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A Spaces of measures
Let X be a Polish space, that is complete metric space (X, d) which is separable (i.e.,
there exists a countable dense subset). As an example for X one may consider any
closed subset of Rn endowed with the standard metric d(x, y) = ∥x − y∥ induced by
∥.∥ a norm on Rn.

Recall that the Borel σ-algebra of X is the set B(X) ⊂ P(X) (the σ-algebra
generated by the open subsets of X) of all parts of X that can be obtained by countable
union, countable intersection, and difference of open sets [4, Vol II Chap 6 section 6.3].

We define M(X) the space of measures on X starting with the positive measures.
A map µ : B(X) → R+ is a positive measure, if it is additive (or a countably
additive). That is,

µ

(⋃
n∈N

Bn

)
=
∑
n∈N

µ(Bn),

for any countable collection of disjoint Borel sets Bn ∈ B(X) (where the empty set
may occur infinitely many times). In the following, a countably additive measure will
be called Borel measure.
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A positive measure is finite if

µ(X) < +∞.

A signed measure µ is the difference between two positive measures

µ = µ+ − µ−

where µ+ and µ− are both positive finite measures.
Definition A.1. The set M(X) is the space of all the signed finite measures µ.

Given a signed measure µ, the Hahn decomposition theorem [4, Vol. I Theorem
3.1.1 p. 175] gives a decomposition of the space X into two subsets X+ and X− on
which µ has constant sign.
Theorem A.2 (Hahn decomposition). Let µ be a signed measure on a measurable
space (X, B(X)). Then, there exist disjoint sets X+, X− ∈ B(X) such that X+∪X− =
X, and for all A ∈ B(X), one has

µ(A ∩ X−) ≤ 0 and µ(A ∩ X+) ≥ 0.

Considering for example µ = δ0 − δ2 with X = {0, 1, 2}, we deduce that the Hahn
decomposition is not unique in general. But the Hahn decomposition allows us to
define the positive part µ+ and the negative part µ− of a signed measure µ:

µ−(A) := −µ(A ∩ X−) and µ+(A) := µ(A ∩ X+), for all A ∈ B(X). (A.1)

Let us prove that µ+ is uniquely defined, the proof for µ− being similar. Indeed, if we
consider X̃+ ∪ X̃− = X another Hahn decomposition for µ. Then we have

µ(X+ ∩ X̃−) = 0, and µ(X̃+ ∩ X−) = 0,

since both quantities are simultaneously positive and negative.

Therefore we have

µ(X+ ∩ A) = µ

(
X+ ∩

(
(A ∩ X̃+) ∪ (A ∩ X̃−)

))
= µ

(
A ∩ X̃+ ∩ X

)
+ µ(A ∩ X̃− ∩ X+)

= µ(A ∩ X̃+ ∩ X)

= µ
(
A ∩ X̃+ ∩ X+)+ µ(A ∩ X̃− ∩ X+)

= µ

(
X̃+ ∩

(
(A ∩ X+) ∪ (A ∩ X−)

))
= µ(X̃+ ∩ A).

This shows that µ+ defined by (A.1) is unique (i.e. µ+ is independent of the Hahn
decomposition).
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The total variation of µ (see [4, Vol. I Definition 3.1.4 p.176]) is

|µ| = µ+ + µ−.

The space M(X) of signed finite measures over X, is a Banach space endowed with
the total variation norm

∥µ∥M(X) :=
∫

X

|µ|(dx).

We refer again to Bogachev [4, Vol. I Theorem 4.6.1] for this result.

First, we check that the positive part, negative part and total variation are
continuous on M(X).
Lemma A.3. Let (X, B(X)) be a measurable space. The maps µ 7→ µ+, µ 7→ µ− and
µ 7→ |µ| are 1-Lipschitz continuous on M(X) equiped with ∥ · ∥M(X). That is,

∥µ+
1 − µ+

2 ∥M(X) ≤ ∥µ1 − µ2∥M(X),

∥µ−
1 − µ−

2 ∥M(X) ≤ ∥µ1 − µ2∥M(X),

∥|µ1| − |µ2|∥M(X) ≤ ∥µ1 − µ2∥M(X).

Proof. Let µ1, µ2 ∈ M(X) be given. We introduce the Hahn decompositions of X
with respect to µ1 and µ2, respectively: X =: X+

1 ∪ X−
1 and X =: X+

2 ∪ X−
2 , so that

X+
1 is the support of µ+

1 , X−
1 is the support of µ−

1 , X+
2 is the support of µ+

2 , and X−
2

is the support of µ−
2 .

We also introduce the Hahn decomposition of X for |µ1| − |µ2|, X =: Y + ∪ Y −.
Then,

∥|µ1| − |µ2|∥M(X) =
(
|µ1| − |µ2|

)+(X) +
(
|µ1| − |µ2|

)−(X)
= |µ1|(Y +) − |µ2|(Y +) + |µ2|(Y −) − |µ1|(Y −)
= µ+

1 (Y +) + µ−
1 (Y +) − µ+

2 (Y +) − µ−
2 (Y +) (A.2)

+ µ+
2 (Y −) + µ−

2 (Y −) − µ+
1 (Y −) − µ−

1 (Y −). (A.3)

We decompose further Y + = (Y + ∩ X+
1 ) ∪ (Y + ∩ X−

1 ) to obtain

µ+
1 (Y +) + µ−

1 (Y +) − µ+
2 (Y +) − µ−

2 (Y +) = µ1(Y + ∩ X+
1 ) − µ1(Y + ∩ X−

1 )

−|µ2|(Y + ∩ X+
1 ) − |µ2|(Y + ∩ X−

1 ),
(A.4)

and

µ1(Y + ∩ X+
1 ) − |µ2|(Y + ∩ X+

1 ) = µ1(Y + ∩ X+
1 ) − µ+

2 (Y + ∩ X+
1 ) − µ−

2 (Y + ∩ X+
1 )

≤ µ1(Y + ∩ X+
1 ) − µ+

2 (Y + ∩ X+
1 ) + µ−

2 (Y + ∩ X+
1 )

= µ1(Y + ∩ X+
1 ) − µ2(Y + ∩ X+

1 )
≤ |µ1 − µ2|(Y + ∩ X+

1 ),
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similarly

−µ1(Y + ∩ X−
1 ) − |µ2|(Y + ∩ X−

1 ) = −µ1(Y + ∩ X−
1 ) − µ+

2 (Y + ∩ X−
1 ) − µ−

2 (Y + ∩ X−
1 )

≤ −µ1(Y + ∩ X−
1 ) + µ+

2 (Y + ∩ X−
1 ) − µ−

2 (Y + ∩ X−
1 )

= µ2(Y + ∩ X−
1 ) − µ1(Y + ∩ X−

1 )
≤ |µ1 − µ2|(Y + ∩ X−

1 ),

so finally (A.4) becomes

(|µ1| − |µ2|) (Y +) = µ+
1 (Y +) + µ−

1 (Y +) − µ+
2 (Y +) − µ−

2 (Y +)

≤ |µ1 − µ2|(Y + ∩ X+
1 ) + |µ1 − µ2|(Y + ∩ X−

1 )

= |µ1 − µ2|(Y +).

(A.5)

By a similar argument using this time the decomposition Y − = (Y − ∩ X+
2 ) ∪ (Y − ∩

X−
2 ), we obtain

(|µ1| − |µ2|) (Y −) = µ+
2 (Y −) + µ−

2 (Y −) − µ+
1 (Y −) − µ−

1 (Y −)

≤ |µ1 − µ2|(Y − ∩ X+
2 ) + |µ1 − µ2|(Y − ∩ X−

2 )

= |µ1 − µ2|(Y −).

(A.6)

Finally, combining (A.5) and (A.6) into (A.2)-(A.3), we have

∥|µ1| − |µ2|∥M(X) ≤ |µ1 − µ2|(Y +) + |µ1 − µ2|(Y −)
= |µ1 − µ2|(Y +) + |µ1 − µ2|(Y −)
= |µ1 − µ2|(X)
= ∥µ1 − µ2∥M(X).

We have proved that µ 7→ |µ| is 1-Lipschitz. Since µ+ = 1
2
(
|µ|+µ

)
and µ− = 1

2
(
|µ|−µ

)
,

both µ 7→ µ+ and µ 7→ µ− are also 1-Lipschitz. The proof is completed. ■

We have the following lemma.
Lemma A.4. Let (X, B(X)) be a measurable space. The subset M+(X) is a positive
cone of M(X). That is,

(i) M+(X) is a closed and convex subset of M(X).
(ii) λ m ∈ M+(X), ∀λ ≥ 0, ∀m ∈ M+(X).
(iii) M+(X) ∩ −M+(X) =

{
0M(X)

}
.

Proof. Proof of (i). By Lemma A.3, the map µ 7→ µ− is continuous, and

M+(X) = {µ ∈ M(X) : µ− = 0}.

The property (ii) is trivial, since (λm)(A) = λm(A), ∀A ∈ B(X).
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Proof of (iii). Let µ ∈ M+(X) ∩ −M+(X). We observe that µ ∈ M+(X) implies
µ− = 0. Next µ ∈ −M+(X) is equivalent to −µ ∈ M+(X), and it follows that
(−µ)− = µ+ = 0. We conclude that µ = µ+ − µ− = 0, and (iii) is proved.

■

When µ ∈ M(X) is a given measure (not necessarily finite), one can define the
space of integrable functions quotiented by the equivalence µ-almost everywhere,
L1(X, µ). It is a Banach space [4, Vol. I Theorem 4.1.1 p.250] equipped with the norm

∥f∥L1(X,µ) =
∫

X

|f(x)||µ|(dx).

For each f ∈ L1(X, µ), the product measure m(dx) = f(x)µ(dx) is defined by

m(A) =
∫

A

f(x)µ(dx), ∀A ∈ B(X),

and this measure satisfies

∥m∥M(X) =
∫

X

|f(x)||µ|(dx) = ∥f∥L1(X,µ).

It follows from its Banach space property, that L1(X, µ) is a closed subspace of M(X).
Remark that it is still true when X = I is an interval and µ(dx) = dx is the Lebesgue
measure, in which case L1(X, µ) = L1(I) is the usual space of L1 functions.

Let us recall the Radon-Nikodym Theorem for signed measures [4, Vol. I Theorem
3.2.2 p.178]. We first recall the notion of absolute continuity [4, Vol. I Definition 3.2.1
(i) p.178].
Definition A.5 (Absolute continuity). Let (X, B(X)) be a measurable space, and
µ, ν ∈ M(X) be two signed measures. The measure ν is absolutely continuous with
respect to µ (notation: ν ≪ µ) if for any Borel subset A ∈ B(X), |µ|(A) = 0 implies
|ν|(A) = 0.
Theorem A.6 (Radon-Nikodym). Let (X, B(X)) be a measurable space and µ, ν ∈
M(X). The measure ν is absolutely continuous with respect to µ if there exists a
µ-integrable function f ∈ L1(X, µ), such that

ν(A) =
∫

A

f(x)µ(dx), ∀A ∈ B(X).

Next, we consider the following formula

∥u∥M(X) = sup
ϕ∈C(R):∥ϕ∥∞≤1

∫
X

ϕ(x)u(dx), ∀u ∈ M(I).

where X is a Polish space.
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An equivalent statement is proved in [4, Vol.II Theorem 7.9.1 p.108] with far more
general assumptions.

Here, we give a more elementary proof when X is Polish. We rely on the Borel-
regularity of Borel measures that we recall first. The following statement is exactly
[4, Vol. I Theorem 1.4.8 p.30] when X ⊂ Rn, and in general it is an easy consequence
of the fact that all Borel measures are Radon in a Polish space [4, Vol. II Theorem
7.1.7 p.70].
Theorem A.7 (Approximations of Borel measures). Let (X, d) be a Polish space,
and let µ be a Borel measure on X. Then, for any Borel set B ⊂ X, and any ε > 0,
there exists an open subset Uε ⊂ X, and a compact subset Kε ⊂ X, such that

Kε ⊂ B ⊂ Uε, and µ (Uε\Kε) ≤ ε.

Now we have the following result.
Proposition A.8. Let (X, d) be a Polish space. For any measure µ ∈ M(X), we have

∥µ∥M(X) = sup
ϕ∈C(X) : |ϕ|≤1

∫
X

ϕ(x)µ(dx).

Proof. Let µ+ and µ− be the positive and negative part of µ and X+, X− the support
of µ+ and µ−, respectively. By Theorem A.7 applied to |µ|, there exists K+

ε ⊂ X+ ⊂
U+

ε with K+
ε compact and U+

ε open such that

|µ|(U+
ε \K+

ε ) ≤ ε

4 ,

so
µ+(X+) = |µ|(X+) = |µ|

(
K+

ε ∪ (X+ ∩ K+
ε )
)

≥ µ(K+
ε ) − |µ|

(
U+

ε ∩ K+
ε )

= µ+(K+
ε ) − ε

4 .

Similarly we can find K−
ε compact and U−

ε open such that

|µ|(U−
ε \K−

ε ) ≤ ε

4 , so µ−(X−) ≥ µ−(K−
ε ) − ε

4 .

Recall that the distance between a point x and a subset B ⊂ X is defined as

d(x, B) = inf
y∈B

|x − y|.

Consider
d+ = min

y ̸∈U+
ε

d(y, K+
ε ) > 0, and d− = min

y ̸∈U−
ε

d(y, K−
ε ) > 0.

Define d = min(d−, d+). Then

ϕ+(x) = ρ

(
dist(x, K+

ε )/d

)
, and ϕ−(x) = ρ

(
dist(x, K−

ε )/d

)
,
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where ρ is truncation map

ρ(u) =
{

eu2/(u2−1), if |u| < 1,
0, if |u| ≥ 1.

By definition we have ϕ+(x) and ϕ−(x) are continuous maps, and

ϕ+(x)

= 0, if x ̸∈ U+
ε ,

= 1, if x ∈ K+
ε

∈ [0, 1], otherwise,
and ϕ−(x)

= 0, if x ̸∈ U−
ε ,

= 1, if x ∈ K−
ε

∈ [0, 1], otherwise.

Consider ϕ(x) := ϕ+(x) − ϕ−(x), then we have∫
X

ϕ(x)µ(dx) =
∫

X

ϕ+(x)µ(dx) −
∫

X

ϕ−(x)µ(dx)

=
∫

K+
ε

ϕ+(x)µ(dx) +
∫

U+
ε \K+

ε

ϕ+(x)µ(dx)

−
∫

K−
ε

ϕ−(x)µ(dx) −
∫

U−
ε \K−

ε

ϕ−(x)µ(dx)

≥ µ(K+
ε ) −

∫
U+

ε \K+
ε

ϕ+(x)|µ|(dx) − µ(K−
ε ) −

∫
U−

ε \K−
ε

ϕ−(x)|µ|(dx)

≥ µ+(K+
ε ) + µ−(K−

ε ) − ε

2
≥ µ+(X+) − ε

4 + µ−(X−) − ε

4 − ε

2
= |µ|(X) − ε = ∥µ∥M(X) − ε.

Since ε > 0 is arbitrary, we have proved that

sup
ϕ∈C(X) : supx∈X |ϕ(x)|≤1

∫
X

ϕ(x)µ(dx) ≥ ∥µ∥M(X).

The converse inequality follows from the comparison of integrals
∫

X
ϕ(x)µ(dx) ≤

∥ϕ∥∞
∫

X
1µ(dx). Proposition A.8 is proved. ■

Example A.9 (A bounded linear form that is not a measure). The space of measures
on non-compact metric space (X, d) is not a dual space of the continuous functions or
bounded sequences in the present case. Indeed, consider the example (taken from the
book of [4]), X = N endowed with the standard metric d(n, m) = |n − m|. Due to the
additive property of measures, any measure on N must be a linear form. That is,

µ(f) =
∫
N

f(n)µ(dn) =
∞∑

n=1
µnfn,

whenever f ∈ l∞ (N,R) the space of bounded sequence, which is a Banach space
endowed with the standard supremum norm ∥f∥∞ = supn≥1 |fn|.
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Next, if we consider the linear form

x⋆(f) = lim
n→∞

fn,

defined for the converging sequences. By the Hahn Banach theorem, x⋆ has a continu-
ous extension to the space of bounded sequence (endowed with the standard supremum
norm), and this extension is not a measure. Therefore the dual space l∞ (N,R)⋆ is a
larger than M(X) the space of measure on X = N.
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