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A Spaces of measures

Let X be a Polish space, that is complete metric space (X, d) which is separable (i.e.,
there exists a countable dense subset). As an example for X one may consider any
closed subset of R endowed with the standard metric d(z,y) = ||z — y|| induced by
|| & norm on R™.

Recall that the Borel o-algebra of X is the set B(X) C P(X) (the o-algebra
generated by the open subsets of X) of all parts of X that can be obtained by countable
union, countable intersection, and difference of open sets [4, Vol IT Chap 6 section 6.3].

We define M(X) the space of measures on X starting with the positive measures.
A map p : B(X) — RT is a positive measure, if it is additive (or a countably

additive). That is,
H/<LJ«Bn> ::E:/AE%)v

neN neN
for any countable collection of disjoint Borel sets B,, € B(X) (where the empty set
may occur infinitely many times). In the following, a countably additive measure will
be called Borel measure.



A positive measure is finite if
1(X) < +o0.
A signed measure y is the difference between two positive measures
po=pt—p”

where u™ and g~ are both positive finite measures.

Definition A.1. The set M(X) is the space of all the signed finite measures p.
Given a signed measure p, the Hahn decomposition theorem [4, Vol. I Theorem

3.1.1 p. 175] gives a decomposition of the space X into two subsets X* and X~ on

which p has constant sign.

Theorem A.2 (Hahn decomposition). Let p be a signed measure on a measurable

space (X,B(X)). Then, there exist disjoint sets X+, X~ € B(X) such that XTUX ™ =

X, and for all A € B(X), one has

p(ANX") <0 and p(ANXT) > 0.
Considering for example p = dg — d2 with X = {0,1,2}, we deduce that the Hahn

decomposition is not unique in general. But the Hahn decomposition allows us to
define the positive part p+ and the negative part = of a signed measure u:

p(A) == —pu(ANX")and pt(A) ;== p(ANXT), for all A€ B(X). (A1)

Let us prove that p* is uniquely defined, the proof for ;1= being similar. Indeed, if we
consider X+ U X~ = X another Hahn decomposition for p. Then we have

w(XtNX")=0, and (Xt NX") =0,

since both quantities are simultaneously positive and negative.

Therefore we have

w(X+ N A) N<X+0<Am)~(+)u(/m)~())>

p(ANX T NX)+pAnX NXT)
wANXtNX)
p(ANXFNXY) +p(AnX - nXT)

= M(fﬁ N ((Am)ﬁ) U (AmX))> = u(Xt N A).

This shows that pu* defined by (A.1) is unique (i.e. p™ is independent of the Hahn
decomposition).



The total variation of u (see [4, Vol. I Definition 3.1.4 p.176]) is
lul = pt 4+

The space M(X) of signed finite measures over X, is a Banach space endowed with
the total variation norm

Iillaac = [ Jul(d).
We refer again to Bogachev [4, Vol. I Theorem 4.6.1] for this result.

First, we check that the positive part, negative part and total variation are
continuous on M (X).
Lemma A.3. Let (X,B(X)) be a measurable space. The maps p— p*, p— p~ and
p = || are 1-Lipschitz continuous on M(X) equiped with || - || pm(x). That is,

Iy — U;”M(X) <l = w2l mxys

117 = n2 Ly < Nl = p2llmex).

] = lp2lllmxy < [l = p2llamcx)-
Proof. Let pi,pu2 € M(X) be given. We introduce the Hahn decompositions of X
with respect to p1 and pa, respectively: X =: X;" U X and X =: X;f U X, , so that
X" is the support of pf, X is the support of u7, X, is the support of u3, and X5
is the support of p5 .

We also introduce the Hahn decomposition of X for |u1| — |p2], X = YT UY ™.
Then,

1] = 2l aacxy = (el = lual) T (X)) + (Jpal = Ju2]) ™ (X)
= | (V) = [ (VF) + |2l (Y 7) = [(Y )
=1 (V) +ur (V) = pf (V) — g (V) (A.2)
Hud (V) g (Y7) = i (V7)) — g (V). (A.3)

We decompose further Y+ = (Y* N X;") U (Y* N X[ ) to obtain

py (YD) A+ (VD) —pd (V) =y (V) = (Y TN X)) — (YT N X))

—lp2| (YT N X)) — |po| (YT N XT),
(A.4)
and

(YO X) = [l (YT N X)) = (YN X)) =g (VIO XT) =y (YE N XT)
SmYTNXT) = (YENXT) +pp (YT NXY)
= (YT NX{) - (YT NXY)
<l — pe| (YT N XT),



similarly

—m (YT OXD) = /(YN X)) = (YT NXD) =g (YN X]) =y (VI NXT)
—m (YT NXD) +pp (YENXT) —pp (YT NXY)
p2(YF N XT) — i (YT N XT)

< pr — pe| (YT N XT),

IN

so finally (A.4) becomes

(] = [u2)) (YF) = pf (V) 40 (V) =g (V) — g (V)
< pn = g2l (YN XT) o+ |pn — p2l (YN XT) (A5)
= |1 — p2|(Y).
By a similar argument using this time the decomposition Y~ = (Y~ N X, ) U (Y™ N
X5 ), we obtain
(bl =) (Y 7) =g (V) g (Y 7) =y (V7)) = g (Y7)
< i = p2l (Y™ N XS) + s — pel (Y- N X5) (A.6)
= |1 — pa|(Y7).

Finally, combining (A.5) and (A.6) into (A.2)-(A.3), we have

pa] = [p2lllamx) < = p2l(YT) + [p — p2](Y7)
= | = p2|(YF) + |1 — pa|(Y7)
= |p1 — p2|(X)
= llpr — p2ll mx)-
We have proved that s — |u| is 1-Lipschitz. Since p™ = £ (|u|+4) and p= = 3 (|pu|—p),
both u+ pu+ and p s p~ are also 1-Lipschitz. The proof is completed. |

We have the following lemma.
Lemma A.4. Let (X,B(X)) be a measurable space. The subset M (X) is a positive
cone of M(X). That is,

(i) M4 (X) is a closed and convex subset of M(X).
(ii) Am € M (X), VA > 0,Vm € M (X).
(i) M (X) 1M (X) = {0}

Proof. Proof of (i). By Lemma A.3, the map p+— p~ is continuous, and
M (X) ={p e M(X) : p~ =0}

The property (ii) is trivial, since (Am)(4) = Am(A4),VA € B(X).



Proof of (iii). Let u € M (X) N —M4(X). We observe that u € M, (X) implies
u~ = 0. Next p € =M, (X) is equivalent to —u € M (X), and it follows that
(—p)~ = pt = 0. We conclude that y = p* — = =0, and (iii) is proved.

]

When p € M(X) is a given measure (not necessarily finite), one can define the
space of integrable functions quotiented by the equivalence u-almost everywhere,
LY (X, i1). Tt is a Banach space [4, Vol. I Theorem 4.1.1 p.250] equipped with the norm

nmp@mz/Qﬂmmmm.

For each f € L'(X, ), the product measure m(dx) = f(x)u(dz) is defined by
m(d) = [ Fan(da).vA € BX),
and this measure satisfies
[ml[pmex) = /X [f@)[lpl(dz) = [l 2r (x.)-

It follows from its Banach space property, that L' (X, p1) is a closed subspace of M(X).
Remark that it is still true when X = I is an interval and p(dz) = dz is the Lebesgue
measure, in which case L*(X,u) = L'(I) is the usual space of L' functions.

Let us recall the Radon-Nikodym Theorem for signed measures [4, Vol. I Theorem
3.2.2 p.178]. We first recall the notion of absolute continuity [4, Vol. I Definition 3.2.1
(i) p.178].

Definition A.5 (Absolute continuity). Let (X,B(X)) be a measurable space, and
v € M(X) be two signed measures. The measure v is absolutely continuous with
respect to p (notation: v < ) if for any Borel subset A € B(X), |u|(A) = 0 implies
|v|(A) = 0.

Theorem A.6 (Radon-Nikodym). Let (X,B(X)) be a measurable space and p,v €
M(X). The measure v is absolutely continuous with respect to u if there exists a
u-integrable function f € LY (X, u), such that

V(A) = /A F(@)u(de), YA € B(X).

Next, we consider the following formula

[ull mex) = sup /X o(x)u(dz),Yu € M(I).

PeC(R):[[¢llo <1

where X is a Polish space.



An equivalent statement is proved in [4, Vol.IT Theorem 7.9.1 p.108] with far more
general assumptions.

Here, we give a more elementary proof when X is Polish. We rely on the Borel-
regularity of Borel measures that we recall first. The following statement is exactly
[4, Vol. T Theorem 1.4.8 p.30] when X C R™, and in general it is an easy consequence
of the fact that all Borel measures are Radon in a Polish space [4, Vol. IT Theorem
7.1.7 p.70].

Theorem A.7 (Approximations of Borel measures). Let (X,d) be a Polish space,
and let p be a Borel measure on X. Then, for any Borel set B C X, and any € > 0,
there exists an open subset U; C X, and a compact subset K. C X, such that

K.CcBCU,, and p(U\K;) <e.

Now we have the following result.
Proposition A.8. Let (X,d) be a Polish space. For any measure p € M(X), we have

Il amexy = sup / o(z)p(dx).
PpeC(X):||<1JX

Proof. Let u* and u~ be the positive and negative part of u and X+, X~ the support
of p* and p~, respectively. By Theorem A.7 applied to |u|, there exists K € X C
U with K compact and U open such that

Ml (UANED) < 2,
SO
pHXH) = ul(XH) = |pl(KX U (Xt nEKD))
> p(KS) = |l (U NKY)
= pt(KS) -5
Similarly we can find K compact and U; open such that

IUZ\KD) < . s p™(X7) > (KD) =

I

Recall that the distance between a point x and a subset B C X is defined as

ﬂLB%:ggM—M-

Consider
dy = min d(y, K}) >0, and d_ = min d(y, K. ) > 0.
yEUS ygUs
Define d = min(d_,dy). Then

() = o disla. K21/ ). and o) = o sl K5/ ).



where p is truncation map

() = e/ =D if | < 1,
PRI= 0,if Ju| > 1.

By definition we have ¢ (x) and ¢~ (x) are continuous maps, and

=0, ifxgUT, =0, ifxgU_,
T (x)< =1,ifx e KF and ¢~ (z) =1,if x € K
€ [0, 1], otherwise, € [0,1], otherwise.

Consider ¢(z) := ¢T(x) — ¢~ (), then we have

| owutan) = [ ot @utar) ~ [ o @t
[ otn@n + [ ot @)
K US\KZ
-] o @nn) - [ o @ut)
K. Us \K.

2k = [ ot @l ) = [ o @l

US\KZF

= [ul(X) =& = lnllmx) —e

Since € > 0 is arbitrary, we have proved that

sup /X (@) u(dz) > (Il ac)-

$€C(X) :sup, e x |o(z)|<1

The converse inequality follows from the comparison of integrals | v O(x)u(dr) <
|9lloo [ 1pe(dx). Proposition A.8 is proved. |

Example A.9 (A bounded linear form that is not a measure). The space of measures
on non-compact metric space (X, d) is not a dual space of the continuous functions or
bounded sequences in the present case. Indeed, consider the example (taken from the
book of [4]), X = N endowed with the standard metric d(n,m) = |n — m|. Due to the
additive property of measures, any measure on N must be a linear form. That is,

n(h) = [ Fnutan) = 3 oo

whenever f € [ (N,R) the space of bounded sequence, which is a Banach space
endowed with the standard supremum norm || f|lcc = sup,>y |fnl.



Next, if we consider the linear form

x*(f) = lim fp,
n—oo
defined for the converging sequences. By the Hahn Banach theorem, x* has a continu-
ous extension to the space of bounded sequence (endowed with the standard supremum
norm), and this extension is not a measure. Therefore the dual space 1°° (N,R)* is a
larger than M(X) the space of measure on X = N.
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