Supplementary materials to: "Robin Hood model versus Sheriff of Nottingham model: transfers in population dynamics"

Quentin $\operatorname{Griette}^{1^*}$ and Pierre Magal^{2,3,4}

1*Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600, Le Havre, France.

²Department of Mathematics, Faculty of Arts and Sciences , Beijing Normal University, Zhuhai, 519087, China.

³Univ. Bordeaux, IMB, UMR 5251, F- 33400 Talence, France. ⁴CNRS, IMB, UMR 5251, F- 33400 Talence, France.

*Corresponding author(s). E-mail(s): quentin.griette@univ-lehavre.fr; Contributing authors: pierre.magal@u-bordeaux.fr;

A Spaces of measures

Let X be a Polish space, that is complete metric space (X, d) which is separable (i.e., there exists a countable dense subset). As an example for *X* one may consider any closed subset of \mathbb{R}^n endowed with the standard metric $d(x, y) = ||x - y||$ induced by ∥*.*∥ a norm on R *n*.

Recall that the Borel σ -algebra of *X* is the set $\mathcal{B}(X) \subset \mathcal{P}(X)$ (the σ -algebra generated by the open subsets of *X*) of all parts of *X* that can be obtained by countable union, countable intersection, and difference of open sets [4, Vol II Chap 6 section 6.3].

We define $\mathcal{M}(X)$ the space of measures on X starting with the positive measures. A map $\mu : \mathcal{B}(X) \to \mathbb{R}^+$ is a **positive measure**, if it is **additive** (or a **countably additive**). That is,

$$
\mu\left(\bigcup_{n\in\mathbb{N}}B_n\right)=\sum_{n\in\mathbb{N}}\mu(B_n),
$$

for any countable collection of disjoint Borel sets $B_n \in \mathcal{B}(X)$ (where the empty set may occur infinitely many times). In the following, a countably additive measure will be called **Borel measure**.

A positive measure is **finite** if

$$
\mu(X) < +\infty.
$$

A **signed** measure μ is the difference between two positive measures

$$
\mu = \mu^+ - \mu^-
$$

where μ^+ and μ^- are both positive finite measures.

Definition A.1. *The set* $\mathcal{M}(X)$ *is the space of all the signed finite measures* μ *.*

Given a signed measure μ , the Hahn decomposition theorem [\[4,](#page-0-0) Vol. I Theorem 3.1.1 p. 175] gives a decomposition of the space *X* into two subsets *X*⁺ and *X*[−] on which μ has constant sign.

Theorem A.2 (Hahn decomposition)**.** *Let µ be a signed measure on a measurable space* $(X, \mathcal{B}(X))$ *. Then, there exist disjoint sets* $X^+, X^- \in \mathcal{B}(X)$ *such that* $X^+ \cup X^ \overline{X}$ *, and for all* $\overline{A} \in \mathcal{B}(X)$ *, one has*

$$
\mu(A \cap X^-) \le 0 \text{ and } \mu(A \cap X^+) \ge 0.
$$

Considering for example $\mu = \delta_0 - \delta_2$ with $X = \{0, 1, 2\}$, we deduce that the Hahn decomposition is not unique in general. But the Hahn decomposition allows us to define the *positive part* μ^+ and the *negative part* μ^- of a signed measure μ .

$$
\mu^-(A) := -\mu(A \cap X^-) \text{ and } \mu^+(A) := \mu(A \cap X^+), \text{ for all } A \in \mathcal{B}(X). \tag{A.1}
$$

Let us prove that μ^+ is uniquely defined, the proof for μ^- being similar. Indeed, if we consider $\widetilde{X}^+ \cup \widetilde{X}^- = X$ another Hahn decomposition for μ . Then we have

$$
\mu(X^+ \cap \tilde{X}^-) = 0
$$
, and $\mu(\tilde{X}^+ \cap X^-) = 0$,

since both quantities are simultaneously positive and negative.

Therefore we have

$$
\mu(X^+ \cap A) = \mu\left(X^+ \cap \left((A \cap \tilde{X}^+) \cup (A \cap \tilde{X}^-)\right)\right)
$$

\n
$$
= \mu(A \cap \tilde{X}^+ \cap X) + \mu(A \cap \tilde{X}^- \cap X^+)
$$

\n
$$
= \mu(A \cap \tilde{X}^+ \cap X)
$$

\n
$$
= \mu(A \cap \tilde{X}^+ \cap X^+) + \mu(A \cap \tilde{X}^- \cap X^+)
$$

\n
$$
= \mu\left(\tilde{X}^+ \cap \left((A \cap X^+) \cup (A \cap X^-)\right)\right) = \mu(\tilde{X}^+ \cap A).
$$

This shows that μ^+ defined by [\(A.1\)](#page-1-0) is unique (i.e. μ^+ is independent of the Hahn decomposition).

The *total variation* of μ (see [\[4,](#page-0-0) Vol. I Definition 3.1.4 p.176]) is

$$
|\mu| = \mu^+ + \mu^-.
$$

The space $\mathcal{M}(X)$ of signed finite measures over X, is a Banach space endowed with the *total variation norm*

$$
\|\mu\|_{\mathcal{M}(X)} := \int_X |\mu|(\mathrm{d} x).
$$

We refer again to Bogachev [\[4,](#page-0-0) Vol. I Theorem 4.6.1] for this result.

First, we check that the positive part, negative part and total variation are continuous on $\mathcal{M}(X)$.

Lemma A.3. *Let* $(X, \mathcal{B}(X))$ *be a measurable space. The maps* $\mu \mapsto \mu^+$, $\mu \mapsto \mu^-$ *and* $\mu \mapsto |\mu|$ are 1-Lipschitz continuous on $\mathcal{M}(X)$ equiped with $\|\cdot\|_{\mathcal{M}(X)}$. That is,

$$
\|\mu_1^+ - \mu_2^+\|_{\mathcal{M}(X)} \le \|\mu_1 - \mu_2\|_{\mathcal{M}(X)},
$$

$$
\|\mu_1^- - \mu_2^-\|_{\mathcal{M}(X)} \le \|\mu_1 - \mu_2\|_{\mathcal{M}(X)},
$$

$$
\|\mu_1\| - \mu_2\|\|_{\mathcal{M}(X)} \le \|\mu_1 - \mu_2\|_{\mathcal{M}(X)}.
$$

Proof. Let $\mu_1, \mu_2 \in \mathcal{M}(X)$ be given. We introduce the Hahn decompositions of X with respect to μ_1 and μ_2 , respectively: $X =: X_1^+ \cup X_1^-$ and $X =: X_2^+ \cup X_2^-$, so that X_1^+ is the support of μ_1^+, X_1^- is the support of μ_1^-, X_2^+ is the support of μ_2^+ , and $X_2^$ is the support of μ_2^- .

We also introduce the Hahn decomposition of *X* for $|\mu_1| - |\mu_2|$, *X* =: *Y*⁺ ∪ *Y*[−]. Then,

$$
\| |\mu_1| - |\mu_2| \|_{\mathcal{M}(X)} = (|\mu_1| - |\mu_2|)^+ (X) + (|\mu_1| - |\mu_2|)^- (X)
$$

\n
$$
= |\mu_1| (Y^+) - |\mu_2| (Y^+) + |\mu_2| (Y^-) - |\mu_1| (Y^-)
$$

\n
$$
= \mu_1^+ (Y^+) + \mu_1^- (Y^+) - \mu_2^+ (Y^+) - \mu_2^- (Y^+) \tag{A.2}
$$

\n
$$
+ \mu_1^+ (Y^-) + \mu_1^- (Y^-) - \mu_1^+ (Y^-) - \mu_1^- (Y^-) \tag{A.3}
$$

+
$$
\mu_2^+(Y^-)
$$
 + $\mu_2^-(Y^-)$ - $\mu_1^+(Y^-)$ - $\mu_1^-(Y^-)$. (A.3)

We decompose further $Y^+ = (Y^+ \cap X_1^+) \cup (Y^+ \cap X_1^-)$ to obtain

$$
\mu_1^+(Y^+) + \mu_1^-(Y^+) - \mu_2^+(Y^+) - \mu_2^-(Y^+) = \mu_1(Y^+ \cap X_1^+) - \mu_1(Y^+ \cap X_1^-) - |\mu_2|(Y^+ \cap X_1^-) - |\mu_2|(Y^+ \cap X_1^-),\tag{A.4}
$$

and

$$
\mu_1(Y^+ \cap X_1^+) - |\mu_2|(Y^+ \cap X_1^+) = \mu_1(Y^+ \cap X_1^+) - \mu_2^+(Y^+ \cap X_1^+) - \mu_2^-(Y^+ \cap X_1^+)
$$

\n
$$
\leq \mu_1(Y^+ \cap X_1^+) - \mu_2^+(Y^+ \cap X_1^+) + \mu_2^-(Y^+ \cap X_1^+)
$$

\n
$$
= \mu_1(Y^+ \cap X_1^+) - \mu_2(Y^+ \cap X_1^+)
$$

\n
$$
\leq |\mu_1 - \mu_2|(Y^+ \cap X_1^+),
$$

3

similarly

$$
-\mu_1(Y^+ \cap X_1^-) - |\mu_2|(Y^+ \cap X_1^-) = -\mu_1(Y^+ \cap X_1^-) - \mu_2^+(Y^+ \cap X_1^-) - \mu_2^-(Y^+ \cap X_1^-)
$$

\n
$$
\le -\mu_1(Y^+ \cap X_1^-) + \mu_2^+(Y^+ \cap X_1^-) - \mu_2^-(Y^+ \cap X_1^-)
$$

\n
$$
= \mu_2(Y^+ \cap X_1^-) - \mu_1(Y^+ \cap X_1^-)
$$

\n
$$
\le |\mu_1 - \mu_2|(Y^+ \cap X_1^-),
$$

so finally [\(A.4\)](#page-2-0) becomes

$$
(|\mu_1| - |\mu_2|) (Y^+) = \mu_1^+(Y^+) + \mu_1^-(Y^+) - \mu_2^+(Y^+) - \mu_2^-(Y^+)
$$

\n
$$
\leq |\mu_1 - \mu_2| (Y^+ \cap X_1^+) + |\mu_1 - \mu_2| (Y^+ \cap X_1^-)
$$

\n
$$
= |\mu_1 - \mu_2| (Y^+).
$$
 (A.5)

By a similar argument using this time the decomposition $Y^- = (Y^- \cap X_2^+) \cup (Y^- \cap X_2^-)$ X_2^-), we obtain

$$
(|\mu_1| - |\mu_2|)(Y^-) = \mu_2^+(Y^-) + \mu_2^-(Y^-) - \mu_1^+(Y^-) - \mu_1^-(Y^-)
$$

\n
$$
\leq |\mu_1 - \mu_2|(Y^- \cap X_2^+) + |\mu_1 - \mu_2|(Y^- \cap X_2^-)
$$

\n
$$
= |\mu_1 - \mu_2|(Y^-).
$$
 (A.6)

Finally, combining $(A.5)$ and $(A.6)$ into $(A.2)$ - $(A.3)$, we have

$$
\| |\mu_1| - |\mu_2| \|_{\mathcal{M}(X)} \le |\mu_1 - \mu_2|(Y^+) + |\mu_1 - \mu_2|(Y^-)
$$

= $|\mu_1 - \mu_2|(Y^+) + |\mu_1 - \mu_2|(Y^-)$
= $|\mu_1 - \mu_2|(X)$
= $||\mu_1 - \mu_2||_{\mathcal{M}(X)}$.

We have proved that $\mu \mapsto |\mu|$ is 1-Lipschitz. Since $\mu^+ = \frac{1}{2} (|\mu| + \mu)$ and $\mu^- = \frac{1}{2} (|\mu| - \mu)$, both $\mu \mapsto \mu^+$ and $\mu \mapsto \mu^-$ are also 1-Lipschitz. The proof is completed.

We have the following lemma.

Lemma A.4. *Let* $(X, \mathcal{B}(X))$ *be a measurable space. The subset* $\mathcal{M}_+(X)$ *is a positive cone of* $\mathcal{M}(X)$ *. That is,*

- (i) $\mathcal{M}_+(X)$ *is a closed and convex subset of* $\mathcal{M}(X)$ *.*
- (ii) $\lambda m \in \mathcal{M}_+(X), \forall \lambda \geq 0, \forall m \in \mathcal{M}_+(X).$
- (iii) $\mathcal{M}_+(X) \cap -\mathcal{M}_+(X) = \{0_{\mathcal{M}(X)}\}.$

Proof. Proof of (i). By Lemma [A.3,](#page-2-3) the map $\mu \mapsto \mu^-$ is continuous, and

$$
\mathcal{M}_+(X) = \{ \mu \in \mathcal{M}(X) : \mu^- = 0 \}.
$$

The property (ii) is trivial, since $(\lambda m)(A) = \lambda m(A), \forall A \in \mathcal{B}(X)$.

Proof of (iii). Let $\mu \in \mathcal{M}_+(X) \cap -\mathcal{M}_+(X)$. We observe that $\mu \in \mathcal{M}_+(X)$ implies $\mu^- = 0$. Next $\mu \in -\mathcal{M}_+(X)$ is equivalent to $-\mu \in \mathcal{M}_+(X)$, and it follows that $(-\mu)^{-} = \mu^{+} = 0$. We conclude that $\mu = \mu^{+} - \mu^{-} = 0$, and (iii) is proved.

■

When $\mu \in \mathcal{M}(X)$ is a given measure (not necessarily finite), one can define the space of integrable functions quotiented by the equivalence μ -almost everywhere, $L^1(X,\mu)$. It is a Banach space [\[4,](#page-0-0) Vol. I Theorem 4.1.1 p.250] equipped with the norm

$$
||f||_{L^1(X,\mu)} = \int_X |f(x)| |\mu|(\mathrm{d}x).
$$

For each $f \in L^1(X, \mu)$, the product measure $m(dx) = f(x)\mu(dx)$ is defined by

$$
m(A) = \int_A f(x)\mu(\mathrm{d}x), \forall A \in \mathcal{B}(X),
$$

and this measure satisfies

$$
||m||_{\mathcal{M}(X)} = \int_X |f(x)||\mu|(\mathrm{d}x) = ||f||_{L^1(X,\mu)}.
$$

It follows from its Banach space property, that $L^1(X,\mu)$ is a closed subspace of $\mathcal{M}(X)$. Remark that it is still true when $X = I$ is an interval and $\mu(dx) = dx$ is the Lebesgue measure, in which case $L^1(X,\mu) = L^1(I)$ is the usual space of L^1 functions.

Let us recall the Radon-Nikodym Theorem for signed measures [\[4,](#page-0-0) Vol. I Theorem 3.2.2 p.178]. We first recall the notion of absolute continuity [\[4,](#page-0-0) Vol. I Definition 3.2.1 (i) p.178].

Definition A.5 (Absolute continuity). Let $(X, \mathcal{B}(X))$ be a measurable space, and $\mu, \nu \in \mathcal{M}(X)$ *be two signed measures. The measure* ν *is absolutely continuous with respect to* μ (notation: $\nu \ll \mu$) if for any Borel subset $A \in \mathcal{B}(X)$, $|\mu|(A) = 0$ implies $|\nu|(A) = 0.$

Theorem A.6 (Radon-Nikodym). *Let* $(X, \mathcal{B}(X))$ *be a measurable space and* $\mu, \nu \in$ $\mathcal{M}(X)$ *. The measure* ν *is absolutely continuous with respect to* μ *if there exists a* μ *-integrable function* $f \in L^1(X, \mu)$ *, such that*

$$
\nu(A) = \int_A f(x)\mu(\mathrm{d}x), \forall A \in \mathcal{B}(X).
$$

Next, we consider the following formula

$$
||u||_{\mathcal{M}(X)} = \sup_{\phi \in C(\mathbb{R}): ||\phi||_{\infty} \le 1} \int_{X} \phi(x)u(dx), \forall u \in \mathcal{M}(I).
$$

where X is a Polish space.

An equivalent statement is proved in [\[4,](#page-0-0) Vol.II Theorem 7.9.1 p.108] with far more general assumptions.

Here, we give a more elementary proof when *X* is Polish. We rely on the Borelregularity of Borel measures that we recall first. The following statement is exactly [\[4,](#page-0-0) Vol. I Theorem 1.4.8 p.30] when $X \subset \mathbb{R}^n$, and in general it is an easy consequence of the fact that all Borel measures are Radon in a Polish space [\[4,](#page-0-0) Vol. II Theorem 7.1.7 p.70].

Theorem A.7 (Approximations of Borel measures)**.** *Let* (*X, d*) *be a Polish space, and let* μ *be a Borel measure on X. Then, for any Borel set* $B \subset X$ *, and any* $\varepsilon > 0$ *, there exists an open subset* $U_{\varepsilon} \subset X$ *, and a compact subset* $K_{\varepsilon} \subset X$ *, such that*

$$
K_{\varepsilon} \subset B \subset U_{\varepsilon}, \text{ and } \mu(U_{\varepsilon} \backslash K_{\varepsilon}) \leq \varepsilon.
$$

Now we have the following result.

Proposition A.8. *Let* (X, d) *be a Polish space. For any measure* $\mu \in \mathcal{M}(X)$ *, we have*

$$
\|\mu\|_{\mathcal{M}(X)} = \sup_{\phi \in C(X) : |\phi| \le 1} \int_X \phi(x) \mu(\mathrm{d}x).
$$

Proof. Let μ^+ and μ^- be the positive and negative part of μ and X^+, X^- the support of μ^+ and μ^- , respectively. By Theorem [A.7](#page-5-0) applied to $|\mu|$, there exists $K_{\varepsilon}^+ \subset X^+ \subset$ U_{ε}^{+} with K_{ε}^{+} compact and U_{ε}^{+} open such that

$$
|\mu|(U_\varepsilon^+\backslash K_\varepsilon^+)\leq \frac{\varepsilon}{4},
$$

so

$$
\mu^{+}(X^{+}) = |\mu|(X^{+}) = |\mu| \left(K_{\varepsilon}^{+} \cup (X^{+} \cap K_{\varepsilon}^{+}) \right) \geq \mu(K_{\varepsilon}^{+}) - |\mu| \left(U_{\varepsilon}^{+} \cap K_{\varepsilon}^{+} \right) = \mu^{+}(K_{\varepsilon}^{+}) - \frac{\varepsilon}{4}.
$$

Similarly we can find K_{ε}^- compact and U_{ε}^- open such that

$$
|\mu|(U_{\varepsilon}^{-}\backslash K_{\varepsilon}^{-})\leq \frac{\varepsilon}{4}, \text{ so } \mu^{-}(X^{-})\geq \mu^{-}(K_{\varepsilon}^{-})-\frac{\varepsilon}{4}.
$$

Recall that the distance between a point *x* and a subset $B \subset X$ is defined as

$$
d(x, B) = \inf_{y \in B} |x - y|.
$$

Consider

$$
d_{+} = \min_{y \notin U_{\varepsilon}^{+}} d(y, K_{\varepsilon}^{+}) > 0, \text{ and } d_{-} = \min_{y \notin U_{\varepsilon}^{-}} d(y, K_{\varepsilon}^{-}) > 0.
$$

Define $d = \min(d_-, d_+)$. Then

$$
\phi^+(x) = \rho\bigg(\text{dist}(x, K_{\varepsilon}^+)/d\bigg), \text{ and } \phi^-(x) = \rho\bigg(\text{dist}(x, K_{\varepsilon}^-)/d\bigg),
$$

where ρ is truncation map

$$
\rho(u) = \begin{cases} e^{u^2/(u^2 - 1)}, & \text{if } |u| < 1, \\ 0, & \text{if } |u| \ge 1. \end{cases}
$$

By definition we have $\phi^+(x)$ and $\phi^-(x)$ are continuous maps, and

$$
\phi^+(x) \begin{cases} = 0, \text{ if } x \notin U_{\varepsilon}^+, \\ = 1, \text{ if } x \in K_{\varepsilon}^+ \\ \in [0,1], \text{ otherwise,} \end{cases} \text{ and } \phi^-(x) \begin{cases} = 0, \text{ if } x \notin U_{\varepsilon}^-, \\ = 1, \text{ if } x \in K_{\varepsilon}^- \\ \in [0,1], \text{ otherwise.} \end{cases}
$$

Consider $\phi(x) := \phi^+(x) - \phi^-(x)$, then we have

$$
\int_{X} \phi(x)\mu(\mathrm{d}x) = \int_{X} \phi^{+}(x)\mu(\mathrm{d}x) - \int_{X} \phi^{-}(x)\mu(\mathrm{d}x)
$$
\n
$$
= \int_{K_{\varepsilon}^{+}} \phi^{+}(x)\mu(\mathrm{d}x) + \int_{U_{\varepsilon}^{+}\setminus K_{\varepsilon}^{+}} \phi^{+}(x)\mu(\mathrm{d}x)
$$
\n
$$
- \int_{K_{\varepsilon}^{-}} \phi^{-}(x)\mu(\mathrm{d}x) - \int_{U_{\varepsilon}^{-}\setminus K_{\varepsilon}^{-}} \phi^{-}(x)\mu(\mathrm{d}x)
$$
\n
$$
\geq \mu(K_{\varepsilon}^{+}) - \int_{U_{\varepsilon}^{+}\setminus K_{\varepsilon}^{+}} \phi^{+}(x)|\mu|(\mathrm{d}x) - \mu(K_{\varepsilon}^{-}) - \int_{U_{\varepsilon}^{-}\setminus K_{\varepsilon}^{-}} \phi^{-}(x)|\mu|(\mathrm{d}x)
$$
\n
$$
\geq \mu^{+}(K_{\varepsilon}^{+}) + \mu^{-}(K_{\varepsilon}^{-}) - \frac{\varepsilon}{2}
$$
\n
$$
\geq \mu^{+}(X^{+}) - \frac{\varepsilon}{4} + \mu^{-}(X^{-}) - \frac{\varepsilon}{4} - \frac{\varepsilon}{2}
$$
\n
$$
= |\mu|(X) - \varepsilon = ||\mu||_{\mathcal{M}(X)} - \varepsilon.
$$

Since $\varepsilon > 0$ is arbitrary, we have proved that

$$
\sup_{\phi \in C(X) \,:\, \sup_{x \in X} |\phi(x)| \le 1} \int_X \phi(x) \mu(\mathrm{d}x) \ge \|\mu\|_{\mathcal{M}(X)}.
$$

The converse inequality follows from the comparison of integrals $\int_X \phi(x) \mu(dx) \le$ $\|\phi\|_{\infty} \int_X 1\mu(\mathrm{d}x)$. Proposition [A.8](#page-5-1) is proved. ■

Example A.9 (A bounded linear form that is not a measure)**.** *The space of measures on non-compact metric space* (*X, d*) *is not a dual space of the continuous functions or bounded sequences in the present case. Indeed, consider the example (taken from the book of* $[4]$ *),* $X = \mathbb{N}$ *endowed with the standard metric* $d(n, m) = |n - m|$ *. Due to the additive property of measures, any measure on* N *must be a linear form. That is,*

$$
\mu(f) = \int_{\mathbb{N}} f(n)\mu(dn) = \sum_{n=1}^{\infty} \mu_n f_n,
$$

whenever $f \in l^{\infty}(\mathbb{N}, \mathbb{R})$ *the space of bounded sequence, which is a Banach space endowed with the standard supremum norm* $||f||_{\infty} = \sup_{n \geq 1} |f_n|$.

$$
7\,
$$

Next, if we consider the linear form

$$
x^*(f) = \lim_{n \to \infty} f_n,
$$

defined for the converging sequences. By the Hahn Banach theorem, x^* has a continu*ous extension to the space of bounded sequence (endowed with the standard supremum norm), and this extension is not a measure. Therefore the dual space* $l^{\infty}(\mathbb{N}, \mathbb{R})^*$ is a *larger than* $\mathcal{M}(X)$ *the space of measure on* $X = \mathbb{N}$ *.*