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Abstract

In this paper, we consider the problem of system identification with output amplitude constraints for the case of a multisine
excitation. The main contribution of the paper is to provide an LMI optimization problem to verify whether the output
amplitude constraint is satisfied for all systems in an uncertainty region containing the unknown true system. In addition,
input amplitude constraints can also be verified using the results of this paper.
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1 Introduction

In this paper, we consider system identification with
a multisine excitation and we develop a methodology to
verify whether a given multisine excitation respects in-
put and output amplitude constraints. For this purpose,
we make use of an uncertainty region for the unknown
true system.
Besides a model Ĝ of the unknown true system G0,

prediction error identification [16] allows to derive an
uncertainty region D for G0. Different types of uncer-
tainty regions have been considered in the literature.
When the identification is performed in a full-order
model structure, the obtained uncertainty region D is a
set of parametrized transfer functions G(θ) whose pa-
rameter vector θ is constrained to lie in an ellipsoid U in
the parameter space [16,5]. When the model structure
is not full-order, the obtained uncertainty region D is a
set of systems G whose frequency response is, at each
frequency ω, constrained to lie in an ellipse U(ω) in the
Nyquist plane [12,4,13,20].
With respect to the uncertainty regions that are gen-

erally considered in robustness analysis [22], the un-
certainty regions D delivered by system identification
are rather non-standard. However, in the last twenty
years, numerous robustness analysis tools have been de-
veloped for these types of uncertainty regions (mainly for
the parametric uncertainty region). In [5,4,1], we have,
e.g., developed an LMI optimization procedure to verify
whether the worst-case H∞ performance achieved by a

given controller over the plants in D is acceptable. The
case of the worst-case H2 performance is treated in [6].
In [14], it is shown that more complex robust perfomance
criteria can be addressed at the cost of a second-order
Taylor approximation. Note that many of these robust-
ness tools have been integrated into optimal experiment
design schemes aiming at obtaining optimal models for
control [8,1,6,14].

In relation with these developments around optimal
experiment design, robust output power constraints
have also been considered i.e., robustness analysis tools
have been developed to verify whether a given excita-
tion will not lead to an excessive output power during
an identification experiment. Since the output obviously
depends on the unknown true system G0, it is in fact
verified whether the output for all systems G ∈ D has
an acceptable power. The case of multisine excitation is
treated in [7], while robust output power constraints for
filtered white noise excitation can be addressed using
the tools in [6].

In many applications though (see, e.g., [18] for an
example), the constraints are not formulated as con-
straints on the power of the output signal, but as con-
straints on the amplitude of the time-domain sequence
of this signal. As mentioned above, in this paper, we
will therefore develop a methodology to handle robust
output amplitude constraints. Since the (robust) out-
put amplitude constraint can easily be translated into
a (robust) output power constraint for filtered white
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noise excitation, we will here only consider the case of
multisine excitation. Such robust amplitude constraints
could until now only be treated via an approximation of
the uncertainty set D i.e., the output constraint is only
verified for a limited number of grid points in D (see,
e.g., [17]). In this paper, we use the robustness analysis
philosophy to avoid the approximation of the uncer-
tainty region D and we develop an LMI optimization
problem which allows, for a given multisine excitation,
to verify whether the output amplitude constraint is
satisfied for the outputs of all systems G ∈ D. We do
that for both types of uncertainty regions D delivered
by system identification. Since amplitude constraints
must be respected at each time instant, we treat, in
this LMI formulation, the time similarly as the systems
G ∈ D i.e., as an uncertain variable varying in a set.
Using the same philosophy, we also develop an LMI
optimization problem to verify whether an input ampli-
tude constraint is verified at each time instant.

Notations. Continuous-time signals will be denoted
x(t) where t ∈ R is the time index. The variable s is
the Laplace variable while z will denote both the Z-
transform variable and the shift operator. We use j to
represent

√
−1. For a complex number a (i.e., a ∈ C),

|a|, ∠a, Re(a), Im(a) will denote, respectively, its mod-
ulus, its argument, its real part and its imaginary part.
For a real number a (i.e., a ∈ R), |a| is the abolute value
of a. For a matrix A, AT (resp. A∗) is its transpose
(resp. conjugate transpose). With some abuse, we will
use 0 both for zero and for zero matrices. The matrix

X1 0 0

0
. . . 0

0 0 Xn


will be denoted diag(X1, ..., Xn) if the elements Xi (i =
1, ..., n) are scalar quantities, while it will be denoted
bdiag(X1, ..., Xn) if the elements Xi (i = 1, ..., n) are
matrices. In addition, In represents the identity matrix
of dimension n× n and ⊗, the Kronecker product. The
unit ball of dimension n is denoted Bn i.e., Bn = {δ ∈
Rn | δT δ ≤ 1}. For two matrices ∆ and

M =

M11 M12

M21 M22

 with ∆ ∈ Cm×n andM11 ∈ Cn×m,

∆⋆M is given by∆⋆M
∆
= M22+M21∆(In −M11∆)

−1
M12

(the symbol ⋆ stands thus here for the Redheffer prod-
uct). Moreover, the relation y = (∆⋆M)u (with vectors
y and u) can always be represented via internal vectors
p and q in the following LFT expression:

p = ∆q and

 q

y

M11 M12

M21 M22

 p

u

 .

2 Problem statement

We consider input-output amplitude constraints for
the identification of a discrete-time model of a stable

single-input single-output true system which can be de-
scribed by a continuous-time transfer function Gc

0(s)
with input u and output y. The discrete-time data for
the identification of the discrete-time model ofGc

0(s) will
be gathered in open loop by sampling the continuous-
time input-output signals at a rate Ts (after the applica-
tion of an anti-aliasing filter). The obtained discrete-time

model Ĝ(z) will therefore be an estimate of a discrete-
time transfer functionG0(z) which satisfiesG0(e

jωTs) =
Gc

0(jω) for ω ∈ [0, π
Ts
]. We also suppose that we have an

uncertainty region D containing the true discrete-time
systemG0(z). This uncertainty region will typically orig-
inate from an initial identification experiment.

In order to, e.g., reduce this initial uncertainty, we
wish to perform a second identification experiment us-
ing a multisine excitation i.e., the continuous-time true
systemGc

0(s) will be excited by a (continuous-time) mul-
tisine excitation signal having the general expression:

u(t) =

L∑
i=1

(ai,s sin(ωit) + ai,c cos(ωit)) , (1)

where ai,s, ai,c (resp. ωi) (i = 1, ..., L) are user-chosen
amplitudes (resp. frequencies). The fundamental fre-
quency of this multisine will be denoted ω0. Each of the
L frequencies ωi (i = 1, ..., L) thus satisfies the following
relation:

ωi = αi ω0 (2)

for an integer αi ̸= 0 (i = 1, ..., L). Since the discrete-
time data will be gathered with a sampling rate Ts, we
will suppose that ωL < π

Ts
. For the sequel, it is impor-

tant to notice that the multisine (1) can be equivalently
written in the following phasor form:

u(t) = Re
(
AT U(t)

)
, (3)

where U(t) and A are complex column vectors of dimen-
sion L whose ith entries are respectively given by Ui(t) =
ejωit and Ai = ai,c− j ai,s (i = 1, ..., L). Using the same
phasor notation and the fact that G0(e

jωTs) = Gc
0(jω)

for ω ∈ [0, π
Ts
], the (noise-free) steady-state output of

Gc
0(s) under this multisine excitation is given by:

y(t, G0)
∆
= Re

(
AT diag(G0(e

jω1Ts), ...., G0(e
jωLTs)) U(t)

)
.

(4)
Even though the frequency response of Gc

0(s) could also
have been used in (4), the discrete-time version G0(z)
of Gc

0(s) is used instead since it is this transfer function
which lies in D. Note that both u(t) and y(t, G0) are pe-
riodic signals with period T0 = 2π

ω0
. This will also be the

case for the signal y(t, G) obtained by replacing, in (4),
G0(z) by a system G(z) ∈ D. In the sequel, we will de-
note TP = [0, 2π

ω0
] the time interval corresponding to a

period of these multisines.
In the sequel, we will suppose that we have the follow-

ing input and output amplitude constraints:

2



−ūmax ≤ u(t) ≤ ūmax ∀t ∈ TP

−ȳmax ≤ y(t, G0) ≤ ȳmax ∀t ∈ TP
(5)

for some given thresholds ūmax > 0 and ȳmax > 0. Note
that the output amplitude constraint here pertains to
the noise-free steady-state output y(t, G0). See Section 2
of [9] to see how to deal with the transient and with the
noise corrupting the output.
In order to verify (5) before the application of the

multisine u(t) to the true system, we wish to evaluate
the following quantities:

uwc = max
t∈TP

|u(t)|, (6)

ywc = max
t∈TP

max
G(z)∈D

|y(t, G)|, (7)

with y(t, G) defined in (4). The amplitude constraints
will indeed be respected if uwc ≤ ūmax and ywc ≤ ūmax

(since the unknown transfer function G0(z) lies in D).
In order to be able to evaluate uwc and ywc in a

tractable manner, we will introduce the following change
of variable:

τ
∆
= ejω0t, (8)

with ω0 the fundamental frequency of u(t). Using (2),
we have Ui(t) = ejωit = ταi (i = 1, ..., L). Consequently,

introducing Ũ(τ) = (τα1 , τα2 , ..., ταL)T , (6) and (7) can
be equivalently rewritten as:

uwc = max
τ∈T

|Re(xu(τ))| with xu(τ) = AT Ũ(τ) (9)

ywc = max
τ∈T

max
G∈D

∣∣∣Re
(
AT diag(G(ejω1Ts), ...., G(ejωLTs))Ũ(τ)

)∣∣∣
(10)

with
T = {τ ∈ C | τ∗τ = 1}. (11)

Observe that, in the same way as G is an uncertain sys-
tem lying in D, the variable τ can also be seen as an
uncertain variable which lies in the set T .

3 Uncertainty region D
As indicated in the previous section, we suppose that

an initial identification experiment has led to an initial
uncertainty regionD for the unknown true systemG0(z).
The uncertainty regions delivered by prediction error
identification are generally determined by bounding the
so-called variance and bias errors. The variance error is
due to the unavoidable presence of measurement and
process noise and the bias error is present in the case
where the chosen model structure is not rich enough to
describe the true system [16].

Let us first consider the case where the only source
of uncertainty is the noise: we therefore suppose that
the true transfer function G0(z) can be parametrized
by an unknown parameter vector θ0 ∈ Rk in a given
model structure G(z, θ) i.e., G0(z) = G(z, θ0). In this

case, prediction error identification allows to determine

an estimate θ̂ of θ0 as well as an ellipsoid centered in

θ̂ that contains the unknown θ0 at any user-chosen
probability level [16]. Let us, e.g., denote this ellipsoid

U = {θ ∈ Rk | (θ − θ̂)TP−1(θ − θ̂) ≤ 1} for some
matrix P > 0. Since robust analysis is generally formu-
lated for uncertain parameters lying in a ball centered
at zero, we observe that U can also be rewritten as

U = {θ ∈ Rk | θ = θ̂ + V δ, δ ∈ Bk} with P = V V T

and δ ∈ Rk an uncertain vector constrained to lie
in the ball Bk (see the notations at the end of Sec-
tion 1). Knowing that the model structures used in
prediction error identification are generally rational in
θ i.e., G(z, θ) = (ZN (z)θ)/(1 + ZD(z)θ) with ZN (z)
and ZD(z) row vectors containing only zeros and delays
[5,7], the parametric uncertainty region Dpar for G0(z)
has then the following form:

Dpar = {G(z, θ) =
ZN (z)θ

1 + ZD(z)θ
| θ = θ̂+V δ, δ ∈ Bk}. (12)

The uncertainty regionDpar in (12) thus contains trans-

fer functions G̃(z, δ)
∆
= G(z, θ̂ + V δ) with δ ∈ Bk.

Asmentioned above, in order to derive (12), prediction
error identification has to be performed in a full-order
model structure. Even though efficient techniques exist
to determine such a full-order model structure (see [16,
Chapter 10]), uncertainty regions can also be built in the

case where the (stable) model Ĝ(z) of G0(z) is identified
in a model structure whose order is too low to describe
G0(z) [12,4,13,20]. Using these methods, given a user-
chosen probability level, it can be derived that, at each
frequency ω, ∆G(ejωTs) = G0(e

jωTs)−Ĝ(ejωTs) has the
following property: Re(∆G(ejωTs))

Im(∆G(ejωTs))

 ∈ U(ω),

where U(ω) = {ξ ∈ R2 | ξTP (ω)−1ξ ≤ 1} is an el-
lipse in the Nyquist plane defined by a matrix P (ω) > 0
(the ellipses U(ω) are different at each frequency i.e.,
the matrices P (ω) are different at each frequency). Ob-
serve that U(ω) is also equal to U(ω) = {ξ ∈ R2 | ξ =
V (ω)δ(ω), δ(ω) ∈ B2} with P (ω) = V (ω)V (ω)T and
with δ(ω) ∈ R2 the (normalized) vector describing the
uncertainty at frequency ω and which is constrained to
lie in the ball B2. Consequently, the uncertainty region
Ddyn for G0(z) has the following form:

Ddyn = {G(z) | G(z) is stable and ...

... G(ejωTs) = Ĝ(ejωTs) + vTP (ω)δ(ω), δ(ω) ∈ B2}
(13)

with vTP (ω)
∆
= (1 j)V (ω) (j =

√
−1).

Remark. As shown in [3,16], modulo a first-order Tay-
lor approximation, the parametric uncertainty region
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Dpar (see (12)) can be projected into a dynamic un-
certainty region Ddyn of the form (13). The obtained
uncertainty set Ddyn will therefore also contain systems
with higher order than G(z, θ).

Remark. After the initial experiment, it is thus not
guaranteed that G0(z) lies in the uncertainty region
delivered by system identification. This indeed only
holds modulo a certain probability level (say 99 %).
Consequently, we can only verify the output amplitude
constraint modulo this user-chosen probability level.
Even though this probability level could be seen as a
drawback, we in fact deem it an advantage. Indeed,
in the robust control literature, the uncertainty region
is just posed without mentioning how the assumption
G0 ∈ D can be verified in practice.

Remark. The fact that the true system G0(z) is a sta-
ble transfer function justifies the restriction to stable
systems in the definition (13) of Ddyn. This restriction
in turn ensures that y(t, G) with the expression (4) is
indeed the steady-state output of G under (1). In order
to guarantee the same property for Dpar, it is necessary
to verify that all systems G(z, θ) ∈ Dpar are stable (us-
ing, e.g., the tools in [5]). In the sequel, we will assume
that this stability condition is indeed verified.

Now that we have defined the uncertainty regions we
will consider in this paper, we can particularize the ex-
pression (10) of ywc for Dpar and Ddyn. For the uncer-
tainty region Dpar in (12), (10) is equivalent to:

ypar
wc = max

τ∈T
max
δ∈Bk

∣∣Re
(
xpar
y (τ, δ)

)∣∣ (14)

xpar
y (τ, δ) = AT diag(G̃(ejω1Ts , δ), ...., G̃(ejωLTs , δ)) Ũ(τ)

(15)

with G̃(z, δ)
∆
= G(z, θ̂+ V δ). Conversely, for the uncer-

tainty region Ddyn in (13), we rewrite (10) as

ydyn
wc = max

τ∈T
max

δ(ωi)∈B2(i=1,...,L)

∣∣∣Re
(
xdyn
y (τ, δ(ω1), ..., δ(ωL))

)∣∣∣
(16)

xdyn
y (τ, δ(ω1), ..., δ(ωL)) = ....

... = AT diag(G(δ(ω1)), ...., G(δ(ωL)))) Ũ(τ)
with G(δ(ωi))

∆
= Ĝ(ejωiTs) + vTP (ωi)δ(ωi) i = 1, ..., L

(17)
It is important to note that the dependence of xpary (resp.

xdyny ) on a system G in the uncertainty region Dpar

(resp. Ddyn) is restricted to the frequency response of
this system at the frequencies ωi (i = 1, ..., L) present in
the multisine (1). For Dpar, these L frequency response
values can all be described by one unique uncertain vec-
tor δ ∈ Bk while, for Ddyn, these L frequency response
values are described by L (independent) uncertain vec-
tors δ(ωi) ∈ B2 (i = 1, ..., L).

Let us also note that (16) is equal to (10) for D =
Ddyn if, for any G(δ(ωi)) with δ(ωi) ∈ B2 and i =
1, ..., L, there exists a stable G(z) ∈ Ddyn such that
G(ejωiTs) = G(δ(ωi)) (i = 1, ..., L). If this property does
not hold, (16) is an upper bound for (10). This situation
is classical for dynamic uncertainty regions such as Ddyn

and ydynwc can be used to verify the output constraint
in (5).

4 LFT representations for xu(τ), x
par
y and xdyny

In (9), (14) and (16), we see that the quantities we
wish to evaluate have a similar form i.e., the maximiza-
tion over uncertain variables of the absolute value of the
real part of a complex scalar quantity x (respectively
xu(τ), xpary (τ, δ) and xdyny (τ, δ(ω1), ..., δ(ωL))). These
three scalar quantities x are rational in the uncertain
variables of which they are function. This property is
crucial to be able to address the maximization problem
in a tractable way i.e., using the tools of robustness
analysis.

Since xu(τ), xpary (τ, δ) and xdyny (τ, δ(ω1), ..., δ(ωL))
are rational in the uncertain variables of which they
are function, these uncertain variables can be separated
from the other parts in an LFT expression. As shown in
Appendix A, we can thus determine complex matrices
Mu, M

par
y and Mdyn

y such that:

xu(τ) = (τ IαL) ⋆ Mu

xpar
y (τ, δ) = (bdiag (τIαL , IL ⊗ δ)) ⋆ Mpar

y

xdyn
y (τ, δ(ω1), ..., δ(ωL)) = ...

... = (bdiag (τIαL , diag(δ(ω1), ..., δ(ωL)))) ⋆ M
dyn
y

(18)

with αL as in (2) and where ⋆ is defined at the end of
Section 1.

We have already mentioned the similarity between
the quantities uwc , y

par
wc and ydynwc that we wish to eval-

uate. Let us formalize this in the following proposition
whose proof is straightforward.

Proposition 1 Consider (18) and the following worst-
case quantity

xwc = max
∆i∈∆i (i=0,...,r)

|Re(x(∆0,∆1, ...,∆r))| (19)

where x(∆0,∆1, ...,∆r) = (bdiag(∆0,∆1, ...,∆r)) ⋆ M
with M a known matrix and ∆i (i = 0, ..., r) known
uncertainty sets. Then, uwc defined in (9) is a particular
case of (19) with x = xu(τ), M = Mu, r = 0 and
∆0 = {∆0 = τIαL

| τ ∈ T }. The quantity yparwc in (14)
is also a particular case of (19) with x = xpary (τ, δ),
M = Mpar

y , r = 1, ∆1 = {∆1 = IL ⊗ δ | δ ∈ Bk} and

the same ∆0 as for uwc. Finally, y
dyn
wc in (16) is also a

particular case of (19)with x = xdyny (τ, δ(ω1), ..., δ(ωL)),

M = Mdyn
y , r = L, ∆i = {∆i = δ(ωi) | δ(ωi) ∈ B2}

(i = 1, ..., L) and the same ∆0 as for uwc and yparwc .

4



5 Computation of an upper bound for xwc
5.1 Unifying result

Proposition 1 shows that the computation of ywc
(see (10)) can be formulated as (19) for Dpar and
Ddyn. Note that this is also the case for many
other uncertainty sets such as the additive or multi-
plicative uncertainty sets which are classically used
in the robustness analysis literature [22]. In this
section, we will present a methodology to evalu-
ate xwc for an arbitrary complex scalar quantity
x(∆0,∆1, ...,∆r) = (bdiag(∆0,∆1, ...,∆r)) ⋆ M (i.e.,
for an arbitrary matrix M and for arbitrary uncertainty
sets ∆i (i = 0, ..., r)). Consequently, the results of this
paper are not restricted to the the case of the uncer-
tainty sets delivered by prediction error identification.
As such, the optimization problem in (19) is NP-hard

in almost all cases [22]. Robustness analysis however al-
lows to formulate convex (and thus tractable) optimiza-
tion problems which yield an upper bound xubwc for xwc.
As shown in the robustness analysis literature, the ob-
tained upper bounds are generally tight [22].
Let us first introduce the internal vectors p =

(pT0 , ..., p
T
r )
T and q = (qT0 , ..., q

T
r )
T of the LFT

x(∆0,∆1, ...,∆r) = (bdiag(∆0,∆1, ...,∆r)) ⋆ M i.e.,
p = bdiag(∆0,∆1, ...,∆r)q (see the end of Section 1).
We then have:

pi = ∆i qi (i = 0, ..., r)

qi = Mi

(
p

1

)
(i = 0, ..., r)

x(∆0,∆1, ...,∆r) = Mx

(
p

1

)
, (20)

with M = (MT
0 ,MT

1 , ...,MT
r ,M

T
x )

T .
Like in classical robustness anlaysis, we associate with

each set ∆i (i = 0, ..., r) a so-called set of multipliers Πi

(i = 0, ..., r). In a nutshell, the set of multipliers Πi is
an explicit and affine parametrization of the quadratic
constraints satisfied by (pTi , q

T
i )
T when pi = ∆iqi with

∆i ∈ ∆i [21,11,19].

Definition 1 Consider an uncertain variable ∆i con-
strained to lie in the set ∆i. We define the set of mul-
tipliers Πi as a set of affinely parametrized Hermitian
matrices Πi that all have the following property:∆i

I

∗

Πi

∆i

I

 ≥ 0 ∀∆i ∈ ∆i. (21)

In other words, Πi ∈ Πi =⇒ (21).

Using the sets of multipliers Πi (i = 0, ..., r), we can
now develop the following LMI optimization problem
whose solution is an upper bound xubwc for xwc.

Proposition 2 Consider a complex scalar quantity
x(∆0, ...,∆r) depending as in (20) on r + 1 uncertain
variables ∆i ∈ ∆i (i = 0, ..., r) and consider the sets of
multipliers Πi (i = 0, ..., r) for each uncertainty set ∆i

(i = 0, ..., r) (see Definition 1). Then, an upper bound
xubwc for xwc (see (19)) is the solution γopt of the following
LMI optimization problem having as decision variables
a real scalar γ ≥ 0 and two matrices Π1

i , Π
2
i within each

of the sets of multipliers Πi (i = 0, ..., r):

min γ s.t. (22)

G∗
x

(
−γ 0.5

0.5 0

)
Gx +

r∑
i=0

G∗
i Π1

i Gi ≤ 0 (23)

0 ≤ G∗
x

(
γ 0.5

0.5 0

)
Gx −

r∑
i=0

G∗
i Π2

i Gi (24)

with Gx =
(
ZTxM

T
x

)T
and Gi =

(
ZTi M

T
i

)T
(i = 0, ..., r)

(Zx and Zi (i = 0, ..., r) are selection matrices such that
Zx(p

T 1)T = 1 and Zi(p
T 1)T = pi (i = 0, ..., r)).

Proof. The result follows from the fact that (23) and (24)
imply

−γ ≤ Re(x(∆0, ...,∆r)) ≤ γ ∀∆i ∈ ∆i (i = 0, ..., r)
(25)

Let us thus prove this result. For this purpose, let us
consider one value of ∆ = bdiag(∆0,∆1, ...,∆r) in the
LFT (20) and let us consider the corresponding internal
vectors p = (pT0 , ..., p

T
r )
T and q = (qT0 , ..., q

T
r )
T . Let us

then pre- and post-multiply with (p∗, 1) and (pT , 1)T the
LMI constraints (23) and (24). Using (20), this yields

Re(x(∆0, ...,∆r)) +

r∑
i=0

g∗i Π1
i gi ≤ γ (26)

−γ ≤ Re(x(∆0, ...,∆r))−
r∑

i=0

g∗i Π2
i gi (27)

with gi = (pTi , q
T
i )
T (i = 0, ..., r). The above reasoning

can be done for any value of ∆ = bdiag(∆0,∆1, ...,∆r)
with ∆i ∈ ∆i (i = 0, ..., r). In other words, for the
multipliers Π1

i , Π
2
i (i = 0, ..., r) found by the optimiza-

tion problem, (26) and (27) hold true for all ∆i ∈ ∆i

(i = 0, ..., r). Observe also that, because of (20), gi =(
∆T
i I
)T

qi. Consequently, due to Definition 1, we have

that
∑r
i=0 g

∗
i Π1

i gi in (26) is positive for all ∆i ∈ ∆i

(i = 0, ..., r). Similarly, −
∑r
i=0 g

∗
i Π2

i gi in (27) is nega-
tive for all ∆i ∈ ∆i (i = 0, ..., r). We have thus proven
that (23) and (24) imply (25).

It is clear that the more general the parametrization
of the sets of multipliers Πi (i = 0, ..., r), the tighter the
upper bound of xwc delivered by the LMI optimization
problem (22)-(24) [21,11,19]. In the next section, we will
make use of the fact that, for all the quantities we wish
to evaluate in this paper, the uncertainty set∆0 is given
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by ∆0 = {∆0 = τIαL
| τ ∈ T } i.e., a simple uncer-

tainty set based on a scalar uncertain variable τ ∈ T .
The fact that ∆0 has a simple structure allows to use
∆0-dependent multipliers Πi for all other uncertain vari-
ables ∆i ∈ ∆i (i = 1, ..., r). Even though this will lead
to a slightly more complex LMI optimization problem,
the upper bound xubwc for xwc obtained in this way will
generally be tighter (see, e.g., [2]). In order to justify this
approach, let us consider, for any ∆0 ∈ ∆0, the quantity
xwc(∆0) = max∆i∈∆i (i=1,...,r) |Re(x(∆0,∆1, ...,∆r))|
and let us note that xwc = max∆0∈∆0 xwc(∆0). If we
evaluate the upper bound of xwc(∆0) via a multiplier ap-
proach similar to the one in Proposition 2, the multipli-
ers Π1

i and Π2
i (i = 1, ..., r) can be different for each value

of ∆0 and this thus advocates to consider ∆0-dependent
multipliers Πi (i = 1, ..., r) to compute xubwc.

5.2 Improvement for the case ∆0 = τIα
Let us thus particularize the LFT (20) to p0 = τIαq0

for some integer α and let us consider the following fac-
torization of the multipliers Πi (i = 1, ..., r) given in
Definition 1.
Definition 2 Consider the variable τ lying in the set T
(see (11)) and the set Πi of multipliers for the uncertain
variable ∆i ∈ ∆i (see Definition 1). The τ -dependent
factorization corresponding to Πi is defined via a matrix
Ψi(τ) rational in τ and a set Pi of affinely parametrized
(τ -independent) Hermitian matrices Pi. These elements
are detemined in such a way that, for each τ ∈ T and
for each Pi ∈ Pi, Ψ

∗
i (τ)PiΨi(τ) are elements of Πi.

Using the matrices Ψi(τ) introduced in Definition 2,
the LFT (20) and the quantity Gi defined below (24), we
pose:

gΨ,i = Ψi(τ)Gi

(
p

1

)
(i = 1, ..., r). (28)

Since all Ψi(τ) (i = 1, ..., r) are rational in τ , gΨ =
(gTΨ,1, ..., g

T
Ψ,r)

T can be expressed as:

gΨ =

(τIβ) ⋆

M11 M12

M21 M22


︸ ︷︷ ︸

=M


(
p

1

)
(29)

for some integer β and for some matrix M. For further
use, let us introduce the internal signals pΨ and qΨ of
the LFT (29):

pΨ = τIβ qΨ

qΨ = M11 pΨ +M12

(
p

1

)

gΨ,i = M21,i pΨ +M22,i

(
p

1

)
(i = 1, ..., r), (30)

with (M21,i M22,i) = Ri(M21 M22) where Ri is a se-
lection matrix such that gΨ,i = Ri gΨ (i = 1, ..., r). We
have now all the ingredients to obtain an alternative
LMI optimization problem yielding an upper bound for
xwc. If the factorization in Definition 2 is chosen with
care (the more general, the better), we can expect that
this upper bound will be tighter than the one given in
Proposition 2 since it is derived with τ -dependent mul-
tipliers [2].

Proposition 3 Consider the framework of Proposi-
tion 2 with ∆0 = {∆0 = τIα | τ ∈ T }. Consider
also the factorization of the multipliers Πi (i = 1, ..., r)
(see Definition 2) and the notations (28)-(30). Con-

sider finally the set of multiplier Π̃0 corresponding to
∆̃0 = {∆̃0 = τIρ | τ ∈ T } with ρ = α + β (see Defi-
nition 1). Then, an upper bound for xwc is the solution
γopt of the following LMI optimization problem having
as decision variables a real scalar γ ≥ 0, two matrices
Π̃1

0 and Π̃2
0 in Π̃0 and two matrices P1

i , P2
i within each

set Pi (i = 1, ..., r) (see Definition 2):

min γ s.t. (31)

V∗
1

(
−γ 0.5

0.5 0

)
V1 + V∗

2 Π̃
1
0V2 +

r∑
i=1

R∗
i P1

iRi ≤ 0 (32)

0 ≤ V∗
1

(
γ 0.5

0.5 0

)
V1 − V∗

2 Π̃
2
0V2 −

r∑
i=1

R∗
i P2

iRi, (33)

where V1 = (0 Gx), Ri = (M21,i M22,i) and

V2 =


bdiag(Iβ , Z0)M11 M12

0 M0




with Gx and Z0 defined below (24) and with M0 defined
in (20).

Proof.The result follows here also from the fact that (32)
and (33) imply (25). Let us thus prove this result. For this
purpose, let us consider one value of ∆ = bdiag(∆0 =
τIα,∆1, ...,∆r) in the LFT (20) and let us consider the
same τ in the LFT (30). With the corresponding in-
ternal vectors p = (pT0 , ..., p

T
r )
T and q = (qT0 , ..., q

T
r )
T

(see (20)) and the corresponding vectors pΨ and qΨ
(see (30)), let us pre- and post-multiply with (p∗ψ, p

∗, 1)

and (pTψ , p
T , 1)T the LMI constraints (32) and (33). Us-

ing (20), (28) and (30), this yields

Re(x(τ,∆1, ...,∆n))+g∗τ Π̃1
0 gτ+

r∑
i=1

g∗i Ψ∗
i (τ)P1

i Ψi(τ) gi ≤ γ

(34)

−γ ≤ Re(x(τ,∆1, ...,∆n))−g∗τ Π̃2
0 gτ−

r∑
i=1

g∗i Ψ∗
i (τ)P2

i Ψi(τ) gi

(35)
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with gτ = (pTψ , p
T
0 , q

T
ψ , q

T
0 )
T and gi = (pTi qTi )

T =

Gi(pT 1)T (i = 1, ..., r). The above reasoning can be
done for any value of τ ∈ T and of ∆i ∈ ∆i (i =

1, ..., r). In other words, for the multipliers Π̃1
0, Π̃

2
0, P1

i
and P2

i (i = 1, ..., r) found by the optimization prob-
lem, (34) and (35) hold true for all τ ∈ T and for all
∆i ∈ ∆i (i = 1, ..., r). Observe also that, because of (20)

and (30), gi =
(
∆T
i I
)T

qi and gτ = (τIρ Iρ)
T (qTψ , q

T
0 )
T .

Consequently, due to Definitions 1 and 2, we have that
g∗τ Π̃

1
0gτ +

∑r
i=1 g

∗
iΨ

∗
i (τ)P1

i Ψi(τ)gi in (34) is positive for
all τ ∈ T and for all ∆i ∈ ∆i (i = 1, ..., r). Similarly,

−g∗τ Π̃
2
0gτ −

∑r
i=1 g

∗
i Ψ

∗
i (τ)P2

i Ψi(τ) gi in (35) is negative
for all τ ∈ T and for all ∆i ∈ ∆i (i = 1, ..., r). We have
thus proven that (32) and (33) imply (25).

6 Upper bounds for uwc, y
par
wc and ydynwc

We will now use the results of the previous section to
derive tight upper bounds for uwc, y

par
wc and ydynwc . For

this purpose, we however still need to present the sets
of multipliers corresponding to the type of uncertainties
encountered in (18). Let us start with the set of multi-
pliers corresponding to ∆0 = {∆0 = τIα | τ ∈ T } for
an arbitrary α (in Proposition 1, α = αL).

Proposition 4 Consider ∆0 = {∆0 = τIα | τ ∈ T }
with the set T defined in (11) and an arbitrary scalar α.
Then, ∆0

I

∗

Ξα

∆0

I

 ≤ 0 ∀∆0 ∈ ∆0 (36)

when Ξα = bdiag(S,−S) with S any Hermitian matrix
of dimension α × α. The set of matrices Ξα having this
structure will be denoted Ξα in the sequel.

Proof. For any Ξα = bdiag(S,−S), we have that the
quadratic expression in (36) is equal to (τ∗τ − 1)S and
this quantity is indeed larger or equal to zero for all
τ ∈ T (since it is in fact identically equal to zero for all
τ ∈ T ).

Let us also present the set of multipliers correspond-
ing to ∆i = {∆i = Im ⊗ δ | δ ∈ Bn} for arbitrary
integers m and n (in Proposition 1, m = L and n = k
for the case of yparwc and m = 1 and n = 2 for the case
of ydynwc ). A very general parametrization of the set of
multipliers corresponding to this uncertainty has been
developed in our previous contribution [1].

Proposition 5 ([1]) Consider the set Bn = {δ ∈
Rn | δT δ ≤ 1} and an arbitrary integer m. Then,

(
Im ⊗ δ

Im

)T
Σm,n

(
Im ⊗ δ

Im

)
≥ 0 ∀δ ∈ Bn (37)

when Σm,n has the following structure

Σm,n =

−Q⊗ In + B̃ + j D̃ P̃T − j Z̃T

P̃ + j Z̃ Q

 (38)

where Q is any positive semi-definite Hermitian matrix
of dimensionm×m and B̃, D̃, P̃ , Z̃ real matrices having
the structure given in Appendix B. The set of matrices
Σm,n having the structure (38) will be denoted Σm,n in
the sequel.

In order to be able to use Proposition 3 to improve
the upper bound for yparwc and ydynwc , we develop in the
next proposition a τ -dependent factorization of the set
of multipliers introduced in Proposition 5. This fac-
torization is more general than the one given in [6].
In this proposition, we will use the following vector
N (τ) = (1, τ, τ2, ..., τ b)T where b is an arbitrary integer
and which can be written as the LFT N (τ) = (τ Ib)⋆ N̄
with

 N̄11 N̄12

N̄21 N̄22


︸ ︷︷ ︸

=N̄

=


 0 0

Ib−1 0

 (1, 0, ..., 0)T

(0, Ib)
T (1, 0, ..., 0)T

 (39)

Proposition 6 Consider the set of multipliers Σm,n

linked to Im ⊗ δ with δ ∈ Bn (see Proposition 5).
Consider also the variable τ that varies in the set T
(see (11)). Using τ and some user-chosen integer b ≥ 1,
define the vector N (τ) = (1, τ, τ2, ..., τ b)T and the ma-
trix ΨΣm,n(τ):

ΨΣm,n(τ) =


N (τ)⊗ Inm 0

0 N (τ)⊗ Im

Inm 0

0 Im

 . (40)

Then, for each τ ∈ T , the τ -dependent matrices
Ψ∗

Σm,n
(τ) PΣm,n ΨΣm,n(τ) with PΣm,n ∈ PΣm,n are all

elements Σm,n of Σm,n. The set PΣm,n
contains all

matrices PΣm,n
having the following structure:

PΣm,n =


−Λ⊗ In 0

0 Λ

 PT
21

P21 P22

 with Λ =


Q0 · · · Qb

... 0 0

Q∗
b 0 0



P21 =


(
B̃0, ..., B̃b

)
+

(
0, D̃1, ..., D̃b

) 
P̃0

...

P̃b


T

−


0

Z̃1

Z̃b


T

(
0, Z̃1, ..., Z̃b

)
+

(
P̃0, ..., P̃b

)
0
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P22 =

 jD̃0 −jZ̃T
0

jZ̃0 0

 .

The real matrices B̃i, D̃i, P̃i and Z̃i (i = 0, ..., b) of the
parametrization of PΣm,n

can take any values provided
that they have, respectively, the same structure as the real
matrices B̃, D̃, P̃ and Z̃ in (38). Finally, the elements
of the matrix Λ are constrained as follows: Qi ∈ Cm×m

(i = 1...b), Q0 = Q∗
0 ∈ Cm×m and there must exist

a matrix Ξbm ∈ Ξbm (see Proposition 4) such that the
following LMI is satisfied:

0 ≤ −

 I 0

N̄m,11 N̄m,12

∗

Ξbm

 I 0

N̄m,11 N̄m,12

+ ...

...+
(
N̄m,21 N̄m,22

)∗
Λ
(
N̄m,21 N̄m,22

)
(41)

where N̄m,11 = N̄11 ⊗ Im, N̄m,12 = N̄12 ⊗ Im,
N̄m,21 = N̄21 ⊗ Im and N̄m,22 = N̄22 ⊗ Im (see (39)).

Proof. See Appendix C.

We have now all the ingredients to derive upper
bounds for uwc, yparwc and ydynwc defined, respectively,
in (9), (14) and (16). Let us begin with uwc. Using
Proposition 1, it is clear that the upper bound for uwc is
the solution γopt of the LMI optimization problem (22)-
(24) with r = 0,Π0 = ΞαL

(see Proposition 4) and with
Mx, M0 (see (20)) obtained from the decomposition of
Mu. Note that we have here in fact a stronger result.

Proposition 7 Consider the LMI optimization prob-
lem (22)-(24) with r = 0, Π0 = ΞαL

(see Proposition 4)
and with Mx, M0 (see (20)) obtained from the decom-
position of Mu. Then, the solution γopt of (22)-(24) is
equal to uwc.

Proof. see Appendix D.

Let us now turn to yparwc and ydynwc . Using Proposi-
tions 1, 2 and 3, we have the following results whose
proofs are straightforward:

Proposition 8 Consider the LMI optimization prob-
lem (22)-(24) with r = 1, Π0 = ΞαL

(see Proposi-
tion 4),Π1 = ΣL,k (see Proposition 5) and withMx,M0,
M1 (see (20)) obtained from the decomposition of Mpar

y .
Then, the solution γopt of (22)-(24) is an upper bound
for yparwc (see (14)). We can also consider the procedure
in Section 5.2 to try to improve this upper bound. Since
r = 1 and Π1 = ΣL,k, we have that Ψ1(τ) = ΨΣL,k

(τ)
(see Proposition 6) and thus (29) can be written with
β = bL(k + 1) and with a matrix M that can be derived
from the LFT of N (τ) (see (39)). A (generally tighter)

upper bound for yparwc can thus be obtained as the solu-
tion γopt of the LMI optimization problem (31)-(33) with

r = 1, Π̃0 = Ξρ (see Proposition 4), ρ = αL+ bL(k+1)
and with P1 = PΣL,k

(see Proposition 6).

Proposition 9 Consider the LMI optimization prob-
lem (22)-(24) with r = L,Π0 = ΞαL

(see Proposition 4),
Πi = Σ1,2 for i = 1, ..., L (see Proposition 5) and with
Mx,Mi (i = 0, ..., L) obtained from the decomposition of
Mdyn
y . Then, the solution γopt of (22)-(24) is an upper

bound for ydynwc (see (16)). We can also consider the pro-
cedure in Section 5.2 to try to improve this upper bound.
Since r = L and Πi = Σ1,2 for i = 1, ..., L, we have that
Ψi(τ) = ΨΣ1,2

(τ) for i = 1, ..., L and thus (29) can be
written with β = 3bL and with a matrix M that can be
derived from the LFT of N (τ) (see (39)). A (generally
tighter) upper bound for ydynwc can thus be obtained as the
solution γopt of the LMI optimization problem (31)-(33)

with r = L, Π̃0 = Ξρ, ρ = αL+3bL and withPi = PΣ1,2

for i = 1, ..., L.

Remark. The LMI constraint (41) on the parametriza-
tion of the elements of PΣL,k

(resp. PΣ1,2
) in Proposi-

tion 8 (resp. in Proposition 9) can be easily added as
an extra LMI constraint in the LMI optimization prob-
lem (31)-(33).

Remark. We can verify the tightness of the ob-
tained upper bound yubwc for ywc (i.e., either yparwc or
ydynwc ) by computing a lower bound ylbwc for ywc us-
ing a gridding of the uncertainty region D (i.e., either
Dpar or Ddyn) and a gridding of the interval TP i.e.,
ylbwc = maxt∈TP,grid

maxG(z)∈Dgrid
|y(t, G)| where TP,grid

is a discrete set containing a finite number of the time
instants t ∈ TP and where Dgrid is a discrete set which
contains a finite number of the systems lying in D.

Remark. Note also that, as opposed to its upper
bound yubwc, the lower bound ylbwc for ywc is not suffi-
cient to verify the output amplitude constraint in (5).
This constraint can indeed be verified by checking that
yubwc ≤ ȳmax since the latter implies ywc ≤ ȳmax. As op-
posed to this, ylbwc ≤ ȳmax does not imply ywc ≤ ȳmax

since ylbwc ≤ ywc. The above reasoning of course assumes
that G0 ∈ D. In the rare cases where that will not be
the case (the uncertainty region D only contains G0

modulo a certain probability level), it can then happen
that the largest value of |y(t, G0)| is larger than yubwc.
However, in these cases, the upper bound yubwc remains
a closer estimate of the largest value of |y(t, G0)| than
ylbwc since y

ub
wc > ylbwc.

Remark. Besides uwc, y
par
wc and ydynwc , the results in Sec-

tion 5 allows to compute upper bounds for other quanti-
ties. First, as already mentioned, they allow to compute
upper bounds for ywc (see (7)) for other types of un-
certainty regions. They also allow to evaluate an upper
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Fig. 1. Magnitude plot of G0(z) (red solid) of G(z, θ̂) (blue
dashed) and of Gpar

grid(z) (black dashdot). The magenta dots

indicate |Gdyn
grid(e

jωiTs)| for ωi (i = 1, 2, 3).

Fig. 2. One period of u(t) (blue dashed), of y(t, Ĝ) (red solid)
and of y(t, Gpar

grid) (black dashdot). The dashed magenta lines
indicate ± 0.986550.

bound for the worst case output amplitude at a given
time instant t i.e., ywc(t) = maxG(z)∈D |y(t, G)|. As an-
other example, using a similar procedure as for the com-
putation of uwc, Proposition 2 also allows to compute
the worst case output amplitude for a given plantGgiven

i.e., ywc(Ggiven) = maxt∈TP
|y(t, Ggiven)|.

7 Numerical illustration
We consider here a second-order true system G0(z) =

G(z, θ0) = (θ0,1z
−1 + θ0,2z

−2)/(1 + θ0,3z
−1 + θ0,4z

−2)
with θ0 = (θ0,1, θ0,2, θ0,3, θ0,4)

T = (0.8988, 0.1034,
−0.9723, 0.8385)T . The sampling rate is Ts = 1 s. An
initial identification experiment in a full-order model

structure has delivered an identified model G(z, θ̂) with

θ̂ = (0.8 0.01 − 0.9854 0.8187)T as well as an ellipsoid

U = {θ | (θ − θ̂)TP−1(θ − θ̂) ≤ 1} described by the
matrix P−1:

P−1 =


33.1902 19.8594 −49.0182 28.3717

19.8594 33.1902 −98.2813 −49.0182

−49.0182 −98.2813 435.6784 258.1596

28.3717 −49.0182 258.1596 435.6784

 .

These elements define the parametric uncertainty region
Dpar in (12) which here contains the true system G0(z)
(i.e., θ0 ∈ U). In Figure 1, we represent the magnitude

plot of both G0 and G(z, θ̂).
We consider a multisine excitation u(t) (see (1)) of

fundamental frequency ω0 = 0.1π rad/s (the period
T0 is thus 20 s) and containing L = 3 frequencies i.e.,
ω1 = ω0, ω2 = 3ω0 and ω3 = 5ω0. The complex ampli-
tude vector A in the phasor notation (3) is here chosen
as A = (0.2212 + 0.0688j, −0.0120 + 0.0662j, 0.4621 +
0.5075j)T . This amplitude vector has been determined
using the optimal experiment design procedure of [9].
Using the LMI procedure of Proposition 7 for this mul-
tisine u(t), we obtain uwc = 0.9385 which is consistent
with what can be observed in Figure 2 where the maxi-
mal value of |u(t)| is indeed 0.9385.

As shown in Figure 2, when applied to Ĝ(z) = G(z, θ̂),

this multisine u(t) yields a multisine output y(t, Ĝ) with
a maximal amplitude of 0.7425. The maximal ampli-
tude of y(t, G0) is equal to 0.9070. Let us now consider
the worst-case amplitude yparwc in Dpar (see (14)). This
quantity will be larger than 0.9070 since G0 ∈ Dpar.
If we use the LMI optimization problem (22)-(24) (see
Proposition 8), we obtain the following upper bound
for yparwc : y

par,ub
wc = 1. If we use the LMI optimization

problem (31)-(33) with the τ -dependent multiplier for
b = 1 (see Proposition 8), we obtain ypar,ubwc = 0.986550.
Let us analyze the tightness of these upper bounds. For
this purpose, we observe (see Figure 2) that the output
y(t, Gpar

grid) corresponding to a system Gpar
grid(z) ∈ Dpar

has a maximal amplitude equal to 0.986535 i.e., ypar,lbwc =
0.986535. The conservatism linked to the LMI proce-
dure (22)-(24) is thus in this example less than 1.4 %
(which is small) and the one linked to the LMI proce-
dure (31)-(33) with b = 1 is less than 0.001 % (which
is negligible). This shows the efficiency of the proposed
procedure to evaluate the worst case amplitude of the
output over the systems in Dpar. It is to be noted that
the system Gpar

grid(z) has been determined by a smart

gridding procedure called Bayesian optimization [10].
This system is described by Gpar

grid(z) = G(z, θgrid) with

θgrid = (1.007, 0.072, −0.9152, 0.7842)T ∈ U . See Fig-
ure 1 for the magnitude plot of Gpar

grid(z). It is impor-
tant to note that this smart gridding procedure is not a
valid alternative for the approach developed in this pa-
per. The main reason for that is that it only delivers a
lower bound for yparwc while an upper bound is necessary
to verify the output amplitude constraint in (5) (see the
third remark at the end of Section 6). Another reason
is that this smart gridding procedure is twenty times
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more time consuming than the LMI optimization prob-
lem (22)-(24) and two times more time consuming than
the LMI optimization problem (31)-(33).
Let us now consider ydynwc when Ddyn is the dynamic

uncertainty region (13) obtained by projecting Dpar

into the Nyquist plane (see the first remark in Sec-
tion 3). Since this Ddyn will not only contain systems
of the second order, but also systems of higher or-
der, we therefore expect that ydynwc > yparwc . If we use
the LMI optimization problem (22)-(24) (see Proposi-
tion 9), we obtain the following upper bound for ydynwc :
ydyn,ubwc = 1.1388. If we use the LMI optimization prob-
lem (31)-(33) with the τ -dependent multiplier for b = 1
(see Proposition 9), we obtain ypar,ubwc = 1.1065. Let
us analyze the tightness of these upper bounds. For
this purpose, we have determined, using Bayesian op-

timization, three points Gdyn
grid(e

jωiTs) (i = 1, 2, 3) such

that (Re(Gdyn
grid(e

jωiTs), Im(Gdyn
grid(e

jωiTs))T ∈ U(ωi)

(i = 1, 2, 3) where U(ωi) is the ellipse U(ω) defining
Ddyn for the frequency ωi in the multisine (i = 1, 2, 3).
For these points, we determine, via (4), the multisine

y(t, Gdyn
grid) which has a maximal amplitude of 1.106342

i.e., ydyn,lbwc = 1.106342. The conservatism linked to the
LMI procedure (22)-(24) is thus in this example less
than 2.9 % (which is small) and the one linked to the
LMI procedure (31)-(33) with b = 1 is less than 0.017
% (which is negligible). This shows the efficiency of the
proposed procedure to evaluate the worst case ampli-
tude of the output over the systems in Ddyn. For the

sake of completion, let us mention that Gdyn
grid(e

jω1Ts) =

1.4279−0.2057j, Gdyn
grid(e

jω2Ts) = 1.1002−4.76999j and

Gdyn
grid(e

jω3Ts) = −1.009 − 0.4841j (see Figure 1). Note

also that, since the worst-case amplitude of y(t, Gdyn
grid)

is larger than yparwc , there is thus no second-order system
G(z, θ) with θ ∈ U that has such a frequency response
at ωi (i = 1, 2, 3).

We have repeated the above procedure for a number
of other complex amplitude vectors A and the observed
conservatism for yparwc and ydynwc (using Proposition 2 or
Proposition 3) is always small or negligible.

8 Conclusions

We have developed a methodology inspired by ro-
bustness analysis to verify robust amplitude constraints.
In the extended version [9] of this paper, we use this
methodology for optimal experiment design. The devel-
oped framework considers the case where the identifi-
cation is performed in open loop and when the consid-
ered true system has one input and one output. In fu-
ture work, we will extend the framework to closed-loop
identification and to multivariable systems.
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A Matrices Mu, M
par
y and Mdyn

y

Let us first note that the complex vector Ũ(τ) can
expressed as the following LFT in τIαL

:

Ũ(τ) = (τIαL) ⋆

M11,U M12,U

M21,U 0

 (A.1)

with M12,U = (1, 0, ...., 0)T , M21,U a matrix whose en-
tries are equal to zero except the entries (i, αi) for i =
1, ..., L which are equal to one, and with M11,U a matrix
of dimension αL × αL given by

M11,U =

 0 0

IαL−1 0

 .

Consequently, we obtain the following LFT for xu(τ)

xu(τ) = AT Ũ(τ) = (τIαL) ⋆

 M11,U M12,U

ATM21,U 0


︸ ︷︷ ︸

=Mu

,

from which the matrix Mu in (18) can be determined.
Let us now turn to the LFT representation of xpary (τ, δ).
Let us first note that, for an arbitrary frequency ω, the
frequency response G(ejωTs , θ) of an arbitrary plant in
Dpar (see (12)) can be written as the following LFT in θ:

G(ejωTs , θ) = (θ) ⋆

−ZD(ejωTs) 1

ZN (ejωTs) 0

 .

Applying the linear change of variable θ = θ̂ + V δ, we

obtain the LFT of G̃(ejωTs , δ) = G(ejωTs , θ̂ + V δ):

G̃(ejωTs , δ) = (δ) ⋆

M11,par(ω) M12,par(ω)

M21,par(ω) M22,par(ω)

 ,

withM11,par(ω) = −σ(ejωTs)ZD(e
jωTs)V ,M12,par(ω) =

σ(ejωTs), M22,par(ω) = ζ(ejωTs)σ(ejωTs), M21,par(ω) =
(ZN (ejωTs) − ζ(ejωTs)σ(ejωTs)ZD(e

jωTs))V , and with

σ(ejωTs) = (1 + ZD(e
jωTs)θ̂)−1 and ζ(ejωTs) =

ZN (ejωTs)θ̂. Considering the above LFT for each fre-
quency ωi (i = 1, ..., L) present in the multisine (1), we

see that the matrix diag(G̃(ejω1Ts , δ), ...., G̃(ejωLTs , δ))
in the expression (15) for xpary (τ, δ) is equal to:

(IL ⊗ δ) ⋆

 M̄11,par M̄12,par

M̄21,par M̄22,par

 ,

with M̄mn,par = bdiag(Mmn,par(ω1), ...,Mmn,par(ωL))
(m = 1, 2, n = 1, 2).

Using this expression and the LFT (A.1) for Ũ(τ),
xpary (τ, δ) (see (15)) is then given by the LFT in (18) with

Mpar
y =


M11,U 0 M12,U

M̄12,parM21,U M̄11,par 0

AT M̄22,parM21,U AT M̄21,par 0

 .

Let us now turn to the LFT representation of
xdyny (τ, δ(ω1), ..., δ(ωL)). Let us first note that, for an

arbitrary frequency ω, the frequency response G(ejωTs)
of an arbitrary plant in Ddyn (see (13)) can be written
as the following LFT in δ(ω):

G(ejωTs) = (δ(ω)) ⋆

 0 1

vTP (ω) Ĝ(ejωTs)

 . (A.2)

Considering the above LFT for each frequency ωi (i =
1, ..., L) present in the multisine (1), we see that the ma-
trix diag(G(δ(ω1)), ...., G(δ(ωL)))) in the expression (17)
for xdyny (τ, δ(ω1), ..., δ(ωL)) is equal to:

(diag(δ(ω1), ..., δ(ωL))) ⋆

 0 IL

M̄21,dyn M̄22,dyn

 ,

with M̄21,dyn = bdiag(vTP (ω1), ..., v
T
P (ωL)) and M̄22,dyn =

diag(Ĝ(ejω1Ts), ..., Ĝ(ejωLTs)). Using this expression

and the LFT (A.1) for Ũ(τ), xdyny (τ, δ(ω1), ..., δ(ωL))
(see (17)) is then given by the LFT in (18) with

Mdyn
y =


M11,U 0 M12,U

M21,U 0 0

AT M̄22,dynM21,U AT M̄21,dyn 0

 .

B Structure of B̃, D̃, P̃ , Z̃ in Proposition 5

As shown in [1], the real matrices B̃ and D̃ in the
expression of Σm,n have the following structures:

B̃ =


0 K12 . . . K1m

−K12 0 . . .
...

...
. . . K(m−1)m

−K1m . . . −K(m−1)m 0



D̃ =


R11 R12 . . . R1m

R12 R22 . . . R2m

...
. . .

...

R1m R2m . . . Rmm

 ,
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with the constraints that all blocksKil (resp.Ril) satisfy
Kil = −KT

il ∈ Rn×n (resp. Ril = −RTil ∈ Rn×n). The
matrix P̃ (resp. Z̃) has a similar structure as B̃ (resp. D̃),
but with the skew-symmetric blocks replaced by row
vectors of dimension n [1].

C Proof of Proposition 6

Before giving the proof, let us present the following
result which is a particular case of the generalized KYP
lemma [15].
Lemma 1 ([15]) Consider a matrix F(τ) which de-
pends on a complex scalar variable τ that lies in the set
T defined in (11). Assume that F(τ) can be written as
an LFT in τIα and that this LFT is minimal (i.e., we
cannot write F(τ) as an LFT in τIα̃ with α̃ < α). We
thus have:

F(τ) = (τIα) ⋆

 F11 F12

F21 F22

 (C.1)

where F11 is a matrix of dimension α × α. Consider
finally a Hermitian matrix Ω of appropriate dimension.
Then, F∗(τ)ΩF(τ) ≤ 0 for all τ ∈ T is equivalent to the
existence of Ξα ∈ Ξα (see Proposition 4) such that:

 I 0

F11 F12

∗

Πα

 I 0

F11 F12

+ ...

...+
(
F21 F22

)∗
Ω
(
F21 F22

)
≤ 0.

(C.2)

The proof of Proposition 6 is then rather straightfor-
ward. When we perform the product
Ψ∗

Σm,n
(τ)PΣm,n

ΨΣm,n
(τ), we indeed obtain a matrix

having the structure (38) for any value of τ ∈ T .
More precisely, the matrix Q in (38) is given by
(N ∗(τ)⊗ Im)Λ(N (τ)⊗ Im) = Q0 +Q1τ +Q∗

1τ
∗ + ...+

Qbτ
b+Q∗

b(τ
b)∗. It is clear that this matrix is Hermitian

for all τ ∈ T . Moreover, the LMI condition (41) ensures
that this Hermitian matrix is also positive semi-definite
for all τ ∈ T . The latter is a consequence of Lemma 1
with F(τ) = N (τ) ⊗ Im, α = bm and Ω = −Λ. Since
N (τ) = (τIb) ⋆ N̄ (see (39)), we have indeed that:

F(τ) = N (τ)⊗ Im = (τIbm) ⋆

 N̄m,11 N̄m,12

N̄m,21 N̄m,22


with N̄m,11, N̄m,12, N̄m,21 and N̄m,22 as defined in the
statement of Proposition 6.
Then, when we perform the product

Ψ∗
Σm,n

(τ)PΣm,nΨΣm,n(τ), the matrix jD̃ in (38) is given

by

jD̃ = jD̃0+(0, D̃1, ..., D̃b) (N ⊗Imn)+(N ∗⊗Imn)


0

D̃T
1

...

D̃T
b


The right hand side of this expression is equal to jD̃0 +
D̃1(τ − τ∗) + ... + D̃b(τ

b − (τ b)∗) since D̃i = −D̃T
i

(i = 1, ...b). It is clear that this expression has indeed the
desired structure since τ i− (τ i)∗ (i = 1, ...b) is an imagi-
nary number for all τ ∈ T . In Ψ∗

Σm,n
(τ)PΣm,n

ΨΣm,n
(τ),

the matrix jZ̃ in (38) is given by

jZ̃ = jZ̃0 + (0, Z̃1, ..., Z̃b) (N ⊗ Imn)− (N ∗ ⊗ Im)


0

Z̃1

...

Z̃b


The right hand side of this expression is equal
to jZ̃0 + Z̃1(τ − τ∗) + ... + Z̃b(τ

b − (τ b)∗) which
has thus also the desired structure. Following the
same procedure, the matrix B̃ in (38) is given by

2B̃0 + B̃1(τ + τ∗) + ...+ B̃b(τ
b + (τ b)∗) since B̃i = B̃T

i

(i = 1, ...b) while the matrix P̃ in (38) is given by

2P̃0+ P̃1(τ+τ∗)+ ...+ P̃b(τ
b+(τ b)∗). These expressions

have the desired structure since τ i + (τ i)∗ (i = 1, ...b) is
a real number for all τ ∈ T .

Remark. In Proposition 1 of [6], we proposed a less
general parametrization for PΣm,n where the matrices
Qi were restricted to be real matrices, the factorizations
of jD̃ was reduced to D̃1(τ − τ∗) + ...+ D̃b(τ

b − (τ b)∗)

and the one of jZ̃ to Z̃1(τ − τ∗) + ...+ Z̃b(τ
b − (τ b)∗).

D Proof of Proposition 7

Observe that the LMI (23) with r = 0, Π0 = ΞαL

and with Mx, M0 (see (20)) obtained from the decom-
position of Mu is equivalent to (C.2) with α = αL,

Ω =

(
−γ 0.5

0.5 0

)
, (F11 F12) = M0 and (F21 F22) =

[ZTx MT
x ]
T . The matrix F(τ) in (C.1) is thus F(τ)

∆
=

(1 xu(τ))
T . Using Lemma 1 in Appendix C, we thus have

that the LMI (23) is equivalent to

F∗(τ)ΩF(τ) = Re(xu(τ))− γ ≤ 0 ∀τ ∈ T .

A similar reasoning shows that (24) is equivalent to
−γ ≤ Re(xu(τ)) for all τ ∈ T . Combining these two
facts shows that the LMI optimization problem (22)-(24)
yields a solution γopt which is equal to uwc.
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