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The g-extra connectivity of graph products ∗

Zhao Wang†, Yaping Mao‡, Sun-Yuan Hsieh §, Ralf Klasing, ¶, Yuzhi Xiao∥

Abstract

Connectivity is one of important parameters for the fault tolerant of an inter-

connection network. In 1996, Fàbrega and Fiol proposed the concept of g-extra

connectivity. A subset of vertices S is said to be a cutset if G−S is not connect-

ed. A cutset S is called an Rg-cutset, where g is a non-negative integer, if every

component of G− S has at least g + 1 vertices. If G has at least one Rg-cutset,

the g-extra connectivity of G, denoted by κg(G), is then defined as the minimum

cardinality over all Rg-cutsets of G. In this paper, we first obtain the exact val-

ue of g-extra connectivity for the lexicographic product of two general graphs.

Next, the upper and lower sharp bounds of g-extra connectivity for the Cartesian

product of two genaral graphs are given. In the end, we apply our results on grid

graphs and 2-dimensional generalized hypercubes.
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1 Introduction

For a graph G, let V (G), E(G), e(G), G, and diam(G) denote the set of vertices, the

set of edges, the size, the complement, and the diameter of G, respectively. A subgraph

H of G is a graph with V (H) ⊆ V (G), E(H) ⊆ E(G), and the endpoints of every edge

in E(H) belonging to V (H). For any subset X of V (G), let G[X] denote the subgraph

induced byX; similarly, for any subset F of E(G), letG[F ] denote the subgraph induced

by F . We use G−X to denote the subgraph of G obtained by removing all the vertices

of X together with the edges incident with them from G; similarly, we use G − F to

denote the subgraph of G obtained by removing all the edges of F from G. If X = {v}
and F = {e}, we simply write G− v and G− e for G− {v} and G− {e}, respectively.
The degree of a vertex v in a graph G, denoted by degG(v), is the number of edges of

G incident with v. Let δ(G) and ∆(G) be the minimum degree and maximum degree

of the vertices of G, respectively. The set of neighbors of a vertex v in a graph G is

denoted by NG(v). The union G ∪H of two graphs G and H is the graph with vertex

set V (G) ∪ V (H) and edge set E(G) ∪ E(H). The connectivity κ(G) of a graph G is

the minimum number of vertices whose removal results in a disconnected graph or only

one vertex left.

1.1 g-extra connectivity

The g-extra connectivity has been an object of interest for many years, and it was

firstly introduced by Fàbrega and Fiol [9]. A subset of vertices S is said to be a cutset

if G− S is not connected. A cutset S is called an Rg-cutset, where g is a non-negative

integer, if every component of G − S has at least g + 1 vertices. If G has at least

one Rg-cutset, the g-extra connectivity of G, denoted by κg(G), is then defined as the

minimum cardinality over all Rg-cutsets of G. Clearly, κ0(G) = κ(G) for any connected

non-complete graph G. So the g-extra connectivity can be viewed as a generalization

of the traditional connectivity, and it can more accurately evaluate the reliability and

fault tolerance for large-scale parallel processing systems accordingly. In [21], Wang et

al. obtained the exact values of g-extra connectivity of some special graphs. Graphs

with κg(G) = 1, 2, 3 and trees with κg(Tn) = n− 2g− 2 was characterized, respectively,

where G is a general graph and Tn is a tree of order n. Three extremal results for the

g-extra connectivity was also obtained. For more research on g-extra connectivity and

related topic, we refer to [1, 4, 5, 6, 7, 9, 11, 12, 17, 20, 22, 23, 27, 28].
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1.2 Graph products

Product networks were proposed based upon the idea of using the cross product as a tool

for “combining” two known graphs with established properties to obtain a new one that

inherits properties from both [3]. In graph theory, Cartesian product, lexicographical

product are two of main products, each with its own set of applications and theoretical

interpretations.

• The Cartesian product of two graphs G and H, written as G�H, is the graph

with vertex set V (G) × V (H), in which two vertices (u, v) and (u′, v′) are adjacent if

and only if u = u′ and (v, v′) ∈ E(H), or v = v′ and (u, u′) ∈ E(G).

• The lexicographic product G◦H of graphs G and H has the vertex set V (G◦H) =

V (G)× V (H). Two vertices (u, v), (u′, v′) are adjacent if uu′ ∈ E(G), or if u = u′ and

vv′ ∈ E(H).

For more details, we refer to [13].

1.3 Application backgrounds

With the rapid development of VLSI technology, a multiprocessor system may contain

thousands of nodes, and some of them may be faulty when the system is implemented.

As the number of processors in a system increases, the possibility that its processors

may be come faulty also increases. Because designing such systems without defects is

nearly impossible, reliability and fault tolerance are two of the most critical concerns

of multiprocessor systems [25].

By the definition proposed by Esfahanian [8], a multiprocessor system is fault tol-

erant if it can remain functional in the presence of failures. Two basic functionality

criteria have received considerable attention. The first criterion for a system to be

regarded as functional is whether the network logically contains a certain topologi-

cal structure. This is the problem that occurs when embedding one architecture into

another [15, 24]. This approach involves using system-wide redundancy and reconfigu-

ration. The second functionality criterion considers a multiprocessor system functional

if a fault-free communication path exists between any two fault-free nodes; that is, the

topological structure of the multiprocessor system remains connected in the presence of

certain failures. Thus, connectivity and edge connectivity are two major measurements

of this criterion [24]. However, these two parameters tacitly assume that all vertices

that are adjacent to, or all edges that are incident to, the same vertex can potentially

fail simultaneously. This is practically impossible in some network applications. To ad-

dress this deficiency, two specific terms forbidden faulty set and forbidden faulty edge
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set are introduced. The vertices in a forbidden faulty set or the edges in a forbidden

faulty edge set cannot fail simultaneously.

The monotone property of κg(G) for non-negative integer g is true.

Lemma 1.1. [21] Let g be a non-negative integer, and let G be a connected graph. Then

κg(G) ≤ κg+1(G)

The range of the integer g can be determined immediately.

Lemma 1.2. [21] Let g be a non-negative integer. If G has its g-extra connectivity,

then

0 ≤ g ≤
⌊
n− 3

2

⌋
and e(G) ≤

(
n

2

)
− (g + 1)2.

The following upper and lower bounds are immediate.

Proposition 1.1. [21] Let g be a non-negative integer and let G be a connected graph

of order n such that 0 ≤ g ≤
⌊
n−κ(G)−2

2

⌋
. Then

κ(G) ≤ κg(G) ≤ n− 2g − 2.

Moreover, the upper and lower bounds are sharp.

2 Main results

In this section, let G and H be two connected graphs with V (G) = {u1, u2, . . . , un}
and V (H) = {v1, v2, . . . , vm}, respectively. Then V (G ∗H) = {(ui, vj) | 1 ≤ i ≤ n, 1 ≤
j ≤ m}, where ∗ denotes lexicographic product operation, strong product operation,

Cartesian product operation or direct product operation. For v ∈ V (H), we use G(v) to

denote the subgraph of G ∗H induced by the vertex set {(ui, v) | 1 ≤ i ≤ n}. Similarly,

for u ∈ V (G), we use H(u) to denote the subgraph of G ∗H induced by the vertex set

{(u, vj) | 1 ≤ j ≤ m}.

2.1 Lexicographic product

Yang and Xu [26] investigated the classical connectivity of the lexicographic product of

two graphs.

Theorem 2.1. [26] Let G and H be two graphs. If G is non-trivial, non-complete and

connected, then

κ(G ◦H) = κ(G)|V (H)|.
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We can get the exact value of κg(G ◦H).

Theorem 2.2. Let G,H be two connected graphs of order n,m, respectively, such that

G is not complete.

(1) If 0 ≤ g ≤ m− 1, then

κg(G ◦H) = κ(G)m.

(2) If km < g + 1 ≤ (k + 1)m, then

κg(G ◦H) = |A|m,

where A is a minimum vertex subset of G such that the resulting graph of G−A is not

connected and each connected component has at least (k + 1) vertices.

Proof. (1) From Theorem 2.1, κg(G ◦ H) ≥ κ(G ◦ H) = κ(G)m. It suffices to show

that κg(G ◦ H) ≤ κ(G)m. Let κ(G) = x. From the definition of κ(G), there exists

X ⊆ V (G) and |X| = x such that G−X is not connected. Without loss of generality,

let X = {u1, u2, . . . , ux}. Let

Y = H(u1) ∪H(u2) ∪ · · · ∪H(ux).

It is cleat that |Y | = xm and (G ◦H)−Y is not connected and each component has at

least m ≥ g + 1 vertices. So κg(G ◦H) ≤ κ(G)m.

(2) From the definition of A, G−A is not connected and each connected component

of G − A has at least k + 1 vertices. Let |A| = x. Without loss of generality, let

A = {ui1 , ui2 , . . . , uix}. Let

S = V (H(ui1)) ∪ V (H(ui2)) ∪ . . . ∪ V (H(uix)).

Then |S| = mx. Clearly, (G ◦H)− S is not connected and each connected component

of (G◦H)−S has at least (k+1)m vertices, and hence κg(G◦H) ≤ |S| = mx = |A|m.

It suffices to show κg(G ◦ H) ≥ |A|m. Suppose κg(G ∗ H) ≤ |A|m − 1. For any

X ⊆ V (G ◦H) with |X| ≤ |A|m− 1, we suppose that (G ◦H)−X is not connected.

Let H(ui1), H(ui2), . . . , H(uir) such that
∪r

j=1H(uij) ⊆ X and r is maximized.

Since |X| ≤ |A|m − 1, it follows that r ≤ |A| − 1. Then G − {ui1 , ui2 , . . . , uir} is not

connected. Let C1, C2, . . . , Cy be the components of G − {ui1 , ui2 , . . . , uir}. From the

minimality of A, there exists some component of G−{ui1 , ui2 , . . . , uir}, say Cp, having

at most k vertices. Let V (Cp) = {uj1 , uj2 , . . . , ujt}. Then there exists a component of

(G◦H)−X such that it is a subgraph of Cp◦H, and hence |V (Cp◦H)| ≤ km < g+1.
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2.2 Cartesian product

Sabidussi [18] derived the following theorem on the connectivity of Cartesian product

graphs.

Theorem 2.3. [18] Let G and H be two connected graphs. Then

κ(G�H) ≥ κ(G) + κ(H).

But we mention that it is incorrectly claimed that κ(G�H) = κ(G) + κ(H) holds

for any connected G and H, see [13] (p-308). Let G be a graph obtained from two

triangles by identifying one vertex in each of them. Then κ(G) = 1 κ(G�G) = 4 > 2 =

κ(G) + κ(G), see [13] (p-309). In [19], S̆pacapan obtained the following result.

Theorem 2.4. [19] Let G and H be two nontrivial graphs. Then

κ(G�H) = min{κ(G)|V (H)|, κ(H)|V (G)|, δ(G) + δ(H)}.

We can get the following upper and lower bounds of κg(G�H).

Theorem 2.5. Let G,H be two non-complete connected graphs of order n,m, respec-

tively, where n ≥ m ≥ 3. Then

κg(G�H) ≥ min{κ(G)m,κ(H)n, δ(G) + δ(H)}.

Furthermore, (1) if 0 ≤ g ≤ m− 1, then

κg(G�H) ≤ min{κ(G)m,κ(H)n, (g+1)δ(G)+ (m− g− 1), (g+1)δ(H)+ (n− g− 1)};

(2) if m ≤ g ≤ n− 1, then

κg(G�H) ≤ min{κ(H)n, (g + 1)δ(H) + (n− g − 1)};

(3) if km < g + 1 ≤ (k + 1)m, then

κg(G�H) ≤ |A|m,

where A is a minimum vertex subset of G such that the resulting graph of G−A is not

connected and each connected component has at least (k + 1) vertices.

(4) if kn < g + 1 ≤ (k + 1)n, then

κg(G�H) ≤ |B|n,

where B is a minimum vertex subset of H such that the resulting graph of H−B is not

connected and each connected component has at least (k + 1) vertices.

Moreover, the upper and lower bounds are sharp.
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Proof. From Theorem 2.4 and Proposition 1.1, we have

κg(G�H) ≥ κ(G�H) = min{κ(G)m,κ(H)n, δ(G) + δ(H)}.

(1) If 1 ≤ g ≤ m− 1, then it suffices to show that

κg(G�H) ≤ min{κ(G)m,κ(H)n, (g+1)δ(G)+ (m− g− 1), (g+1)δ(H)+ (n− g− 1)}.

From the definition of κ(G), there exists X ⊆ V (G) and |X| = κ(G) such that

G − X is not connected. Let C1, C2, . . . , Cr be the components of G − X. Then

|V (Ci)| ≥ 1 for each i (1 ≤ i ≤ r). Let Y = X�H. Then (G�H)− Y is not connected

and Ci�H (1 ≤ i ≤ r) are all components of (G�H) − Y . Since |V (Ci�H)| =

|V (Ci)||V (H)| ≥ |V (H)| = m and 1 ≤ g ≤ m − 1, it follows that |V (Ci�H)| ≥ g + 1,

and hence κg(G�H) ≤ |Y | = |X|m = κ(G)m. Similarly, we have κg(G�H) ≤ κ(H)n.

It is clear that there exists a vertex u in G such that degG(u) = δ(G). Let

NG(u) = {u1, u2, . . . , uδ}, and let (u, v1), (u, v2), . . . , (u, vg+1) be the vertices such that

their induced subgraph is connected in H(u). Let

Z = {(ui, vj) | 1 ≤ i ≤ δ, 1 ≤ j ≤ g + 1} ∪ {(u, vj) | g + 2 ≤ j ≤ m}.

Then (G�H) − Z is not connected. Note that degG(ui) ≥ 2 for each ui (1 ≤ i ≤
δ). If Z ∩ H(ui) = ∅, then the component containing H(uj) in (G�H) − Z has at

least g + 1 vertices. If Z ∩ H(ui) ̸= ∅, then without loss of generality, we suppose

Z ∩H(u1) ̸= ∅. If there exists some vertex ux ∈ NG(u1) such that ux /∈ {u, u2, . . . , uδ},
then the component containing H(u1) − Z in (G�H) − Z must contain H(ux). If

NG(u1) ⊆ {u, u2, . . . , uδ}, then there exist some uj (2 ≤ j ≤ δ) such that NG(uj) *
{u, u1, . . . , uj−1, uj+1, . . . , uδ} since G is not complete, and hence there exists some ver-

tex uy such that uyuj ∈ E(G�H) and uy /∈ {u, u1, . . . , uj−1, uj+1, . . . , uδ}. Furthermore,

the component containing H(u1)−Z in (G�H)−Z must contain H(uy), and it has at

least g+1 vertices. If ui = u, then the component containing H(u)−Z in (G�H)−Z

has at least g + 1 vertices. We conclude that

κg(G) ≤ |Z| = (g + 1)δ(G) + (m− g − 1).

Similarly, we have

κg(G) ≤ (g + 1)δ(H) + (n− g − 1),

as desired.

(2) It follows from (1) similarly.
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(3) Let A = {u1, u2, . . . , ur}, and let X = H(u1) ∪ H(u2) ∪ · · · ∪ H(ur). Since

G−X is not connected and each component has at least k + 1 vertices, it follows that

(G�H)−X is not connected and each component has at least (k+1)m ≥ g+1 vertices,

and hence κg(G�H) ≤ rm = |A|m.

(4) It follows from (3) similarly.

3 Applications

In this section, we demonstrate the usefulness of the proposed constructions by applying

them to some instances of Cartesian and lexicographical product networks.

3.1 Two-dimensional grid graph

A two-dimensional grid graph is the Cartesian product Pn �Pm of path graphs on m

and n vertices; see Figure 1 (a) for the case m = 3. For more details on grid graph, we

refer to [2, 14]. The network Pn ◦ Pm is the graph lexicographical product Pn ◦ Pm of

path graphs on m and n vertices; see Figure 1 (b) for the case m = 3. For more details

on Pn ◦ Pm, we refer to [16].

(a) (b)

(u1, v1)

(u1, v3) (un, v3)

(un, v1)(u1, v1)

(u1, v3)

(un, v1)

(un, v3)

Figure 1: (a) Two-dimensional grid graph Pn �P3; (b) The network Pn ◦ P3.

The boundary of Pn◦Pm, say B, is defined as the subgraph of Pn �Pm induced by the

vertices in B1∪B2∪B3∪B4, where B1 = {(u1, vj) | 1 ≤ j ≤ m}, B2 = {(un, vj) | 1 ≤ j ≤
m}, B3 = {(ui, v1) | 1 ≤ i ≤ n}, and B4 = {(ui, vm) | 1 ≤ i ≤ n}. We call B1, B2, B3, B4

are sections of B.

Proposition 3.1. For network Pn�Pm (n ≥ m ≥ 3),

κg(Pn�Pm) =

 min{t | g ≤ t(t−1)
2

− 1}, if 0 ≤ g ≤ m(m−1)
2

− 1;

m, if m(m−1)
2

≤ g ≤ ⌊mn−m−2
2

⌋.
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Proof. Suppose 0 ≤ g ≤ m(m−1)
2

− 1. Let t0 = min{t | g ≤ t(t−1)
2

− 1}. Let Pn =

u1u2 . . . un and Pm = v1v2 . . . vm. Then V (Pn �Pm) = {(ui, vj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
Choose

X = {(ui, vj) | i+ j = t0 + 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

It is clear that (Pn�Pm)−X is not connected, and each component has at least g + 1

vertices, and |X| = t0. So we have κg(Pn�Pm) ≤ t0 = min{t | g ≤ t(t−1)
2

− 1}.
It suffices to show that κg(Pn�Pm) ≥ min{t | g ≤ t(t−1)

2
− 1}. We have the following

claim.

Claim 1. For any X ⊆ V (Pn�Pm) with |X| = x ≤ m − 1, if Pn�Pm − X is not

connected, then there exists a connected component C such that |V (C)| ≤ x(x−1)
2

.

Proof. Let C1, C2, . . . , Cr be all the components of (Pn�Pm)−X. We first assume that

there exists a component, say C1, in (Pn�Pm)−X such that V (C1)∩ V (B) = ∅. Then
there is no edges between

∪r
i=2 Ci and C1, and NPn�Pm(C1) ⊆ X. Since |X| = x, it

follows that |V (C1)| ≤ ⌈x2

16
⌉ ≤ x(x−1)

2
, as desired.

Next, we assume that for each component Ci (1 ≤ i ≤ r), V (Ci)∩ V (B) ̸= ∅. Since
|X| = x ≤ m − 1, it follows that there exists a component Cj satisfying one of the

following.

• There exists one section of B, say B1, such that V (Cj)∩ V (B1) ̸= ∅ and V (Cj)∩
V (Bk) = ∅ for k = 2, 3, 4.

• There exist two adjacent sections of B, say B1, B2, such that V (Cj) ∩ V (Bi) ̸= ∅
for i = 1, 2 and V (Cj) ∩ V (Bk) = ∅ for k = 3, 4.

It is clear that |V (Cj)| ≤ x(x−1)
2

, as desired.

Claim 2. κg(Pn�Pm) = t0 for 0 ≤ g ≤ m(m−1)
2

− 1.

Proof. Assume, to the contrary, that κg(Pn�Pm) ≤ t0 − 1. From Claim 1, for any X ⊆
V (Pn �Pm) with |X| = x ≤ m− 1, if (Pn�Pm)−X is not connected, then there exists

a connected component C such that |V (C)| ≤ (t0−1)(t0−2)
2

< g, a contradiction.

From Claim 2, we have κg(Pn�Pm) = t0 = min{t | g ≤ t(t−1)
2

− 1}.
Suppose m(m−1)

2
≤ g ≤ ⌊mn−m−2

2
⌋. If n is even, then we choose X = {(un

2
, vi) | 1 ≤

i ≤ m}. If n is odd, then we chooseX = {(u⌊n−1
2

⌋, vi) | 1 ≤ i ≤ ⌈m
2
⌉}∪{(u⌈n−1

2
⌉, vi) | ⌈m

2
⌉+

1 ≤ i ≤ m}. It is clear that (Pn�Pm) −X is not connected, and each component has

at least g + 1 vertices. So we have κg(Pn�Pm) ≤ m.
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Claim 3. κg(Pn�Pm) = m for m(m−1)
2

≤ g ≤ ⌊mn−m−2
2

⌋.

Proof. Assume, to the contrary, that κg(Pn�Pm) ≤ m− 1. From Claim 1, for any X ⊆
V (Pn �Pm) with |X| = x ≤ m− 1, if (Pn�Pm)−X is not connected, then there exists

a connected component C such that |V (C)| ≤ (m−1)(m−2)
2

< g, a contradiction.

From Claim 3, the result follows for m(m−1)
2

≤ g ≤ ⌊mn−m−2
2

⌋.

The following corollary is immediate from Theorem 2.2.

Corollary 3.1. For network Pn ◦ Pm (n ≥ m ≥ 3), κg(Pn ◦ Pm) = m for 0 ≤ g ≤
⌊mn−m−2

2
⌋.

3.2 2-dimensional generalized hypercube

Let Km be a clique of m vertices, m ≥ 2. An n-dimensional generalized hypercube

[3, 10] is the product of n cliques.

Proposition 3.2. For network Kn �Km (n ≥ m ≥ 2) and 0 ≤ g ≤ mn
4

− 1, we have

κg(Kn�Km) = min{(m− y1)x1 + (n− x1)y1, (m− y2)x2 + (n− x2)y2},

where

y1 =

⌈√
m(g + 1)

n

⌉
, x1 =

⌈
g + 1

y1

⌉
and

y2 =

⌊√
m(g + 1)

n

⌋
(y2 ̸= 0), x2 =

⌈
g + 1

y2

⌉
.

Proof. Let V (Kn) = {u1, u2, . . . , un} and V (Km) = {v1, v2, . . . , vn}. Then V (G�H) =

V (Kn �Km) = {(ui, vj) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Choose

X1 =
{
(ui, vj)

∣∣∣ 1 ≤ i ≤ x1, y1 + 1 ≤ j ≤ m
}
∪
{
(ui, vj)

∣∣∣x1 + 1 ≤ i ≤ n, 1 ≤ j ≤ y1

}
and

X2 =
{
(ui, vj)

∣∣∣ 1 ≤ i ≤ x2, y2 + 1 ≤ j ≤ m
}
∪
{
(ui, vj)

∣∣∣x2 + 1 ≤ i ≤ n, 1 ≤ j ≤ y2

}
.

It is clear that (Kn�Km) − X1 and (Kn�Km) − X1 are not connected, and each

component has at least g + 1 vertices. So we have

κg(Kn�Km) ≤ min{(m− y1)x1 + (n− x1)y1, (m− y2)x2 + (n− x2)y2}.
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For each X ⊆ V (G�H), if G�H −X is not connected, then let C1, C2, . . . , Cr be

the components of G�H −X, where |V (Ci)| ≥ g + 1 for each i (1 ≤ i ≤ r). Let

V (C1) = {(uia , vjb) | 1 ≤ a ≤ x, 1 ≤ b ≤ y}.

It is clear that{
(uic , vjd)

∣∣∣ 1 ≤ c ≤ x, y + 1 ≤ d ≤ m
}
∪
{
(uic , vjd)

∣∣∣x+ 1 ≤ c ≤ n, 1 ≤ d ≤ y
}
⊆ X.

Then |X| ≥ (m−y)x+(n−x)y. Under the conditions xy ≥ g+1, (m−y)(n−x) ≥ g+1,

the function f(x, y) = (m− y)x + (n− x)y get the minimum value min{(m− y1)x1 +

(n− x1)y1, (m− y2)x2 + (n− x2)y2}.

To show the sharpness of Theorem 2.5, we consider the following examples.

Example 1. For g = 0, the lower bound is sharp, just from Theorem 2.4. For 0 ≤ g ≤
n − 2, let G = P2 and H = Pn. Clearly, κg(G�H) = 2 = min{κ(G)m,κ(H)n, δ(G) +

δ(H)}. This implies that the lower bound of Theorem 2.5 is sharp.

Example 2. For m = 3 and 0 ≤ g ≤ m − 1, let G = Kn and H = Pm. Clearly,

κg(Kn�Pm) = n = min{κ(G)m,κ(H)n, (g + 1)δ(G) + (m− g − 1), (g + 1)δ(H) + (n−
g − 1)}. This means that (1) of Theorem 2.5 is sharp.

Example 3. For m ≤ g ≤ n − 1, let G = Kn and H = Pm. It is clear that

κg(Kn�Pm) = n = min{κ(H)n, (g + 1)δ(H) + (n − g − 1)}. This means that (2) of

Theorem 2.5 is sharp.

Example 4. For km < g + 1 ≤ (k + 1)m, let G = Pn and H = Pm. From Proposition

3.1, κg(Pn�Pm) = m = |A|m. This means that (3) of Theorem 2.5 is sharp.

Remark 1. If n = m, then the results in (3) and (4) of Theorem 2.5 are same. So (4)

of Theorem 2.5 is sharp.

4 Concluding remark

In this paper, we study the exact value of g-extra connectivity for the lexicographic

product of two general graphs, which will give some ideas to study special networks

and graphs. It is also interesting to study the other products, like strong and direct

products.
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