Supplementary materials to: "Robin Hood model versus Sheriff of Nottingham model: transfers in population dynamics"

Quentin Griette^{1*} and Pierre Magal^{2,3,4}

^{1*}Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600, Le Havre, France.

²Department of Mathematics, Faculty of Arts and Sciences , Beijing Normal University, Zhuhai, 519087, China.

³Univ. Bordeaux, IMB, UMR 5251, F- 33400 Talence, France. ⁴CNRS, IMB, UMR 5251, F- 33400 Talence, France.

*Corresponding author(s). E-mail(s): quentin.griette@univ-lehavre.fr; Contributing authors: pierre.magal@u-bordeaux.fr;

A Spaces of measures

Let X be a Polish space, that is complete metric space (X, d) which is separable (i.e., there exists a countable dense subset). As an example for X one may consider any closed subset of \mathbb{R}^n endowed with the standard metric d(x, y) = ||x - y|| induced by ||.|| a norm on \mathbb{R}^n .

Recall that the Borel σ -algebra of X is the set $\mathcal{B}(X) \subset \mathcal{P}(X)$ (the σ -algebra generated by the open subsets of X) of all parts of X that can be obtained by countable union, countable intersection, and difference of open sets [4, Vol II Chap 6 section 6.3].

We define $\mathcal{M}(X)$ the space of measures on X starting with the positive measures. A map $\mu : \mathcal{B}(X) \to \mathbb{R}^+$ is a **positive measure**, if it is **additive** (or a **countably additive**). That is,

$$\mu\left(\bigcup_{n\in\mathbb{N}}B_n\right) = \sum_{n\in\mathbb{N}}\mu(B_n),$$

for any countable collection of disjoint Borel sets $B_n \in \mathcal{B}(X)$ (where the empty set may occur infinitely many times). In the following, a countably additive measure will be called **Borel measure**.

A positive measure is **finite** if

$$\mu(X) < +\infty.$$

A signed measure μ is the difference between two positive measures

$$\mu = \mu^+ - \mu^-$$

where μ^+ and μ^- are both positive finite measures.

Definition A.1. The set $\mathcal{M}(X)$ is the space of all the signed finite measures μ .

Given a signed measure μ , the Hahn decomposition theorem [4, Vol. I Theorem 3.1.1 p. 175] gives a decomposition of the space X into two subsets X^+ and X^- on which μ has constant sign.

Theorem A.2 (Hahn decomposition). Let μ be a signed measure on a measurable space $(X, \mathcal{B}(X))$. Then, there exist disjoint sets $X^+, X^- \in \mathcal{B}(X)$ such that $X^+ \cup X^- = X$, and for all $A \in \mathcal{B}(X)$, one has

$$\mu(A \cap X^{-}) \leq 0 \text{ and } \mu(A \cap X^{+}) \geq 0.$$

Considering for example $\mu = \delta_0 - \delta_2$ with $X = \{0, 1, 2\}$, we deduce that the Hahn decomposition is not unique in general. But the Hahn decomposition allows us to define the *positive part* μ^+ and the *negative part* μ^- of a signed measure μ :

$$\mu^{-}(A) := -\mu(A \cap X^{-}) \text{ and } \mu^{+}(A) := \mu(A \cap X^{+}), \text{ for all } A \in \mathcal{B}(X).$$
 (A.1)

Let us prove that μ^+ is uniquely defined, the proof for μ^- being similar. Indeed, if we consider $\widetilde{X}^+ \cup \widetilde{X}^- = X$ another Hahn decomposition for μ . Then we have

$$\mu(X^+ \cap X^-) = 0$$
, and $\mu(X^+ \cap X^-) = 0$

since both quantities are simultaneously positive and negative.

Therefore we have

$$\mu(X^+ \cap A) = \mu \left(X^+ \cap \left((A \cap \widetilde{X}^+) \cup (A \cap \widetilde{X}^-) \right) \right)$$

= $\mu (A \cap \widetilde{X}^+ \cap X) + \mu (A \cap \widetilde{X}^- \cap X^+)$
= $\mu (A \cap \widetilde{X}^+ \cap X)$
= $\mu (A \cap \widetilde{X}^+ \cap X^+) + \mu (A \cap \widetilde{X}^- \cap X^+)$
= $\mu \left(\widetilde{X}^+ \cap \left((A \cap X^+) \cup (A \cap X^-) \right) \right) = \mu (\widetilde{X}^+ \cap A).$

This shows that μ^+ defined by (A.1) is unique (i.e. μ^+ is independent of the Hahn decomposition).

The total variation of μ (see [4, Vol. I Definition 3.1.4 p.176]) is

$$|\mu| = \mu^+ + \mu^-.$$

The space $\mathcal{M}(X)$ of signed finite measures over X, is a Banach space endowed with the *total variation norm*

$$\|\mu\|_{\mathcal{M}(X)} := \int_X |\mu|(\mathrm{d}x).$$

We refer again to Bogachev [4, Vol. I Theorem 4.6.1] for this result.

First, we check that the positive part, negative part and total variation are continuous on $\mathcal{M}(X)$.

Lemma A.3. Let $(X, \mathcal{B}(X))$ be a measurable space. The maps $\mu \mapsto \mu^+$, $\mu \mapsto \mu^-$ and $\mu \mapsto |\mu|$ are 1-Lipschitz continuous on $\mathcal{M}(X)$ equiped with $\|\cdot\|_{\mathcal{M}(X)}$. That is,

$$\begin{aligned} \|\mu_1^+ - \mu_2^+\|_{\mathcal{M}(X)} &\leq \|\mu_1 - \mu_2\|_{\mathcal{M}(X)}, \\ \|\mu_1^- - \mu_2^-\|_{\mathcal{M}(X)} &\leq \|\mu_1 - \mu_2\|_{\mathcal{M}(X)}, \\ \|\|\mu_1\| - \|\mu_2\|\|_{\mathcal{M}(X)} &\leq \|\mu_1 - \mu_2\|_{\mathcal{M}(X)}. \end{aligned}$$

Proof. Let $\mu_1, \mu_2 \in \mathcal{M}(X)$ be given. We introduce the Hahn decompositions of X with respect to μ_1 and μ_2 , respectively: $X =: X_1^+ \cup X_1^-$ and $X =: X_2^+ \cup X_2^-$, so that X_1^+ is the support of μ_1^+, X_1^- is the support of μ_1^-, X_2^+ is the support of μ_2^+ , and X_2^- is the support of μ_2^- .

We also introduce the Hahn decomposition of X for $|\mu_1| - |\mu_2|$, $X =: Y^+ \cup Y^-$. Then,

$$\begin{aligned} \||\mu_{1}| - |\mu_{2}|\|_{\mathcal{M}(X)} &= \left(|\mu_{1}| - |\mu_{2}|\right)^{+}(X) + \left(|\mu_{1}| - |\mu_{2}|\right)^{-}(X) \\ &= |\mu_{1}|(Y^{+}) - |\mu_{2}|(Y^{+}) + |\mu_{2}|(Y^{-}) - |\mu_{1}|(Y^{-}) \\ &= \mu_{1}^{+}(Y^{+}) + \mu_{1}^{-}(Y^{+}) - \mu_{2}^{+}(Y^{+}) - \mu_{2}^{-}(Y^{+}) \\ &+ \mu_{2}^{+}(Y^{-}) + \mu_{2}^{-}(Y^{-}) - \mu_{1}^{+}(Y^{-}) - \mu_{1}^{-}(Y^{-}). \end{aligned}$$
(A.3)

We decompose further $Y^+ = (Y^+ \cap X_1^+) \cup (Y^+ \cap X_1^-)$ to obtain

$$\mu_1^+(Y^+) + \mu_1^-(Y^+) - \mu_2^+(Y^+) - \mu_2^-(Y^+) = \mu_1(Y^+ \cap X_1^+) - \mu_1(Y^+ \cap X_1^-) - |\mu_2|(Y^+ \cap X_1^+) - |\mu_2|(Y^+ \cap X_1^-),$$
(A.4)

and

$$\begin{split} \mu_1(Y^+ \cap X_1^+) - |\mu_2|(Y^+ \cap X_1^+) &= \mu_1(Y^+ \cap X_1^+) - \mu_2^+(Y^+ \cap X_1^+) - \mu_2^-(Y^+ \cap X_1^+) \\ &\leq \mu_1(Y^+ \cap X_1^+) - \mu_2^+(Y^+ \cap X_1^+) + \mu_2^-(Y^+ \cap X_1^+) \\ &= \mu_1(Y^+ \cap X_1^+) - \mu_2(Y^+ \cap X_1^+) \\ &\leq |\mu_1 - \mu_2|(Y^+ \cap X_1^+), \end{split}$$

similarly

$$\begin{aligned} -\mu_1(Y^+ \cap X_1^-) - |\mu_2|(Y^+ \cap X_1^-) &= -\mu_1(Y^+ \cap X_1^-) - \mu_2^+(Y^+ \cap X_1^-) - \mu_2^-(Y^+ \cap X_1^-) \\ &\leq -\mu_1(Y^+ \cap X_1^-) + \mu_2^+(Y^+ \cap X_1^-) - \mu_2^-(Y^+ \cap X_1^-) \\ &= \mu_2(Y^+ \cap X_1^-) - \mu_1(Y^+ \cap X_1^-) \\ &\leq |\mu_1 - \mu_2|(Y^+ \cap X_1^-), \end{aligned}$$

so finally (A.4) becomes

$$(|\mu_{1}| - |\mu_{2}|)(Y^{+}) = \mu_{1}^{+}(Y^{+}) + \mu_{1}^{-}(Y^{+}) - \mu_{2}^{+}(Y^{+}) - \mu_{2}^{-}(Y^{+})$$

$$\leq |\mu_{1} - \mu_{2}|(Y^{+} \cap X_{1}^{+}) + |\mu_{1} - \mu_{2}|(Y^{+} \cap X_{1}^{-}) \qquad (A.5)$$

$$= |\mu_{1} - \mu_{2}|(Y^{+}).$$

By a similar argument using this time the decomposition $Y^- = (Y^- \cap X_2^+) \cup (Y^- \cap$ X_2^-), we obtain

$$(|\mu_1| - |\mu_2|)(Y^-) = \mu_2^+(Y^-) + \mu_2^-(Y^-) - \mu_1^+(Y^-) - \mu_1^-(Y^-)$$

$$\leq |\mu_1 - \mu_2|(Y^- \cap X_2^+) + |\mu_1 - \mu_2|(Y^- \cap X_2^-)$$
(A.6)

$$= |\mu_1 - \mu_2|(Y^-).$$

Finally, combining (A.5) and (A.6) into (A.2)-(A.3), we have

$$\begin{aligned} \||\mu_1| - |\mu_2|\|_{\mathcal{M}(X)} &\leq |\mu_1 - \mu_2|(Y^+) + |\mu_1 - \mu_2|(Y^-) \\ &= |\mu_1 - \mu_2|(Y^+) + |\mu_1 - \mu_2|(Y^-) \\ &= |\mu_1 - \mu_2|(X) \\ &= \|\mu_1 - \mu_2\|_{\mathcal{M}(X)}. \end{aligned}$$

We have proved that $\mu \mapsto |\mu|$ is 1-Lipschitz. Since $\mu^+ = \frac{1}{2}(|\mu|+\mu)$ and $\mu^- = \frac{1}{2}(|\mu|-\mu)$, both $\mu \mapsto \mu^+$ and $\mu \mapsto \mu^-$ are also 1-Lipschitz. The proof is completed.

We have the following lemma.

Lemma A.4. Let $(X, \mathcal{B}(X))$ be a measurable space. The subset $\mathcal{M}_+(X)$ is a positive cone of $\mathcal{M}(X)$. That is,

- (i) $\mathcal{M}_+(X)$ is a closed and convex subset of $\mathcal{M}(X)$.
- (ii) $\lambda m \in \mathcal{M}_+(X), \forall \lambda \ge 0, \forall m \in \mathcal{M}_+(X).$ (iii) $\mathcal{M}_+(X) \cap -\mathcal{M}_+(X) = \{0_{\mathcal{M}(X)}\}.$

Proof. Proof of (i). By Lemma A.3, the map $\mu \mapsto \mu^-$ is continuous, and

$$\mathcal{M}_{+}(X) = \{ \mu \in \mathcal{M}(X) : \mu^{-} = 0 \}.$$

The property (ii) is trivial, since $(\lambda m)(A) = \lambda m(A), \forall A \in \mathcal{B}(X)$.

Proof of (iii). Let $\mu \in \mathcal{M}_+(X) \cap -\mathcal{M}_+(X)$. We observe that $\mu \in \mathcal{M}_+(X)$ implies $\mu^- = 0$. Next $\mu \in -\mathcal{M}_+(X)$ is equivalent to $-\mu \in \mathcal{M}_+(X)$, and it follows that $(-\mu)^- = \mu^+ = 0$. We conclude that $\mu = \mu^+ - \mu^- = 0$, and (iii) is proved.

When $\mu \in \mathcal{M}(X)$ is a given measure (not necessarily finite), one can define the space of integrable functions quotiented by the equivalence μ -almost everywhere, $L^1(X, \mu)$. It is a Banach space [4, Vol. I Theorem 4.1.1 p.250] equipped with the norm

$$||f||_{L^1(X,\mu)} = \int_X |f(x)||\mu|(\mathrm{d}x).$$

For each $f \in L^1(X, \mu)$, the product measure $m(dx) = f(x)\mu(dx)$ is defined by

$$m(A) = \int_A f(x)\mu(\mathrm{d}x), \forall A \in \mathcal{B}(X),$$

and this measure satisfies

$$||m||_{\mathcal{M}(X)} = \int_X |f(x)||\mu|(\mathrm{d}x) = ||f||_{L^1(X,\mu)}.$$

It follows from its Banach space property, that $L^1(X, \mu)$ is a closed subspace of $\mathcal{M}(X)$. Remark that it is still true when X = I is an interval and $\mu(dx) = dx$ is the Lebesgue measure, in which case $L^1(X, \mu) = L^1(I)$ is the usual space of L^1 functions.

Let us recall the Radon-Nikodym Theorem for signed measures [4, Vol. I Theorem 3.2.2 p.178]. We first recall the notion of absolute continuity [4, Vol. I Definition 3.2.1 (i) p.178].

Definition A.5 (Absolute continuity). Let $(X, \mathcal{B}(X))$ be a measurable space, and $\mu, \nu \in \mathcal{M}(X)$ be two signed measures. The measure ν is **absolutely continuous** with respect to μ (notation: $\nu \ll \mu$) if for any Borel subset $A \in \mathcal{B}(X)$, $|\mu|(A) = 0$ implies $|\nu|(A) = 0$.

Theorem A.6 (Radon-Nikodym). Let $(X, \mathcal{B}(X))$ be a measurable space and $\mu, \nu \in \mathcal{M}(X)$. The measure ν is absolutely continuous with respect to μ if there exists a μ -integrable function $f \in L^1(X, \mu)$, such that

$$\nu(A) = \int_A f(x)\mu(\mathrm{d}x), \forall A \in \mathcal{B}(X).$$

Next, we consider the following formula

$$\|u\|_{\mathcal{M}(X)} = \sup_{\phi \in C(\mathbb{R}): \|\phi\|_{\infty} \le 1} \int_{X} \phi(x) u(dx), \forall u \in \mathcal{M}(I).$$

where X is a Polish space.

An equivalent statement is proved in [4, Vol.II Theorem 7.9.1 p.108] with far more general assumptions.

Here, we give a more elementary proof when X is Polish. We rely on the Borelregularity of Borel measures that we recall first. The following statement is exactly [4, Vol. I Theorem 1.4.8 p.30] when $X \subset \mathbb{R}^n$, and in general it is an easy consequence of the fact that all Borel measures are Radon in a Polish space [4, Vol. II Theorem 7.1.7 p.70].

Theorem A.7 (Approximations of Borel measures). Let (X, d) be a Polish space, and let μ be a Borel measure on X. Then, for any Borel set $B \subset X$, and any $\varepsilon > 0$, there exists an open subset $U_{\varepsilon} \subset X$, and a compact subset $K_{\varepsilon} \subset X$, such that

$$K_{\varepsilon} \subset B \subset U_{\varepsilon}, \text{ and } \mu\left(U_{\varepsilon} \setminus K_{\varepsilon}\right) \leq \varepsilon.$$

Now we have the following result.

Proposition A.8. Let (X, d) be a Polish space. For any measure $\mu \in \mathcal{M}(X)$, we have

$$\|\mu\|_{\mathcal{M}(X)} = \sup_{\phi \in C(X) : |\phi| \le 1} \int_X \phi(x)\mu(\mathrm{d}x).$$

Proof. Let μ^+ and μ^- be the positive and negative part of μ and X^+, X^- the support of μ^+ and μ^- , respectively. By Theorem A.7 applied to $|\mu|$, there exists $K_{\varepsilon}^+ \subset X^+ \subset U_{\varepsilon}^+$ with K_{ε}^+ compact and U_{ε}^+ open such that

$$|\mu|(U_{\varepsilon}^+ \setminus K_{\varepsilon}^+) \le \frac{\varepsilon}{4},$$

 \mathbf{SO}

$$\mu^{+}(X^{+}) = |\mu|(X^{+}) = |\mu|(K_{\varepsilon}^{+} \cup (X^{+} \cap K_{\varepsilon}^{+}))$$
$$\geq \mu(K_{\varepsilon}^{+}) - |\mu|(U_{\varepsilon}^{+} \cap K_{\varepsilon}^{+})$$
$$= \mu^{+}(K_{\varepsilon}^{+}) - \frac{\varepsilon}{4}.$$

Similarly we can find K_{ε}^- compact and U_{ε}^- open such that

$$|\mu|(U_{\varepsilon}^{-}\setminus K_{\varepsilon}^{-}) \leq \frac{\varepsilon}{4}$$
, so $\mu^{-}(X^{-}) \geq \mu^{-}(K_{\varepsilon}^{-}) - \frac{\varepsilon}{4}$.

Recall that the distance between a point x and a subset $B \subset X$ is defined as

$$d(x,B) = \inf_{y \in B} |x - y|.$$

 $\operatorname{Consider}$

$$d_+ = \min_{y \notin U_{\varepsilon}^+} d(y, K_{\varepsilon}^+) > 0, \text{ and } d_- = \min_{y \notin U_{\varepsilon}^-} d(y, K_{\varepsilon}^-) > 0.$$

Define $d = \min(d_-, d_+)$. Then

$$\phi^+(x) = \rho\left(\operatorname{dist}(x, K_{\varepsilon}^+)/d\right), \text{ and } \phi^-(x) = \rho\left(\operatorname{dist}(x, K_{\varepsilon}^-)/d\right)$$

$\mathbf{6}$

where ρ is truncation map

$$\rho(u) = \begin{cases} e^{u^2/(u^2 - 1)}, \text{ if } |u| < 1, \\ 0, \text{ if } |u| \ge 1. \end{cases}$$

By definition we have $\phi^+(x)$ and $\phi^-(x)$ are continuous maps, and

$$\phi^+(x) \begin{cases} = 0, \text{ if } x \notin U_{\varepsilon}^+, \\ = 1, \text{ if } x \in K_{\varepsilon}^+ \\ \in [0,1], \text{ otherwise}, \end{cases} \text{ and } \phi^-(x) \begin{cases} = 0, \text{ if } x \notin U_{\varepsilon}^-, \\ = 1, \text{ if } x \in K_{\varepsilon}^- \\ \in [0,1], \text{ otherwise}. \end{cases}$$

Consider $\phi(x) := \phi^+(x) - \phi^-(x)$, then we have

$$\begin{split} \int_X \phi(x)\mu(\mathrm{d}x) &= \int_X \phi^+(x)\mu(\mathrm{d}x) - \int_X \phi^-(x)\mu(\mathrm{d}x) \\ &= \int_{K_\varepsilon^+} \phi^+(x)\mu(\mathrm{d}x) + \int_{U_\varepsilon^+ \setminus K_\varepsilon^+} \phi^+(x)\mu(\mathrm{d}x) \\ &- \int_{K_\varepsilon^-} \phi^-(x)\mu(\mathrm{d}x) - \int_{U_\varepsilon^- \setminus K_\varepsilon^-} \phi^-(x)\mu(\mathrm{d}x) \\ &\geq \mu(K_\varepsilon^+) - \int_{U_\varepsilon^+ \setminus K_\varepsilon^+} \phi^+(x)|\mu|(\mathrm{d}x) - \mu(K_\varepsilon^-) - \int_{U_\varepsilon^- \setminus K_\varepsilon^-} \phi^-(x)|\mu|(\mathrm{d}x) \\ &\geq \mu^+(K_\varepsilon^+) + \mu^-(K_\varepsilon^-) - \frac{\varepsilon}{2} \\ &\geq \mu^+(X^+) - \frac{\varepsilon}{4} + \mu^-(X^-) - \frac{\varepsilon}{4} - \frac{\varepsilon}{2} \\ &= |\mu|(X) - \varepsilon = ||\mu||_{\mathcal{M}(X)} - \varepsilon. \end{split}$$

Since $\varepsilon > 0$ is arbitrary, we have proved that

$$\sup_{\phi \in C(X) : \sup_{x \in X} |\phi(x)| \le 1} \int_X \phi(x) \mu(\mathrm{d}x) \ge \|\mu\|_{\mathcal{M}(X)}.$$

The converse inequality follows from the comparison of integrals $\int_X \phi(x)\mu(dx) \leq \|\phi\|_{\infty} \int_X 1\mu(dx)$. Proposition A.8 is proved.

Example A.9 (A bounded linear form that is not a measure). The space of measures on non-compact metric space (X, d) is not a dual space of the continuous functions or bounded sequences in the present case. Indeed, consider the example (taken from the book of [4]), $X = \mathbb{N}$ endowed with the standard metric d(n,m) = |n-m|. Due to the additive property of measures, any measure on \mathbb{N} must be a linear form. That is,

$$\mu(f) = \int_{\mathbb{N}} f(n)\mu(dn) = \sum_{n=1}^{\infty} \mu_n f_n,$$

whenever $f \in l^{\infty}(\mathbb{N}, \mathbb{R})$ the space of bounded sequence, which is a Banach space endowed with the standard supremum norm $||f||_{\infty} = \sup_{n>1} |f_n|$.

Next, if we consider the linear form

$$x^{\star}(f) = \lim_{n \to \infty} f_n,$$

defined for the converging sequences. By the Hahn Banach theorem, x^* has a continuous extension to the space of bounded sequence (endowed with the standard supremum norm), and this extension is not a measure. Therefore the dual space $l^{\infty}(\mathbb{N}, \mathbb{R})^*$ is a larger than $\mathcal{M}(X)$ the space of measure on $X = \mathbb{N}$.