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ABSTRACT

In this paper, we consider the problem of system identification with output ampli-
tude constraints for the case of a multisine excitation. The main contribution of the
paper is to provide an LMI optimization problem to verify whether the output am-
plitude constraint is satisfied for all systems in an uncertainty region containing the
unknown true system. In addition, input amplitude constraints can also be verified
using the results of this paper.
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1. Introduction

In this paper, we consider system identification with a multisine excitation and we
develop a methodology to verify whether a given multisine excitation respects input
and output amplitude constraints. For this purpose, we make use of an uncertainty
region for the unknown true system.

Besides a model G of the unknown true system G, prediction error identification
(Ljung, 1999) allows to derive an uncertainty region D for Gy. Different types of
uncertainty regions have been considered in the literature. When the identification is
performed in a full-order model structure, the obtained uncertainty region D is a set of
parametrized transfer functions G(6) whose parameter vector 6 is constrained to lie in
an ellipsoid U in the parameter space (Bombois, Gevers, Scorletti, & Anderson, 2001;
Ljung, 1999). When the model structure is not full-order, the obtained uncertainty
region D is a set of systems G whose frequency response is, at each frequency w,
constrained to lie in an ellipse U (w) in the Nyquist plane (Bombois, Gevers, & Scorletti,
2000; Goodwin, Gevers, & Ninness, 1992; Hakvoort & Van den Hof, 1997; Reinelt,
Garulli, & Ljung, 2002).

With respect to the uncertainty regions that are generally considered in robust-
ness analysis (Zhou & Doyle, 1998), the uncertainty regions D delivered by system
identification are rather non-standard. However, in the last twenty years, numerous
robustness analysis tools have been developed for these types of uncertainty regions
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(mainly for the parametric uncertainty region). In (Barenthin, Bombois, Hjalmarsson,
& Scorletti, 2008; Bombois et al., 2000, 2001), we have, e.g., developed an LMI op-
timization procedure to verify whether the worst-case H, performance achieved by
a given controller over the plants in D is acceptable. The case of the worst-case Hy
performance is treated in (Bombois, Hjalmarsson, & Scorletti, 2010). In (Hjalmarsson,
2009), it is shown that more complex robust perfomance criteria can be addressed at
the cost of a second-order Taylor approximation. Note that many of these robustness
tools have been integrated into optimal experiment design schemes aiming at obtain-
ing optimal models for control (Barenthin et al., 2008; Bombois et al., 2010; Bombois,
Scorletti, Gevers, Van den Hof, & Hildebrand, 2006; Hjalmarsson, 2009).

In relation with these developments around optimal experiment design, robust
output power constraints have also been considered i.e., robustness analysis tools have
been developed to verify whether a given excitation will not lead to an excessive output
power during an identification experiment. Since the output obviously depends on the
unknown true system Gy, it is in fact verified whether the output for all systems G € D
has an acceptable power. The case of multisine excitation is treated in (Bombois,
Morelli, Hjalmarsson, Bako, & Colin, 2021), while robust output power constraints
for filtered white noise excitation can be addressed using the tools in (Bombois et al.,
2010).

In many applications though (see, e.g., (Manchester, 2012) for an example), the
constraints are not formulated as constraints on the power of the output signal, but as
constraints on the amplitude of the time-domain sequence of this signal. As mentioned
above, in this paper, we will therefore develop a methodology to handle robust output
amplitude constraints. Since the (robust) output amplitude constraint can easily be
translated into a (robust) output power constraint for filtered white noise excitation,
we will here only consider the case of multisine excitation. Such robust amplitude
constraints could until now only be treated via an approximation of the uncertainty
set D i.e., the output constraint is only verified for a limited number of grid points
in D (see, e.g., (Manchester, 2010)). In this paper, we use the robustness analysis
philosophy to avoid the approximation of the uncertainty region D and we develop
an LMI optimization problem which allows, for a given multisine excitation, to verify
whether the output amplitude constraint is satisfied for the outputs of all systems
G € D. We do that for both types of uncertainty regions D delivered by system
identification. Since amplitude constraints must be respected at each time instant, we
treat, in this LMI formulation, the time similarly as the systems G € D i.e., as an
uncertain variable varying in a set. Using the same philosophy, we also develop an
LMI optimization problem to verify whether an input amplitude constraint is verified
at each time instant.

Notations. Continuous-time signals will be denoted z(t) where ¢ € R is the time
index. The variable s is the Laplace variable while z will denote both the Z-transform
variable and the shift operator. We use j to represent v/—1. For a complex number a
(i.e., a € C), |a|, Za, Re(a), Im(a) will denote, respectively, its modulus, its argument,
its real part and its imaginary part. For a real number a (i.e., a € R), |a| is the abolute
value of a. For a matrix A, AT (resp. A*) is its transpose (resp. conjugate transpose).



With some abuse, we will use 0 both for zero and for zero matrices. The matrix

Xy 0 0
o . 0
0 0 X

n

will be denoted diag(Xy, ..., X,,) if the elements X; (i = 1,...,n) are scalar quantities,
while it will be denoted bdiag(X1, ..., X;,) if the elements X; (i = 1,...,n) are matrices.
In addition, I, represents the identity matrix of dimension n x n and ®, the Kronecker
product. The unit ball of dimension n is denoted B, i.e., B, = {0 € R" | 76 < 1}. For

two matrices A and M = ( J\A;I” %12 ) with A € C"™ "™ and My € C"™*™, Ax M is
21 22

given by Ax M 2 Moo+ My A (1, — MllA)fl M2 (the symbol * stands thus here for
the Redheffer product). Moreover, the relation y = (A x M)u (with vectors y and u)
can always be represented via internal vectors p and ¢ in the following LFT expression:

_ [\ (M| Mo\ (P
p=a () (San) ()

2. Problem statement

We consider input-output amplitude constraints for the identification of a discrete-
time model of a stable single-input single-output true system which can be described
by a continuous-time transfer function G§(s) with input v and output y. The discrete-
time data for the identification of the discrete-time model of G§(s) will be gathered
in open loop by sampling the continuous-time input-output signals at a rate T (after
the application of an anti-aliasing filter). The obtained discrete-time model G(z) will
therefore be an estimate of a discrete-time transfer function Go(z) which satisfies
Go(e/T) = G§(jw) for w € [0, 7-]. We also suppose that we have an uncertainty
region D containing the true discrete-time system Gg(z). This uncertainty region will
typically originate from an initial identification experiment.

In order to, e.g., reduce this initial uncertainty, we wish to perform a second
identification experiment using a multisine excitation i.e., the continuous-time true
system G§(s) will be excited by a (continuous-time) multisine excitation signal having
the general expression:

~

Z a; s sin(wit) + a; . cos(wit)) , (1)
=1

where a; 5, a;. (resp. w;) (i =1,..., L) are user-chosen amplitudes (resp. frequencies).
The fundamental frequency of this multisine will be denoted wg. Each of the L fre-
quencies w; (i = 1, ..., L) thus satisfies the following relation:

W; = 0y Wo (2)
for an integer oy; # 0 (i = 1, ..., L). Since the discrete time data will be gathered with
a sampling rate T, we will suppose that wy < 7. For the sequel, it is important to



notice that the multisine (1) can be equivalently written in the following phasor form:

u(t) = Re (AT U(t)), (3)
where U(t) and A are complex column vectors of dimension L whose ith entries are
respectively given by U;(t) = /' and Ai = a;c—jais (i=1,...,L). Using the same
phasor notation and the fact that Go(e/“7*) = G§(jw) for w € [0, 2], the (noise-free)
steady-state output of G§(s) under this multisine excitation is given by:

y(t,Go) £ Re (AT diag(Go(e™™), ..., Go(¢** 7)) U(t)) . (4)

Even though the frequency response of G§(s) could also have been used in (4), the
discrete-time version Go(z) of G§(s) is used instead since it is this transfer function
which lies in D. Note that both u(t) and y(¢,Gp) are periodic signals with period
T = i—: This will also be the case for the signal y(¢, G) obtained by replacing, in (4),
Go(z) by a system G(z) € D. In the sequel, we will denote Tp = [0, i—:] the time
interval corresponding to a period of these multisines.

In the sequel, we will suppose that we have the following input and output am-
plitude constraints:

—Umax < ’U,(t) <Umax VEtETp (5>
—¥Ymax < y(t, GO) < ¥VYmax Vt€Tp

for some given thresholds Gipax > 0 and ¥max > 0. Note that the output amplitude
constraint here pertains to the noise-free steady-state output! y(¢, Go).

In order to verify (5) before the application of the multisine u(t) to the true
system, we wish to evaluate the following quantities:

Uwe = ?el%f u(t)|, (6)
Ywe = Max 1max |y(t7 G)|7 (7)

teTp G(z)eD

with y(¢,G) defined in (4). The amplitude constraints will indeed be respected if
Ue < Umax and Yye < Umax (since the unknown transfer function Go(z) lies in D).

In order to be able to evaluate uy,. and . in a tractable manner, we will intro-
duce the following change of variable:

7 2 et (8)

t:TOéi

with wg the fundamental frequency of u(t). Using (2), we have U;(t) = e/

LSince ¥max bounds the noise-free output, if we wish to bound the noisy output of the system, ymax must be
chosen considering the (maximal) amplitude of the disturbance acting on the system (that can, e.g., be deter-
mined using an experiment with u(¢t) = 0). Moreover, to ensure as much as possible that the output constraint
is also satisfied during transient, the excitation signal (1) can be slowly ramped up (e.g., by multiplying (1) by
a function ~y(t) which slowly grows from zero to one).



(i = 1,..., L). Consequently, introducing U(7) = (7,72, ..., 7%*)T, (6) and (7) can
be equivalently rewritten as:

e = max | Re(wu(r))| with 2u(7) = ATU(7) (9)
o = mae [ (AT diag G, oG )| 0

with
T={reC|7t'r=1}. (11)

Observe that, in the same way as G is an uncertain system lying in D, the variable 7
can also be seen as an uncertain variable which lies in the set 7T .

3. Uncertainty region D

As indicated in the previous section, we suppose that an initial identification experi-
ment has led to an initial uncertainty region D for the unknown true system Gg(z).
The uncertainty regions delivered by prediction error identification are generally de-
termined by bounding the so-called variance and bias errors. The variance error is due
to the unavoidable presence of measurement and process noise and the bias error is
present in the case where the chosen model structure is not rich enough to describe
the true system (Ljung, 1999).

Let us first consider the case where the only source of uncertainty is the noise:
we therefore suppose that the true transfer function Go(z) can be parametrized
by an unknown parameter vector 6y € R¥ in a given model structure G(z,0) i.e.,
Go(z) = G(z,6p). In this case, prediction error identification allows to determine an
estimate 6 of 6y as well as an ellipsoid centered in 6 that contains the unknown 6
at any user-chosen probability level (Ljung, 1999). Let us, e.g., denote this ellipsoid
U={0eRF|(6—-6)TP1(0—0) <1} for some matrix P > 0. Since robust analysis
is generally formulated for uncertain parameters lying in a ball centered at zero, we
observe that U can also be rewritten as U = {§ € R*¥ | § = 0 + V5, § € By} with
P =VVT and § € R¥ an uncertain vector constrained to lie in the ball By (see the no-
tations at the end of Section 1). Knowing that the model structures used in prediction
error identification are generally rational in 6 i.e., G(z,0) = (Zn(2)0)/(1 + Zp(2)0)
with Zn(z) and Zp(z) row vectors containing only zeros and delays (Bombois et al.,
2001, 2021), the parametric uncertainty region DP*" for Go(z) has then the following
form:

Z 0 A
DPY = {G(z,0) = HNZ(;zZ)G |0 =0+V6, € By} (12)

The uncertainty region DP*" in (12) thus contains transfer functions G(z, 6) 2a (2, 0+
st) with § € B;.



As mentioned above, in order to derive (12), prediction error identification has
to be performed in a full-order model structure. Even though efficient techniques
exist to determine such a full-order model structure (see (Ljung, 1999, Chapter 10)),
uncertainty regions can also be built in the case where the (stable) model G(z) of Go(z)
is identified in a model structure whose order is too low to describe G(z) (Bombois et
al., 2000; Goodwin et al., 1992; Hakvoort & Van den Hof, 1997; Reinelt et al., 2002).
Using these methods, given a user-chosen probability level, it can be derived that, at
each frequency w, AG(e/*T+) = Go(e/*T+) — G (e7“T+) has the following property:

Re(AG(e™T+))
( Im(AG(e7T-)) ) € Uw),

where U(w) = {¢ € R? | ¢TP(w)~!¢ < 1} is an ellipse in the Nyquist plane defined
by a matrix P(w) > 0 (the ellipses U(w) are different at each frequency i.e., the
matrices P(w) are different at each frequency). Observe that U(w) is also equal to
Uw) ={¢€ € R? | ¢ = V(w)d(w), 0(w) € B} with P(w) = V(w)V(w)T and with
§(w) € R? the (normalized) vector describing the uncertainty at frequency w and
which is constrained to lie in the ball By. Consequently, the uncertainty region D%
for Go(z) has the following form:

DU = {G(z) | G(2) is stable and G(/“T*) = G(/“T*) +v5(w)d(w), §(w) € Ba} (13)

with v (w) 2 (1 /)V(w) (j = v=1).

Remark. As shown in (Bombois, Anderson, & Gevers, 2005; Ljung, 1999), modulo a
first-order Taylor approximation, the parametric uncertainty region DP" (see (12)) can
be projected into a dynamic uncertainty region D% of the form (13). The obtained
uncertainty set D% will therefore also contain systems with higher order than G(z, 9).

Remark. After the initial experiment, it is thus not guaranteed that Go(z) lies
in the uncertainty region delivered by system identification. This indeed only
holds modulo a certain probability level (say 99 %). Consequently, we can only
verify the output amplitude constraint modulo this user-chosen probability level.
Even though this probability level could be seen as a drawback, we in fact deem
it an advantage. Indeed, in the robust control literature, the uncertainty region is
just posed without mentioning how the assumption Gy € D can be verified in practice.

Remark. The fact that the true system Gy(z) is a stable transfer function justifies
the restriction to stable systems in the definition (13) of D®". This restriction in
turn ensures that y(¢,G) with the expression (4) is indeed the steady-state output
of G under (1). In order to guarantee the same property for DP" | it is necessary to
verify that all systems G(z, ) € DP" are stable (using, e.g., the tools in (Bombois et
al., 2001)). In the sequel, we will assume that this stability condition is indeed verified.

Now that we have defined the uncertainty regions we will consider in this paper,
we can particularize the expression (10) of g, for DP" and D®". For the uncertainty



region DPY in (12), (10) is equivalent to:

yhse = maxmax |Re (4 (r.9))| (14)
xgar(,]_7 5) = ATdiag(é(ejwlTs, 5), ey é(eijTs’ 5)) Z;{(T) <15)

with G(z,9) 2 G(z,0 + V). Conversely, for the uncertainty region D%" in (13), we
rewrite (10) as

dyn _ dyn
= max o mx[Re (o (S, d)| ()

xgyn(T, §(w1), ..., 0(wr)) = Al diag(G(§(w1)), ..., G(6(wr)))) U(T)
(a7)
. A Ay ST, T .
with G(d(w;)) = G(e?“"*) +vp(wi)d(w;) i =1,...,L

It is important to note that the dependence of z}"" (resp. ajgy") on a system G in
the uncertainty region D" (resp. D™") is restricted to the frequency response of this
system at the frequencies w; (i = 1,..., L) present in the multisine (1). For DP%" these
L frequency response values can all be described by one unique uncertain vector § € By
while, for DW" these L frequency response values are described by L (independent)
uncertain vectors d(w;) € By (i =1, ..., L).

Let us also note that (16) is equal to (10) for D = D%" if, for any G(6(w;)) with
§(w;) € Bo and i = 1,..., L, there exists a stable G(z) € D%¥" such that G(e/“T:) =
G(6(w;)) (i =1,..., L). If this property does not hold, (16) is an upper bound for (10).
This situation is classical for dynamic uncertainty regions such as D%" and yﬁ};’;n can
be used to verify the output constraint in (5).

4. LFT representations for x,, :czc“" and azzy"

In (9), (14) and (16), we see that the quantities we wish to evaluate have a similar form
i.e., the maximization over uncertain variables of the absolute value of the real part of a
complex scalar quantity z (respectively ., (7), 20" (7, 8) and 23" (7, 8(w1), ..., 6(wr))).-
These three scalar quantities x are rational in the uncertain variables of which they
are function. This property is crucial to be able to address the maximization problem
in a tractable way i.e., using the tools of robustness analysis.

Since 2y (1), 28" (7,8) and %" (,8(w1), ..., 6(wy)) are rational in the uncertain
variables of which they are function, these uncertain variables can be separated from
the other parts in an LFT expression. As shown in Appendix A, we can thus determine



complex matrices M,, ME" and MJ¥" such that:
2y (1) = (7 I, ) * M,
25" (1,6) = (bdiag (T1s,, I, @ 0)) % MY (18)
7" (1,0(w1), ... 6(wr)) = (bdiag (t1a,, diag(d(wr), ..., 0(wL)))) * My""

with ay, as in (2) and where x is defined at the end of Section 1.
We have already mentioned the similarity between the quantities .. , yhe and
yg}én that we wish to evaluate. Let us formalize this in the following proposition whose

proof is straightforward.

Proposition 1. Consider (18) and the following worst-case quantity

we — R A ,A a-"aAr 19
! Ai,eA,Iin(E%D:{o,,,,,,«)| e(w(Bo, A )| (19)

where x(Ag, A1, ..., Ar) = (bdiag(Ag, A1, ...;A)) * M with M a known matriz and
A; (i =0,...,7) known uncertainty sets. Then, uy,. defined in (9) is a particular case
of (19) with x = x, (1), M = My, 7 =0 and Ay = {Ag =71, | 7 € T}. The quantity
yiwe in (14) is also a particular case of (19) with v = 24" (1,8), M = M}*", r =1,
A ={A1 =1, ® | € B} and the same Aq as for uye. Finally, yfll)yc" in (16) is
also a particular case of (19) with v = xzyn(r,é(wl), o o(wr)), M = M;yn, r=1L,
A; ={A; =(w;) | 6(wi) € Ba} (i =1,...,L) and the same Ag as for uye and yh . ®

5. Computation of an upper bound for x,,.

5.1. Unifying result

Proposition 1 shows that the computation of y,. (see (10)) can be formulated as (19)
for DP* and D®". Note that this is also the case for many other uncertainty sets
such as the additive or multiplicative uncertainty sets which are classically used in
the robustness analysis literature (Zhou & Doyle, 1998). In this section, we will
present a methodology to evaluate x,. for an arbitrary complex scalar quantity
(Ao, A1, ..., Ay) = (bdiag(Ao, A1, ..., Ar)) * M (i.e., for an arbitrary matrix M and
for arbitrary uncertainty sets A; (i =0, ...,7)). Consequently, the results of this paper
are not restricted to the the case of the uncertainty sets delivered by prediction error
identification.

As such, the optimization problem in (19) is NP-hard in almost all cases (Zhou
& Doyle, 1998). Robustness analysis however allows to formulate convex (and thus
tractable) optimization problems which yield an upper bound x%ﬁ for zye. As shown
in the robustness analysis literature, the obtained upper bounds are generally tight
(Zhou & Doyle, 1998).

Let us first introduce the internal vectors p = (pf,..,pl)T and ¢ =
(¢t .y gh)T of the LFT (A, Aq,..., A,) = (bdiag(Ao, A1, ..., A)) x M ie., p =



bdiag(Aog, A1, ..., Ar)q (see the end of Section 1). We then have:

pi=A0q (i=0,..7)
QZ_MZ<Z£> (iZO,...,T)

2(Do, Ay, .y AY) = M, ( 11’ ) : (20)

with M = (MT', ME, ..., MF, MIDT.

Like in classical robustness anlaysis, we associate with each set A; (i = 0,...,7)
a so-called set of multipliers II; (i = 0,...,r). In a nutshell, the set of multipliers
II; is an explicit and affine parametrization of the quadratic constraints satisfied by
(pF, ¢)T when p; = A;q; with A; € A; (Goh & Safonov, 1995; Megretski & Rantzer,
1997; Safonov, 1980).

Definition 1. Consider an uncertain variable A; constrained to lie in the set A;. We
define the set of multipliers T1; as a set of affinely parametrized Hermitian matrices
II; that all have the following property:

<Alf'>ni<Ajf')zo VA; € A;. (21)

In other words, 1I; € TI; = (21).

Using the sets of multipliers II; (i = 0,...,r), we can now develop the following
LMI optimization problem whose solution is an upper bound z, for ..

Proposition 2. Consider a complex scalar quantity (Ao, ..., A,) depending as in (20)
on T+ 1 uncertain variables A; € A; (1 =0,...,7) and consider the sets of multipliers
II; (i =0,...,7) for each uncertainty set A; (i =0,...,7) (see Definition 1). Then, an
upper bound x°, for vy (see (19)) is the solution yop of the following LMI optimiza-
tion problem having as decision variables a real scalar v > 0 and two matrices Hl-l, H?
within each of the sets of multipliers IL; (i =0, ...,7):

min v s.t. (22)
g*(_’Y 0.5>g _i_zrzg% 11t G: <0 (23)
TAL05 0 v v T =
=0
. v 05 N2
0<Gi( o5 o )G D G G (24)
1=0

with G, = (ZEME)T and G; = (ZZTMZT)T (1 =0,...,7) (Zy and Z; (i = 0,...,7) are
selection matrices such that Z,(p" )T =1 and Z;(p" 1) =p; (i=0,...,7)).



Proof. The result follows from the fact that (23) and (24) imply
< Re(2(B0, s A)) 7 VA € Ay (i = 0,...07) (25)

Let us thus prove this result. For this purpose, let us consider one value of A =
bdiag(Aog, Ay, ...,A,) in the LFT (20) and let us consider the corresponding internal
vectors p = (pd,...,pI)T and ¢ = (¢l ...,¢")T. Let us then pre- and post-multiply
with (p*,1) and (p”, 1) the LMI constraints (23) and (24). Using (20), this yields

Re(x(Ao, ... A)) + > gf T} gi < (26)
=0
-y < Re(z(Ao, .., Ar)) — ng I1; gi (27)
=0

with ¢; = (pF',¢/)T (i = 0,...,7). The above reasoning can be done for any value
of A = bdiag(Ap,Aq,...,A;) with A; € A; (i = 0,...,7). In other words, for the
multipliers II}, T1? (i = 0, ..., 7) found by the optimization problem, (26) and (27) hold
true for all A; € A; (i =0, ...,7). Observe also that, because of (20), g; = (AT I)Tqi.
Consequently, due to Definition 1, we have that > ._, g II1 g; in (26) is positive for
all A; € A; (i =0,...,r). Similarly, — >°I_, gf II? g; in (27) is negative for all A; € A,
(t=0,...,7). We have thus proven that (23) and (24) imply (25). O

It is clear that the more general the parametrization of the sets of multipliers
II, i = 0,...,r), the tighter the upper bound of x,,. delivered by the LMI opti-
mization problem (22)-(24) (Goh & Safonov, 1995; Megretski & Rantzer, 1997; Sa-
fonov, 1980). In the next section, we will make use of the fact that, for all the
quantities we wish to evaluate in this paper, the uncertainty set Ag is given by
Ay = {Ayg = 71ly, | T € T} ie., a simple uncertainty set based on a scalar un-
certain variable 7 € T. The fact that Ay has a simple structure allows to use Ag-
dependent multipliers II; for all other uncertain variables A; € A; (i = 1,...,7).
Even though this will lead to a slightly more complex LMI optimization problem,
the upper bound 22, for x,,. obtained in this way will generally be tighter (see, e.g.,
(Bliman, 2004)). In order to justify this approach, let us consider, for any Ay € Ay,
the quantity z.,c(Ao) = maxa,ea, (i=1,..r) [Re(x(Ao, A1, ..., Ap))| and let us note that
Tywe = MAXA A, Twe(Ao). If we evaluate the upper bound of x,,.(Ag) via a multiplier
approach similar to the one in Proposition 2, the multipliers HZ-1 and H? (i=1,..r)
can be different for each value of Ay and this thus advocates to consider Ag-dependent

multipliers II; (i = 1,...,7) to compute 2.

5.2. Improvement based on the simple uncertainty set Ag in this paper

Let us thus particularize the LFT (20) to pg = 7l,qo for some integer « and let
us consider the following factorization of the multipliers II; (¢ = 1,...,r) given in
Definition 1.

Definition 2. Consider the variable T lying in the set T (see (11)) and the set II;
of multipliers for the uncertain variable A; € A; (see Definition 1). The T-dependent

10



factorization corresponding to I1; is defined via a matriz V;(T) rational in T and a set
P; of affinely parametrized (T-independent) Hermitian matrices P;. These elements
are detemined in such a way that, for each T € T and for each P; € P;, Wi (1)P;V;(7)
are elements of II;.

Using the matrices ¥;(7) introduced in Definition 2, the LFT (20) and the quan-
tity G; defined below (24), we pose:

gui = Ui(7)Gi < ! ) (i=1,..,7). (28)

Since all ¥;(7) (i = 1,...,r) are rational in 7, gy = (gal, ...,ggm)T

as:

can be expressed

o= | (G =) | (1) (29)

=M

for some integer 5 and for some matrix M. For further use, let us introduce the internal
signals py and gy of the LFT (29):

pyv = Tlg qu
Q\I/IM11P\1/+M12<21)>

9v; = Mai; py + Moo ; ( ]19 ) (i=1,..,7r), (30)

with (Ma1; Maa;) = R;j(Ma1 Maz) where R; is a selection matrix such that
gvi = Ri gv (1 = 1,...,7). We have now all the ingredients to obtain an alternative
LMI optimization problem yielding an upper bound for x.. If the factorization in
Definition 2 is chosen with care (the more general, the better), we can expect that
this upper bound will be tighter than the one given in Proposition 2 since it is derived
with 7-dependent multipliers (Bliman, 2004).

Proposition 3. Consider the framework of Proposition 2 with Ag = {Ag =71, | T €
T}. Consider also the factorization of the multipliers I1; (i = 1,...,7) (see Definition 2)
and the notations (28)-(30). Consider finally the set of multiplier ILy corresponding to
Ag={Aog=7I,| T €T} withp=a+p (see Definition 1). Then, an upper bound for
Tye 15 the solution Yope of the following LMI optimization problem having as decision

variables a real scalar v > 0, two matrices f[é and 1:[3 in Ty and two matrices 771-1, 732-2
within each set P; (i =1,...,1) (see Definition 2):

min v s.t. (31)
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* - 0.5 *T7T ¢ *
Vi ( 05 0 ) Vi + V3TIgVs + XER PiR; <0 (32)

0<W < 075 0(')5 ) Vi = VTV, = > Rf PIRi, (33)
i=1

where V1 = (0 G;), Ri = (Ma1; Maa;) and

bdiag(1g, Zo)

Vy = M Mie
0 My

with G, and Zy defined below (24) and with My defined in (20).

Proof. The result follows here also from the fact that (32) and (33) imply (25). Let us
thus prove this result. For this purpose, let us consider one value of A = bdiag(Ag =
Tlo, A1, ..., Ay) in the LFT (20) and let us consider the same 7 in the LFT (30). With
the corresponding internal vectors p = (p,...,pI )T and ¢ = (¢d,...,q} )T (see (20))
and the corresponding vectors py and qg (see (30)), let us pre- and post-multiply
with (pj, p*, 1) and (pg,pT, 1) the LMI constraints (32) and (33). Using (20), (28)
and (30), this yields

Re(a(r,Av, ., ) + g5 TG g + Y g7 U (1)P4(7) gi < v (34)
=1
—y < Re(a(r,Ar, .o, An)) — g5 15 gr = Y g7 Wi (1)PP4(7) gi (35)
=1

with g, = (pi,pg,qi,qg)T and g; = (pF ¢)T = Gi(" 1)T (i = 1,...,r). The above
reasoning can be done for any value of 7 € 7 and of A; € A; (¢ = 1,...,7). In other
words, for the multipliers ﬁ(l), f[g, P} and P? (i = 1,...,r) found by the optimization
problem, (34) and (35) hold true for all 7 € T and for all A; € A; (i = 1, ..., 7). Observe
also that, because of (20) and (30), g; = (AT I)Tqi and g, = (71, Ip)T(qg,qg)T. Con-
sequently, due to Definitions 1 and 2, we have that gjif[(l)g.r + 3 g (T)PIY (1) g
in (34) is positive for all 7 € 7 and for all A; € A; (i = 1,..,7). Similarly,
—gi3g, — >0 g7 Wi(r)P2W,(7) g; in (35) is negative for all 7 € T and for all
A; € A; (i=1,...,7). We have thus proven that (32) and (33) imply (25). O

6. Upper bounds for uy., y?%" and y@¥"

wc

We will now use the results of the previous section to derive tight upper bounds for
Uwes Yo and yfv%n For this purpose, we however still need to present the sets of
multipliers corresponding to the type of uncertainties encountered in (18). Let us

start with the set of multipliers corresponding to Ag = {Ag = 71, | 7 € T} for an

12



arbitrary « (in Proposition 1, a = ay).

Proposition 4. Consider Ag = {Ag = 71, | 7 € T} with the set T defined in (11)
and an arbitrary scalar o. Then,

(AI“)EQ<AI°>>0 YAy € Ag (36)

when =, = bdiag(S, —S) with S any Hermitian matriz of dimension « X «. The set
of matrices =, having this structure will be denoted B, in the sequel.

Proof. For any =, = bdiag(S, —S), we have that the quadratic expression in (36) is
equal to (7*7 — 1)S and this quantity is indeed positive semi-definite for all 7 € T
(since it is in fact identically equal to the zero matrix for all 7 € T). O

Let us also present the set of multipliers corresponding to A; = {A; =
I, ® 6 | 0 € B,} for arbitrary integers m and n (in Proposition 1, m = L and n = k
for the case of yhe and m = 1 and n = 2 for the case of yff,%n) A very general
parametrization of the set of multipliers corresponding to this uncertainty has been
developed in our previous contribution (Barenthin et al., 2008).

Proposition 5 ((Barenthin et al., 2008)). Consider the set B, = {6 € R" | 676 < 1}
and an arbitrary integer m. Then,

T
<Imj®5> zm,n(ImI(M)zo Vo € B, (37)

when Xy, » has the following structure

where Q is any positive semi-definite Hermitian matriz of dimension m x m and B,
D, P, Z real matrices having the structure given in Appendix B. The set of matrices

Ym,n having the structure (38) will be denoted Xy, ,, in the sequel. [ |
In order to be able to use Proposition 3 to improve the upper bound for yhe

and yﬁ,%”, we develop in the next proposition a 7-dependent factorization of the set

of multipliers introduced in Proposition 5. This factorization is more general than the
one given in (Bombois et al., 2010). In this proposition, we will use the following vector
N(1) = (1,7,7%,...,7%)T where b is an arbitrary integer and which can be written as
the LFT N(7) = (7 I) x N with

13



0 0 -
Ly 0 ) (1,0,...,0)

(07 Ib)T (1707--'70)T

Proposition 6. Consider the set of multipliers X,, ,, linked to I, ®6 with 6 € By, (see
Proposition 5). Consider also the variable T that varies in the set T (see (11)). Using
7 and some user-chosen integer b > 1, define the vector N'(1) = (1,7,7%,...,7)T and
the matriz Uy, (7):

N(T) @ I, 0
I,
\IIE,,L,” (T) = I??m N(T)(]@ . (40)
0 I,

Then, for each T € T, the T-dependent matrices V5, (1) Py, Vs, (7) withPsy,, €
Py, . are all elements ¥y, 5 0f iy . The set Py contains all matrices Ps.,... having
the following structure:

m,n

~-A®1I, 0 T Qo -
Ps,.. = 0 A 2L with A = 0 0
Pa1 Paa 0 0
o NS AN
( Bo,..y By )+ ( 0,D1,..., Dy ) . - 2
Pa1 = B, Zy
(0,Z1,.,2y )+ ( Py,.... By) 0

_(iDy —jZ
P22 — ( ]ZO O .

The real matrices B;, D;, P; and Z; (i = 0,...,b) of the parametrization of Ps,... can
take any values provided that they have, respectively, the same structure as the real
matrices B, D, P and Z in (38). Finally, the elements of the matriz A are constrained
as follows: @Q; € C™*™ (i = 1..b), Qo = Qf € C™*™ and there must exist a matriz

Ebm € Bpm (see Proposition 4) such that the following LMI is satisfied:

I 0 \'= I 0 Y J A (N v
0<— < Notr Moo ) Ebm ( Nots Nowo )+( N2t Nz ) A( N2t Nz )
(41)
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where N1 = N1 @ Iy, N2 = N2 @ Iy, Noo1 = Not @ Iy, and Nipa2 = Noo @ Iy,
(see (39)).

Proof. See Appendix C. O

We have now all the ingredients to derive upper bounds for .., yhe and yq‘f}yc”

defined, respectively, in (9), (14) and (16). Let us begin with .. Using Proposition 1,
it is clear that the upper bound for w,. is the solution 7y, of the LMI optimization
problem (22)-(24) with » = 0, Iy = Z,, (see Proposition 4) and with M,, M
(see (20)) obtained from the decomposition of M,. Note that we have here in fact a
stronger result.

Proposition 7. Consider the LMI optimization problem (22)-(24) with r =0, ITy =
B, (see Proposition 4) and with M,, My (see (20)) obtained from the decomposition
of My. Then, the solution vop: of (22)-(24) is equal to Uye.

Proof. See Appendix D. O

Let us now turn to yhe and yiiu?én. Using Propositions 1, 2 and 3, we have the
following results whose proofs are straightforward:

Proposition 8. Consider the LMI optimization problem (22)-(24) with r = 1,
Iy = E,, (see Proposition 4), II1 = 3, (see Proposition 5) and with M,, My, M
(see (20)) obtained from the decomposition of My . Then, the solution Yop of (22)-
(24) is an upper bound for yhe (see (14)). We can also consider the procedure in
Section 5.2 to try to improve this upper bound. Since r = 1 and II1 = X, we
have that W(1) = Uy, , (1) (see Proposition 6) and thus (29) can be written with
B = bL(k + 1) and with a matrizx M that can be derived from the LFT of N(r)
(see (39)). A (generally tighter) upper bound for yhe can thus be obtained as the
solution Yopt of the LMI optimization problem (31)-(33) with r = 1, IIy = B, (see
Proposition 4), p = ar, +bL(k 4+ 1) and with Py = Py, , (see Proposition 6). ]

Proposition 9. Consider the LMI optimization problem (22)-(24) with r = L, IIy =
Ea, (see Proposition 4), II; = 319 fori=1,...,L (see Proposition 5) and with My,
M; (i = 0,...,L) obtained from the decomposition of ngn. Then, the solution ~yop
of (22)-(24) is an upper bound for Yo (see (16)). We can also consider the procedure
in Section 9.2 to try to improve this upper bound. Since r = L and II; = 12 for
i = 1,...,L, we have that V(1) = ¥y, (1) for i = 1,...,L and thus (29) can be
written with § = 3bL and with a matrix M that can be derived from the LFT of
N(7) (see (39)). A (generally tighter) upper bound for Yy can thus be obtained as
the solution ~op of the LMI optimization problem (31)-(33) with r = L, Iy = E,,
p = ar + 3bL and with P; =Py, , fori=1,.., L. [ |

Remark. The LMI constraint (41) on the parametrization of the elements of Py,
(resp. Py, ,) in Proposition 8 (resp. in Proposition 9) can be easily added as an extra
LMI constraint in the LMI optimization problem (31)-(33).
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Remark. We can verify the tightness of the obtained upper bound y*° for . (i.e.,
either yhe or yflfén) by computing a lower bound y°. for y,. using a gridding of the
uncertainty region D (i.e., either DP* or DW") and a gridding of the interval Tp i.e.,
Y, = maxier,,,., MaxXq(z)eD,,.. |Y(t, G)| where Tp .4 is a discrete set containing a
finite number of the time instants ¢ € Tp and where Dy,;q is a discrete set which

contains a finite number of the systems lying in D.

Remark. Note also that, as opposed to its upper bound y{ffé, the lower bound

yg’c for yue is not sufficient to verify the output amplitude constraint in (5). This
constraint can indeed be verified by checking that yﬁf; < ¥max since the latter implies
Ywe < Vmax. As opposed to this, yﬁ’c < ¥max does not imply yye < ¥max since
Y < yue. The above reasoning of course assumes that Gy € D. In the rare cases
where that will not be the case (the uncertainty region D only contains Gy modulo
a certain probability level), it can then happen that the largest value of |y(t, Go)]
is larger than y“®. However, in these cases, the upper bound %" remains a closer

estimate of the largest value of |y(t, Go)| than y!°. since % > yi .

Remark. Besides wye, y52 and y22", the results in Section 5 allows to compute upper
bounds for other quantities. First, as already mentioned, they allow to compute upper
bounds for y,. (see (7)) for other types of uncertainty regions. They also allow to
evaluate an upper bound for the worst case output amplitude at a given time instant t
i.e., Yuwe(t) = maxg(.)ep [y(t, G)|. As another example, using a similar procedure as for
the computation of u,., Proposition 2 also allows to compute the worst case output
amplitude for a given plant Ggiven i-€., Ywe(Ggiven) = maxier, |Y(t, G given)|-

7. Numerical illustration

We consider here a second-order true system Go(z) = G(z,6p) = (6p127' +
90’2Z72)/(1 + 90,3271 + 90’4272) with 6y = (90’1,9072,90,3,90’4)71 = (0.8988,0.1034,
—0.9723,0.8385)7. The sampling rate is Ty, = 1 s. An initial identification exper-
iment in a full-order model structure has delivered an identified model G(z,6) with
0 = (0.80.01 —0.9854 0.8187)7 as well as an ellipsoid U = {0 | (—6)T P~1(9—0) < 1}
described by the matrix P~!:

33.1902  19.8594 —49.0182 28.3717
19.8594  33.1902 —98.2813 —49.0182
—49.0182 —98.2813 435.6784 258.1596
28.3717  —49.0182 258.1596 435.6784

P! =

These elements define the parametric uncertainty region DP*" in (12) which here con-
tains the true system Go(z) (i-e., 6p € U). In Figure 1, we represent the magnitude
plot of both Gg and G(z, 0).

We consider a multisine excitation u(t) (see (1)) of fundamental frequency
wo = 0.17 rad/s (the period Tp is thus 20 s) and containing L = 3 frequencies i.e.,
w1 = wp, we = 3wp and w3 = bwy. The complex amplitude vector A in the phasor nota-
tion (3) is here chosen as A = (0.2212+0.0688, —0.0120+-0.06625, 0.4621+0.50755)7 .
This amplitude vector has been determined using the an optimal experiment design
procedure similar to the one in Manchester (2010). Using the LMI procedure of Propo-
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Figure 1.: Magnitude plot of Go(z) (red solid) of G(z,0) (blue dashed) and of Ggﬁ:d(z)

(black dashdot). The magenta dots indicate |ijﬁl(ej‘*’iTS)| for w; (i =1,2,3).

Figure 2.: One period of u(t) (blue dashed), of y(t,G) (red solid) and of y(t, o id)
(black dashdot). The dashed magenta lines indicate 4+ 0.986550.
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sition 7 for this multisine u(t), we obtain u,,. = 0.9385 which is consistent with what
can be observed in Figure 2 where the maximal value of |u(¢)| is indeed 0.9385.

As shown in Figure 2, when applied to G(z) = G(z,0), this multisine u(t) yields
a multisine output y(t,@) with a maximal amplitude of 0.7425. The maximal am-
plitude of y(t,Gyp) is equal to 0.9070. Let us now consider the worst-case amplitude
yiwe in DPY (see (14)). This quantity will be larger than 0.9070 since Gy € DP". If
we use the LMI optimization problem (22)-(24) (see Proposition 8), we obtain the
following upper bound for y2%: yE¥"“" = 1. If we use the LMI optimization prob-
lem (31)-(33) with the 7-dependent multiplier for b = 1 (see Proposition 8), we obtain
yParub — (0.986550. Let us analyze the tightness of these upper bounds. For this pur-
pose, we observe (see Figure 2) that the output y(t, Gg;f:d) corresponding to a system
G};?;d(z) € DPY has a maximal amplitude equal to 0.986535 i.e., y2%"* = 0.986535.
The conservatism linked to the LMI procedure (22)-(24) is thus in this example less
than 1.4 % (which is small) and the one linked to the LMI procedure (31)-(33) with
b = 1 is less than 0.001 % (which is negligible). This shows the efficiency of the
proposed procedure to evaluate the worst case amplitude of the output over the sys-

tems in DP*". It is to be noted that the system Ggfzd(z) has been determined by a

smart gridding procedure called Bayesian optimization (Gardner, Kusner, Xu, Wein-
berger, & Cunningham, 2014). This system is described by G{;(2) = G(z,04ria)
with 64,54 = (1.007, 0.072, —0.9152, 0.7842)T € U. See Figure 1 for the magnitude
plot of Ggﬁ:d(z). It is important to note that this smart gridding procedure is not a
valid alternative for the approach developed in this paper. The main reason for that
is that it only delivers a lower bound for yhe while an upper bound is necessary to
verify the output amplitude constraint in (5) (see the third remark at the end of Sec-
tion 6). Another reason is that this smart gridding procedure is twenty times more
time consuming than the LMI optimization problem (22)-(24) and two times more
time consuming than the LMI optimization problem (31)-(33).

Let us now consider yg%” when DW" is the dynamic uncertainty region (13) ob-
tained by projecting DP®" into the Nyquist plane (see the first remark in Section 3).
Since this D®" will not only contain systems of the second order, but also systems
of higher order, we therefore expect that yff,%n > yhe . If we use the LMI optimiza-

tion problem (22)-(24) (see Proposition 9), we obtain the following upper bound for
ydyn. ydynub 1 1388, If we use the LMI optimization problem (31)-(33) with the
7-dependent multiplier for b = 1 (see Proposition 9), we obtain yf%""* = 1.1065.
Let us analyze the tightness of these upper bounds. For this purpose, we have deter-
mined, using Bayesian optimization, three points Gg%&(ej“in) (i = 1,2,3) such that
(Re(ijZi(ejw’?T*), Im(ijZl(ejw’?T*))T € U(w;) (i = 1,2,3) where U(w;) is the ellipse
U(w) defining D®" for the frequency w; in the multisine (i = 1,2,3). For these points,
we determine, via (4), the multisine y(t, szfﬁl) which has a maximal amplitude of

1.106342 i.c., ya¥™'* = 1.106342. The conservatism linked to the LMI procedure (22)-
(24) is thus in this example less than 2.9 % (which is small) and the one linked to
the LMI procedure (31)-(33) with b = 1 is less than 0.017 % (which is negligible).
This shows the efficiency of the proposed procedure to evaluate the worst case am-
plitude of the output over the systems in D®". For the sake of completion, let us
mention that GO/ (e1T+) = 1.4279 — 0.2057j, G4¥7% (e7:T+) = 1.1002 — 4.76999; and
GdyZ(ejWSTS) = —1.009 — 0.4841; (see Figure 1). Note also that, since the worst-case

gri
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amplitude of y(t, ijf?d) is larger than yh, , there is thus no second-order system G(z, 0)

with 6 € U that has such a frequency response at w; (i = 1,2, 3).

We have repeated the above procedure for a number of other complex amplitude

. d . ..
vectors A and the observed conservatism for yhe and v (using Proposition 2 or

Proposition 3) is always small or negligible.

8. Conclusions

We have developed a methodology inspired by robustness analysis to verify robust
amplitude constraints. The developed framework considers the case where the iden-
tification is performed in open loop and when the considered true system has one
input and one output. In future work, we will extend the framework to closed-loop
identification and to multivariable systems.

Disclosure statement

There is no conflict of interest related to this paper.

References

Barenthin, M., Bombois, X., Hjalmarsson, H., & Scorletti, G. (2008). Identification for control
of multivariable systems: controller validation and experiment design via LMIs. Automatica,
44(12), 3070-3078.

Bliman, P. (2004). A convex approach to robust stability for linear systems with uncertain
scalar parameters. SIAM Journal on Control and Optimization, 42(6), 2016-2042.

Bombois, X., Anderson, B., & Gevers, M. (2005). Quantification of frequency domain error
bounds with guaranteed confidence level in prediction error identification. Systems and
Control Letters, 54(5), 471-482.

Bombois, X., Gevers, M., & Scorletti, G. (2000). Controller validation for stability and perfor-
mance based on a frequency domain uncertainty region obtained by stochastic embedding.
In 89th IEEE Conference on Decision and Control. Sydney, Australia.

Bombois, X., Gevers, M., Scorletti, G., & Anderson, B. (2001). Robustness analysis tools for an
uncertainty set obtained by prediction error identification. Automatica, 37(10), 1629-1636.

Bombois, X., Hjalmarsson, H., & Scorletti, G. (2010). Identification for robust Hy deconvolu-
tion filtering. Automatica, 46(3), 577-584.

Bombois, X., Morelli, F., Hjalmarsson, H., Bako, L., & Colin, K. (2021). Robust optimal
identification experiment design for multisine excitation. Automatica, 125, 109431.

Bombois, X., Scorletti, G., Gevers, M., Van den Hof, P., & Hildebrand, R. (2006). Least costly
identification experiment for control. Automatica, 42(10), 1651-1662.

Gardner, J., Kusner, M., Xu, Z., Weinberger, K., & Cunningham, J. (2014). Bayesian opti-
mization with inequality constraints. In ICML (Vol. 2014, pp. 937-945).

Goh, K., & Safonov, M. (1995). Robust analysis, sectors and quadratic functionals. In IEEE
Conference on Decision and Control. New Orleans, Louisiana.

Goodwin, G., Gevers, M., & Ninness, B. (1992). Quantifying the error in estimated transfer
functions with application to model order selection. IEEE Transactions on Automatic
Control, 37(7), 913-928.

Hakvoort, R., & Van den Hof, P. (1997). Identification of probabilistic system uncertainty
regions by explicit evaluation of bias and variance errors. IEEE Transactions on Automatic
Control, 42(11), 1516-1528.

19



Hjalmarsson, H. (2009). System identification of complex and structured systems. FEuropean
Journal of Control, 15(3-4), 275-310.

Iwasaki, T., & Hara, S. (2005). Generalized KYP lemma: Unified frequency domain inequalities
with design applications. IEEE Transactions on Automatic Control, 50(1), 41-59.

Ljung, L. (1999). System identification: Theory for the user, 2nd edition. Englewood Cliffs,
NJ: Prentice-Hall.

Manchester, I. (2010). Input design for system identification via convex relaxation. In /9th
IEEE Conference on Decision and Control. Atlanta, Georgia.

Manchester, I. (2012). Amplitude-constrained input design: Convex relaxation and application
to clinical neurology. IFAC Proceedings Volumes, 45(16), 1617-1622.

Megretski, A., & Rantzer, A. (1997). System analysis via integral quadratic constraints. IEEE
Transactions on Automatic Control, 42, 819-830.

Reinelt, W., Garulli, A., & Ljung, L. (2002). Comparing different approaches to model error
modeling in robust identification. Automatica, 38(5), 787-803.

Safonov, M. G. (1980). Stability and robustness of multivariable feedback systems. Cambridge:
MIT Press.

Zhou, K., & Doyle, J. (1998). Essentials of robust control. Prentice Hall, Upper Saddle River,
New Jersey.

Appendix A. Matrices M,,, Mé"" and M?‘fy"

Let us first note that the complex vector I/ (1) can expressed as the following LFT in
71,

L

~ M1y \ Moy
U(T) = (11, ) * . . Al
(1) = (7t » (3 (A1)
with Moy = (1,0, ....,O)T, M3 4 a matrix whose entries are equal to zero except

the entries (i,;) for i = 1,..., L which are equal to one, and with M a matrix of
dimension ay, X ay, given by
0 0
My = < In, . 0 ) .

Consequently, we obtain the following LFT for x,(7)

My | My

b

2y (1) = ATZ:[(T) = (11a,) *

AT Moy g

=M,

from which the matrix M, in (18) can be determined. Let us now turn to the LFT
representation of 21" (7,4). Let us first note that, for an arbitrary frequency w, the
frequency response G(e/“T= ) of an arbitrary plant in DP%" (see (12)) can be written
as the following LFT in 6:

. _ eJwTs
G 0) = (0) * ( ZiD(éijs)) (1) ) .
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Applying the linear change of variable 6 = 6+Vé , we obtain the LFT of G (e7Ts §) =
G(e/T: 0+ V9):

- M1 par(w) ‘ Miz,par(w)
G ]WT5 (5 _ 5 ll,p Y
(6 ) ) ( )* < MQLpaT‘(w) ‘ MQQ,paT(W) ’

with My par(w) = —o(edT) Zp (el V, Mg par(w) = o(elTs), M3 par(w) =
(e T)a (1), Moy par(w) = (Zn(e77%) = ((e7T2)a (1) Zp(e7“T*))V, and with
o(e7T+) = (14 Zp (7))~ and ¢ (e/T+) = Zn(e7*T+)d. Considering the above LFT
for each frequency w; (7 = 1,..., L) present in the multisine (1), we see that the matrix
diag(G (7= 5), .. G(e]wLT §)) in the expression (15) for 2" (7, d) is equal to:

Mll,par ‘ M12,pa7‘

(I ®6) *

MZl,par M22,par

with My par = bdiag(Mmn par(w1), - o My par(wr)) (m=1,2,n=1,2).
Using this expression and the LFT (A1) for U(r), p‘"(T ) (see (15)) is then
given by the LFT in (18) with

- Muu M12u
MPpar — Ml?,parMQLU Mll par
par =
-ATM22,parM21,L{ ATM21,pa7" 0
Let us now turn to the LFT representation of

Zy (1,0(w1),...,0(wp)). Let us first note that, for an arbitrary frequency w,

the frequency response G(e/*T*) of an arbitrary plant in D¥" (see (13)) can be
written as the following LFT in 6(w):

0o | 1

GT) = (5(w)) * (A2)

vh(w) | GleiT)

Considering the above LFT for each frequency w; (i = 1,..., L) present in the multi-
sine (1), we see that the matrix diag(G(d(w1)), ..., G(6(wr)))) in the expression (17)
f dyn . .
or xy”"(1,0(w1), ...,0(wr)) is equal to:

0 | Ip
(diag(d(w1), ..., 0(wr))) * ] ] ,
MZl,dyn M22,dyn

with Mo gyn, = bdiag(vITD (W1), ees vITD (wr)) and Mo gyn =
diag(G(eT+), ... G(e*rT:)). Using this expression and the LFT (A1) for U(r),
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2 (7, 6(wy), ..., 8(wr)) (see (17)) is then given by the LFT in (18) with

A Moy 0 0
y

T T
A" Mg gynMa1y  A* Moy gyn

M1y 0 Moy

0

Appendix B. Structure of E, D, 13, Z in Proposition 5

As shown in (Barenthin et al., 2008), the real matrices B and D in the expression of
Ym,n have the following structures:

0 K12 Klm
B —I'(12 0
K(m—l)m
—Kim _K(mfl)m 0

Ri1 Ris ... Rim
- R12 R22 .. Rgm

D - . . 9
Ry Rom ... Rpm

with the constraints that all blocks Kj; (resp. R;) satisfy K; = —Kg € R™™ (resp.

Ry = —RY € R™™). The matrix P (resp. Z) has a similar structure as B (resp. D),
but with the skew-symmetric blocks replaced by row vectors of dimension n (Barenthin
et al., 2008).

Appendix C. Proof of Proposition 6

Before giving the proof, let us present the following result which is a particular case
of the generalized KYP lemma (Iwasaki & Hara, 2005).

Lemma 1 ((Iwasaki & Hara, 2005)). Consider a matriz F (1) which depends on a
complex scalar variable T that lies in the set T defined in (11). Assume that F(T) can
be written as an LF'T in 71, and that this LFT is minimal (i.e., we cannot write F(T)
as an LFT in 715 with & < ). We thus have:

Fr) = (vt » (PR ©

where F11 s a matriz of dimension o X «. Consider finally a Hermitian matriz €
of appropriate dimension. Then, F*(1)QF (1) < 0 for all T € T is equivalent to the
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existence of Eo € B, (see Proposition 4) such that:

I 0 \" I 0 «
Za F F: Q( F F: <0. C2
( Fiu Fio ) ( Fu Fio ) +( 21 22 ) ( 21 22 ) = ( )

[
The proof of Proposition 6 is then rather
straightforward. When we perform the product

Uy (7)Ps,..¥s, (1), we indeed obtain a matrix having the structure (38)
for any value of 7 € 7. More precisely, the matrix ¢ in (38) is given by
N (1) ® L) AWN(T) ® I,) = Qo + Qi + Qi7" + ... + Qp7° + Q5 (%), It is
clear that this matrix is Hermitian for all 7 € 7. Moreover, the LMI condition (41)
ensures that this Hermitian matrix is also positive semi-definite for all = € T. The
latter is a consequence of Lemma 1 with F(7) = N(7) @ L,,, « = bm and Q = —A.
Since N (7) = (7I) x N (see (39)), we have indeed that:

m,n

B - Nm,ll ‘ Nm,l?
Fr) = N0) = (rli) (S22 )

with /\7m,11, ./\7/'m,12, /Vm,zl and ./\7m722 as defined in the statement of Proposition 6.
Then, when we perform the product

Vs (7)Ps, . ¥s,, . (7), the matrix 4D in (38) is given by
0
L Y
JD =jDo+(0,D1, ... Dp) (N ® I;mn) + N™ @ I;pn) | 7!
Dy

The right hand side of this expression is equal to jDg + Di(1 — 7*) 4 ... + Dy(7° —
(t%)*) since D; = —DI (i = 1,...b). Tt is clear that this expression has indeed the
desired structure since 7¢ — (7%)* (i = 1, ...b) is an imaginary number for all 7 € 7. In
Vs (1)Ps,..¥s,, . (7), the matrix 77 in (38) is given by

Zy

The right hand side of this expression is equal to jZg + Z1 (T —7%) + ... + Zy (7 — (7°)*)
which has thus also the desired structure. Following the same procedure, the matrix
B in (38) is given by 2Bg + B1(7 +7%) + ... + By(7° + (7°)*) since B; = B! (i = 1,...b)
while the matrix P in (38) is given by 2Py + Pi(7 4+ 7) 4 ... + Py(7° + (7°)*). These
expressions have the desired structure since 7% + (79)* (i = 1,...b) is a real number for

allT7 e T.

Remark. In Proposition 1 of (Bombois et al., 2010), we proposed a less general
parametrization for Py, where the matrices (); were restricted to be real matrices,

m,n
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the factorizations of jD was reduced to Di(1 —7*) + ... + Dy(7? — (7°)*) and the one
of jZ to Zy(T — 1) + ... + Zp (70 — (79)%).

Appendix D. Proof of Proposition 7
Observe that the LMI (23) with » = 0, IIy = E,, and with M,, My (see (20))
obtained from the decomposition of M, is equivalent to (C2) with a = az, Q@ =

< A ) (Fit Fiz) = My and (Fay Fz) = (27 MT|T. The matrix F(r) in (C1)

is thus F(7) = (1 2,(7))T. Using Lemma 1 in Appendix C, we thus have that the
LMI (23) is equivalent to

F(T)QF (1) = Re(zy(1)) —v <0 VT €T.
A similar reasoning shows that (24) is equivalent to —y < Re(z,(7)) for all T € T.

Combining these two facts shows that the LMI optimization problem (22)-(24) yields
a solution v, which is equal to ..
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