)) and M̄22,dyn =

diag(Ĝ(ejω1Ts), ..., Ĝ(ejωLTs)). Using this expression and the LFT (A1) for Ũ(τ),
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xdyny (τ, δ(ω1), ..., δ(ωL)) (see (17)) is then given by the LFT in (18) with

Mdyn
y =


M11,U 0 M12,U
M21,U 0 0

AT M̄22,dynM21,U AT M̄21,dyn 0

 .

Appendix B. Structure of B̃, D̃, P̃ , Z̃ in Proposition 5

As shown in (Barenthin et al., 2008), the real matrices B̃ and D̃ in the expression of
Σm,n have the following structures:

B̃ =


0 K12 . . . K1m

−K12 0 . . .
...

...
. . . K(m−1)m

−K1m . . . −K(m−1)m 0



D̃ =


R11 R12 . . . R1m

R12 R22 . . . R2m
...

. . .
...

R1m R2m . . . Rmm

 ,

with the constraints that all blocks Kil (resp. Ril) satisfy Kil = −KT
il ∈ Rn×n (resp.

Ril = −RT
il ∈ Rn×n). The matrix P̃ (resp. Z̃) has a similar structure as B̃ (resp. D̃),

but with the skew-symmetric blocks replaced by row vectors of dimension n (Barenthin
et al., 2008).

Appendix C. Proof of Proposition 6

Before giving the proof, let us present the following result which is a particular case
of the generalized KYP lemma (Iwasaki & Hara, 2005).

Lemma 1 ((Iwasaki & Hara, 2005)). Consider a matrix F(τ) which depends on a
complex scalar variable τ that lies in the set T defined in (11). Assume that F(τ) can
be written as an LFT in τIα and that this LFT is minimal (i.e., we cannot write F(τ)
as an LFT in τIα̃ with α̃ < α). We thus have:

F(τ) = (τIα) ⋆

(
F11 F12

F21 F22

)
(C1)

where F11 is a matrix of dimension α × α. Consider finally a Hermitian matrix Ω
of appropriate dimension. Then, F∗(τ)ΩF(τ) ≤ 0 for all τ ∈ T is equivalent to the

22



existence of Ξα ∈ Ξα (see Proposition 4) such that:(
I 0

F11 F12

)∗
Ξα

(
I 0

F11 F12

)
+
(
F21 F22

)∗
Ω
(
F21 F22

)
≤ 0. (C2)

The proof of Proposition 6 is then rather
straightforward. When we perform the product
Ψ∗

Σm,n
(τ)PΣm,n

ΨΣm,n
(τ), we indeed obtain a matrix having the structure (38)

for any value of τ ∈ T . More precisely, the matrix Q in (38) is given by
(N ∗(τ) ⊗ Im)Λ(N (τ) ⊗ Im) = Q0 + Q1τ + Q∗

1τ
∗ + ... + Qbτ

b + Q∗
b(τ

b)∗. It is
clear that this matrix is Hermitian for all τ ∈ T . Moreover, the LMI condition (41)
ensures that this Hermitian matrix is also positive semi-definite for all τ ∈ T . The
latter is a consequence of Lemma 1 with F(τ) = N (τ) ⊗ Im, α = bm and Ω = −Λ.
Since N (τ) = (τIb) ⋆ N̄ (see (39)), we have indeed that:

F(τ) = N (τ)⊗ Im = (τIbm) ⋆

(
N̄m,11 N̄m,12

N̄m,21 N̄m,22

)
with N̄m,11, N̄m,12, N̄m,21 and N̄m,22 as defined in the statement of Proposition 6.

Then, when we perform the product
Ψ∗

Σm,n
(τ)PΣm,n

ΨΣm,n
(τ), the matrix jD̃ in (38) is given by

jD̃ = jD̃0 + (0, D̃1, ..., D̃b) (N ⊗ Imn) + (N ∗ ⊗ Imn)


0

D̃T
1

...

D̃T
b


The right hand side of this expression is equal to jD̃0 + D̃1(τ − τ∗) + ... + D̃b(τ

b −
(τ b)∗) since D̃i = −D̃T

i (i = 1, ...b). It is clear that this expression has indeed the
desired structure since τ i − (τ i)∗ (i = 1, ...b) is an imaginary number for all τ ∈ T . In
Ψ∗

Σm,n
(τ)PΣm,n

ΨΣm,n
(τ), the matrix jZ̃ in (38) is given by

jZ̃ = jZ̃0 + (0, Z̃1, ..., Z̃b) (N ⊗ Imn)− (N ∗ ⊗ Im)


0

Z̃1

...

Z̃b


The right hand side of this expression is equal to jZ̃0+ Z̃1(τ − τ∗)+ ...+ Z̃b(τ

b− (τ b)∗)
which has thus also the desired structure. Following the same procedure, the matrix
B̃ in (38) is given by 2B̃0+ B̃1(τ + τ∗)+ ...+ B̃b(τ

b+(τ b)∗) since B̃i = B̃T
i (i = 1, ...b)

while the matrix P̃ in (38) is given by 2P̃0 + P̃1(τ + τ∗) + ... + P̃b(τ
b + (τ b)∗). These

expressions have the desired structure since τ i + (τ i)∗ (i = 1, ...b) is a real number for
all τ ∈ T .

Remark. In Proposition 1 of (Bombois et al., 2010), we proposed a less general
parametrization for PΣm,n

where the matrices Qi were restricted to be real matrices,
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the factorizations of jD̃ was reduced to D̃1(τ − τ∗) + ...+ D̃b(τ
b − (τ b)∗) and the one

of jZ̃ to Z̃1(τ − τ∗) + ...+ Z̃b(τ
b − (τ b)∗).

Appendix D. Proof of Proposition 7

Observe that the LMI (23) with r = 0, Π0 = ΞαL
and with Mx, M0 (see (20))

obtained from the decomposition of Mu is equivalent to (C2) with α = αL, Ω =(
−γ 0.5
0.5 0

)
, (F11 F12) = M0 and (F21 F22) = [ZTx MT

x ]
T . The matrix F(τ) in (C1)

is thus F(τ)
∆
= (1 xu(τ))

T . Using Lemma 1 in Appendix C, we thus have that the
LMI (23) is equivalent to

F∗(τ)ΩF(τ) = Re(xu(τ))− γ ≤ 0 ∀τ ∈ T .

A similar reasoning shows that (24) is equivalent to −γ ≤ Re(xu(τ)) for all τ ∈ T .
Combining these two facts shows that the LMI optimization problem (22)-(24) yields
a solution γopt which is equal to uwc.
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