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The number of spanning trees for Sierpi ński
graphs and data center networks

Xiaojuan Zhang, Gang Yang, Changxiang He, Ralf Klasing and Yaping Mao, Senior Member, IEEE

✦

Abstract —The number of spanning trees is an important graph in-
variant related to different topological and dynamic properties of the
graph, such as its reliability, synchronization capability and diffusion
properties. In 2007, Chang et al. proposed two conjectures on the
number of spanning trees of Sierpiński triangle graphs and its spanning
tree entropy. In this paper, we completely confirm these conjectures.
For data center networks Dk,n, we get the exact formula for k = 1,
and upper and lower bounds for k ≥ 2. Our results allow also the
calculation of the spanning tree entropy of Sierpiński graphs and data
center networks.

Index Terms —Spanning tree, Data center network, Sierpiński graph,
Tree entropy, Complex networks.

1 INTRODUCTION

The problem of determining the number of spanning tree

originates from electrical network due to Kirchhoff in the

analysis of electric circuits [14]. Enumerating spanning

trees of a graph, applied in mathematics [3, 24, 27, 32,

38], chemistry [21, 25], physics [2, 31, 33], and computer

science [36, 39–41], has been extensively studied for more

than 150 years (see [19]). This parameter is related to the

network reliability [4] and its synchronization [31], and

the study of random walks [22]. Ozeki and Yamashita

[26] gave a survey of spanning trees.
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All graphs considered in this paper are undirected,

finite and simple. We refer to the book [1] for graph

theoretical notation and terminology not described here.

A graph G is denoted by an ordered pair (V (G), E(G))

where V (G) is the set of vertices of G and E(G) is the set

of edges of G. A graph F is called a subgraph of a graph G

if V (F ) ⊆ V (G) and E(F ) ⊆ E(G). A spanning subgraph

of a graph G is a subgraph obtained by edge deletions

only. A cycle on three or more vertices is a simple graph

whose vertices can be arranged in a cyclic sequence

in such a way that two vertices are adjacent if they

are consecutive in the sequence, and are nonadjacent

otherwise. An acyclic graph is one that contains no cycles.

A connected acyclic graph is called a tree. If this tree is

a spanning subgraph, it is called a spanning tree of the

graph. For a graph G, let τ(G) denotes the number of

spanning trees of G.

The degree of a vertex v in a graphG, denoted by dG(v),

is the number of neighbours of v in G. We denote by

δ(G) and ∆(G) the minimum and maximum degrees of the

vertices of G. The neighborhood NG(v) of the vertex v of G

is defined by NG(v) = {u ∈ V |uv ∈ E}. A path or cycle

of length k is called a k-path or k-cycle, respectively. A

3-cycle is often called a triangle. A complete graph Kn is a

simple graph on n vertices in which any two vertices are

adjacent. The union G∪H of two graphs G and H is the

graph with vertex set V (G)∪V (H) and edge set E(G)∪

E(H). The line graph L(G) of a graph G is the graph

whose vertex set is V (L(G)) = E(G) and two vertices of

L(G) are adjacent if and only if the corresponding two

edges in G are adjacent to the same vertex in G. A semi-

regular graph, denoted by Ra,b, is a bipartite graph with

a bipartition V (Ra,b) = U ∪W such that all vertices have

degree a in U and have degree b in W . A subdivision of

G is a graph obtained from G by replacing some edges

with pairwise internally disjoint paths. Let S(G) be the
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subdivision of G, which is obtained from G by inserting

a new vertex to each edge of G.

With the number of spanning trees of graph G, the

spanning tree entropy is defined as

z(G) = lim
n→∞

ln τ(G)

|V (G)|
;

see [19, 36] for more details.

1.1 Sierpi ński graphs

The interest for Sierpiński graphs comes from many

different sources such as games like the Chinese rings

or the tower of Hanoi, topology, physics, the study of

interconnection networks, and elsewhere. For the details

on the Sierpiński graphs, we refer to the survey paper

[13].

The k-dimensional Sierpiński graph, denoted by S(n, k),

is defined on the vertex set {0, 1, . . . , k}n, two different

vertices u = (i1, i2, . . . , in) and v = (j1, j2, . . . , jn) being

adjacent if and only if there exists an h ∈ {1, 2, . . . , n}

such that

(i) for all t, we have t < h⇒ it = jt,

(ii) ih 6= jh,

(iii) for all t, we have t > h⇒ it = jh and jt = ih.

Note that S(0, k) is a complete graph K1.

Example 1.1. For n = 3 and k = 2, we have

V (S(3, 2)) = {(i1, i2, i3) | i1, i2, i3 ∈ {0, 1, 2}} and

E(S(3, 2)) = {{(i1, i2, i3), (j1, j2, j3)} | i1 6= j1, i2 = i3 =

j1, j2 = j3 = i1 or i1 = j1, i2 6= j2, i3 = j2, j3 = i2 or

i3 6= j3, i1 = j1, i2 = j2}. The graph is shown in Figure 1

(a).
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Figure 1: Graphs S(3, 2) and S(2, 3).

Example 1.2. For n = 2 and k = 3, we have

V (S(2, 3)) = {(i1, i2) | i1, i2 ∈ {0, 1}} and E(S(2, 3)) =

{{(i1, i2), (j1, j2)} | i1 6= j1, i2 = j1, j2 = i1 or i1 = j1, i2 6=

j2}. The graph S(2, 3) is shown in Figure 1 (b).

The following observation is immediate.

Observation 1.1. The order and size of S(n, k) are (k+1)n

and (k + 1)((k + 1)n − 1)/2, respectively.

The k-dimensional Sierpiński triangle graph, denot-

ed by ST (n, k), is obtained from the k-dimensional

Sierpiński graph by contracting all non-clique edges.

Therefore, for any adjacent vertices (i1, i2, . . . , in) and

(j1, j2, . . . , jn) in S(n, k), if the number of different vector

components of (i1, i2, . . . , in) and (j1, j2, . . . , jn) is at

least one, then we contract the vertices (i1, i2, . . . , in)

and (j1, j2, . . . , jn) to be one vertex (i1, i2, . . . , in) or

(j1, j2, . . . , jn). Then the vertices in ST (n, k) are al-

l (i1, i2, . . . , in) or (j1, j2, . . . , jn), except the vertices

(i1, i2, . . . , in), where i1 = i2 = · · · = in = i and 0 ≤ i ≤ k.

Note that ST (0, k) is a complete graph K1.

The k-dimensional regularize Sierpiński graph, denoted

by +S(n, k), is defined on the vertex set {0, 1, . . . , k}n ∪

{w} and the edge set E(S(n, k)) ∪ {{w, in}}, where i ∈

{0, 1, . . . , k}.

Let S ′(n, k) be a graph obtained from S(n, k) by attach-

ing one pendent edge to each vertex v of S(n, k), where

the degree of each vertex is k. The graphs ST (3, 2),
+S(3, 2), S ′(3, 2) are shown in Figure 2.

The following observations are immediate.

Observation 1.2. (1) The order and size of S ′(n, k) are (k+

1)n + k + 1 and (k + 1)((k + 1)n + 1)/2, respectively.

(2) There are exactly k+1 vertices of degree 1 in S ′(n, k),

and the degree of other (k + 1)n vertices are exactly k + 1.

Observation 1.3. For n ≥ 1 and k ≥ 1, we have

τ(S(n, k)) = τ(S ′(n, k)).
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Figure 2: Graphs ST (3, 2), +S(3, 2), and S ′(3, 2).

In [2], Chang, Chen and Yang obtained the number

of spanning trees of k-dimensional Sierpiński triangle
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graph ST (n, k), where k = 2, 3, 4, and then they pro-

posed the following conjectures for general k.

Conjecture 1.1. [2] The number of spanning trees on the

k-dimensional Sierpiński triangle graph ST (n, k) is given by

τ(ST (n, k)) = 2α(k + 1)β(k + 3)γ ,

where the exponents are α = k−1
2 ((k + 1)n−1 − 1), β =

k−1
2k ((k+1)n + k(n− 1)− 1), γ = k−1

2k ((k+1)n−1 − k(n−

1)− 1).

Conjecture 1.2. [2] The asymptotic growth constant for the

k-dimensional Sierpiński triangle graph ST (n, k) is

k − 1

k(k + 1)
(k ln 2 + (k + 1) ln(k + 1) + ln(k + 3)) .

In [43], Zhang, Wu, Li and Comellas got the number

of spanning trees of S(n, 2).

In Sections 2 and 4, we show that these conjectures are

both true; see Theorem 2.4 and Corollary 4.2. We also

obtain the numbers of spanning trees of k-dimensional

Sierpiński graph and k-dimensional regularize Sierpiński

graph in Section 2; see Theorems 2.3 and 2.6.

1.2 Data center networks: construction and proper-
ties

Given a positive integer n, we use [n] and 〈n〉 to denote

the sets {1, 2, . . . , n} and {0, 1, 2, . . . , n}, respectively. For

every integers k ≥ 0 and n ≥ 2, we use Dk,n to denote

the k-dimensional DCell with n-port switches. D0,n is

isomorphic to the complete graph on n vertices.

We use tk,n to denote the number of vertices in Dk,n

with tk,n = tk−1,n × (tk−1,n + 1). Note that t0,n = n.

Let Vk,n = {ukuk−1 . . . u0 |ui ∈ 〈ti−1,n〉 and i ∈ 〈k〉},

and V l
k,n = {ukuk−1 . . . ul |ui ∈ 〈ti−1,n〉 and i ∈ {l, l +

1, . . . , k}} for every l ∈ [k]. Clearly, |Vk,n| = tk,n and

|V l
k,n| = tk,n/tl−1,n. We now give the definition of Dk,n.

Definition 1. The k-dimensional data center network

Dk,n is the graph with vertex set Vk,n, where a vertex

u = ukuk−1 . . . ui . . . u0 is adjacent to a vertex v =

vkvk−1 . . . vi . . . v0 if and only if there is an integer l such

that

(1) ukuk−1 . . . ul = vkvk−1 . . . vl,

(2) ul−1 6= vl−1,

(3) ul−1 = v0 +
∑l−2

j=1(vj × tj−1,n) and vl−1 = u0 +
∑l−2

j=1(uj × tj−1,n) + 1 with l > 1.

It is clear from the definition that Dk,n is an (n+ k −

1)-regular graph with tk,n vertices. In fact, Dk,n can be

constructed recursively by tk−1,n + 1 disjoint copies of

Dk−1,n, called (k−1)-dimensional subgraphs of Dk,n, where

Di
k−1,n denotes the i-th copy. For each pair of copies of

Dk−1,n, say Di
k−1,n and Dj

k−1,n, there is a unique edge

between them. The edges between vertices in the same

copy of Dk−1,n are called internal edges and the edges

between vertices in disjoint copies of Dk−1,n are called

cross edges. It follows that each vertex u of Di
k−1,n has

only one neighbor that is not in Di
k−1,n, called the cross

neighbor of u. Clearly, the set of (all) cross edges of Dk,n

forms a perfect matching of Dk,n for k ≥ 1 and n ≥ 2.

Figure 3 depicts several data center networks with small

parameters k and n.

The following theorem describes the upper and lower

bounds of the number of vertices in Dk,n.

Theorem 1.1. [9] For any integers k ≥ 0 and n ≥ 2, the

number tk,n of vertices in Dk,n satisfies

(

n+
1

2

)2k

−
1

2
≤ tk,n ≤ (n+ 1)2

k

− 1.

Theorem 1.2. [35] Let Dh,n be the data center network with

h ≥ 0 and n ≥ 2.

(1) D0,n is a complete graph with n vertices labeled as

0, 1, 2, . . . , n− 1 respectively.

(2) For h ≥ 1, Dh,n consists of th−1,n+1 copies of Dh−1,n,

denoted by Di
h−1,n, for each i ∈ 〈th−1,n〉. There is only one

edge between Di
h−1,n and Dj

h−1,n for any i, j ∈ Ih,n and

i 6= j, where Ih,n = 〈th−1,n〉. It implies that the outside

neighbours of vertices in Di
h−1,n belong to different copies of

Dj
h−1,ns for i 6= j and i, j ∈ Ih,n.

(3) For any two distinct vertices u, v in Di
h−1,n,

N
D

Ih,n\{i}

h−1,n

(u)∩N
D

Ih,n\{i}

h−1,n

(v) = ∅ and

∣

∣

∣

∣

N
D

Ih,n\{i}

h−1,n

(u)

∣

∣

∣

∣

= 1.

A server-centric data center network called DCell was

proposed by Guo et al. in [9], which can support millions

of servers with high network capacity by only using

commodity switches. As such, data center networks are

good models for designing interconnection networks.

However, it is important to make sure that these net-

works have good properties that are essential for inter-

connection networks. Indeed, there are many papers on

the data center networks with respect to a number of vul-

nerability and reliability measures [11, 12, 17, 18, 23, 28].

In Section 3, for data center networks Dk,n, we get the

exact formula for k = 1, and upper and lower bounds for

k ≥ 2. In Section 4, we calculate the entropy of spanning

trees for k-dimensional Sierpiński graph, k-dimensional

Sierpiński triangle graphs and data center network D1,n.
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Figure 3: Several data center networks with small parameters k and n.

2 RESULTS FOR SIERPIŃSKI GRAPHS

In 2013, Yan [37] proved the following result for line

graphs.

Theorem 2.1. [37] Let G be a connected graph with n + s

vertices and m + s edges in which n vertices have degree k

and s vertices have degree 1. Then

τ(L(G)) = 2m−n+1km+s−n−1τ(G).

Recall that S(G) is the subdivision of G, which is

obtained from G by inserting a new vertex to each edge

of G.

Dong and Yan [7] established a relation between τ(G)

and τ(L(S(G))).

Theorem 2.2. [7] Let G be a connected graph of order n+ s

and size m + s in which s vertices are of degree 1 and all

others are of degree k. Then

τ(L(S(G))) = km+s−n−1(k + 2)m−n+1τ(G).

Let ψ be a bijection between sets A and B. For a ∈ A

and b ∈ B, we say that a corresponds to b or b corresponds

to a if ψ(a) = b and ψ−1(b) = a.

Lemma 2.1. For n ≥ 2 and k ≥ 1, we have

L(S(S ′(n− 1, k))) = S ′(n, k).

Proof: From the definition, we have V (S ′(n, k)) =

{0, 1, . . . , k}(n) ∪ {w0, w1, . . . , wk} and E(S ′(n, k)) =

E(S(n, k))∪{wi(i1, i2, . . . , in) | i1 = i2 = · · · = in = i, 0 ≤

i ≤ k}, where (i1, i2, . . . , in) ∈ {0, 1, . . . , k}(n). Clearly,

((i1, i2, . . . , in), (j1, j2, . . . , jn)) is an edge of S(n, k) such

that (i1, i2, . . . , in), (j1, j2, . . . , jn) ∈ {0, 1, . . . , k}(n) ⊆

V (S ′(n, k)) if and only if there exists an h ∈ {1, 2, . . . , n}

such that

(i) for all t, we have t < h⇒ it = jt,

(ii) ih 6= jh,

(iii) for all t, we have t > h⇒ it = jh and jt = ih.

Recall that S(S ′(n, k)) is the subdivision graph of

S ′(n, k) satisfying the following conditions.

• ((i1, i2, . . . , in), (j1, j2, . . . , jn)) is the vertex inserted

on the edge ((i1, i2, . . . , in), (j1, j2, . . . , jn))
∗ between

(i1, i2, . . . , in) ∈ {0, 1, . . . , k}(n) and (j1, j2, . . . , jn) ∈

{0, 1, . . . , k}(n).

• (wi, (i1, i2, . . . , in)) is the vertex inserted on the edge

(wi, (i1, i2, . . . , in))
∗ between wi and (i1, i2, . . . , in) ∈

{0, 1, . . . , k}(n), where 0 ≤ i ≤ k, where i1 = i2 =

· · · = in = i.

Table 1. The corresponding relation of elements in E(S(S′(n, k)))

and V (S′(n+ 1, k)).

E(S(S′(n, k))) V (S′(n+ 1, k))

((i1, . . . , in), ((i1, . . . , in), (j1, . . . , jn)))∗ (i1, . . . , in, jh)

(wi, (wi, (i1, . . . , in)))∗ wi

((i1, . . . , in), (wi, (i1, . . . , in)))
∗ (i1, . . . , in, in+1)

We now construct a bijection between the edge set

E(S(S ′(n, k))) and the vertex set V (S ′(n + 1, k)) as

follows.

• For any edge ((i1, i2, . . . , in), ((i1, i2, . . . , in), (j1, j2,

. . . , jn)))
∗ ∈ E(S(S ′(n, k))), we know that the hth

component is the first different component between

(i1, i2, . . . , in) and (j1, j2, . . . , jn). Then let the edge

((i1, i2, . . . , in), ((i1, i2, . . . , in), (j1, j2, . . . , jn)))
∗ cor-

respond to the vertex (i1, i2, . . . , in, jh) ∈ V (S ′(n +

1, k)), where (i1, i2, . . . , in) ∈ V (S(S ′(n, k))) and

((i1, i2, . . . , in), (j1, j2, . . ., jn))) ∈ V (S(S ′(n, k))).
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• The path induced by the three vertices wi,

(wi, (i1, i2, . . . , in)), and (i1, i2, . . . , in) (i1 = i2 =

· · · = in = i and 0 ≤ i ≤ k) in S(S ′(n, k))

is a pendant path P3. Let (i1, i2, . . . , in, in+1) ∈

V (S ′(n + 1, k)) be the corresponding vertex of

the edge ((wi, (i1, i2, . . . , in)), (i1, i2, . . . , in))
∗ ∈

E(S(S ′(n, k))), where i1 = i2 = · · · = in =

in+1 = i and 0 ≤ i ≤ k. Let wi ∈ V (S ′(n +

1, k)) be the corresponding vertex of the edge

(wi, (wi, (i1, i2, . . . , in)))
∗ ∈ E(S(S ′(n, k))), where

i1 = i2 = · · · = in = i and 0 ≤ i ≤ k.

• For any vertex (i1, i2, . . . , in, in+1) ∈ V (S ′(n +

1, k))−{wi | 0 ≤ i ≤ k}−{(i1, i2, . . . , in+1) | i1 = i2 =

· · · = in+1 = i, 0 ≤ i ≤ k}, there exits some h such

that ih 6= ih+1 and ih+1 = · · · = in = in+1. Then the

vertex (i1, i2, . . . , in, in+1) corresponds to the edge

((i1, i2, . . . , in), ((i1, i2, . . . , in), (j1, j2, . . . , jh−1, jh, . . . ,

jn)))
∗, where (i1, i2, . . . , ih−1) = (j1, j2, . . . , jh−1),

jh = in+1 and jh+1 = jh+2 = · · · = jn = ih.

• For any vertex (i1, i2, . . . , in, in+1) ∈

{(i1, i2, . . . , in+1) | i1 = i2 = · · · = in+1 = i, 0 ≤

i ≤ k}), let (i1, i2, . . . , in, in+1) correspond to

the edge ((i1, i2, . . . , in), (wi, (i1, i2, . . . , in)))
∗,

where i1 = i2 = · · · = in = i and 0 ≤ i ≤ k.

Let the vertex wi in S ′(n + 1, k) correspond

to the edge (wi, (wi, (i1, i2, . . . , in)))
∗, where

i1 = i2 = · · · = in = i and 0 ≤ i ≤ k.

It remains to consider the correspondence between the

adjacent relation of two edges in S(S ′(n, k)) and the

adjacent relation of two vertices in S ′(n+ 1, k).

Except for the path induced by the three vertices wi,

(wi, (i1, i2, . . . , in)), and (i1, i2, . . . , in) (i1 = i2 = · · · =

in = i and 0 ≤ i ≤ k) in S(S ′(n, k)), for any two edges

e = ((i1, i2, . . . , in), ((i1, i2, . . . , in), (j1, j2, . . . , jn)))
∗,

e′ = ((i′1, i
′
2, . . . , i

′
n), ((i

′
1, i

′
2, . . . , i

′
n), (j

′
1, j

′
2, . . . , j

′
n)))

∗,

if they are adjacent, then the common vertex between

them is ((i1, i2, . . . , in), (j1, j2, . . . , jn)) or (i1, i2, . . . , in).

Furthermore, we have the following facts.

Fact 1. If the common vertex is (i1, i2, . . . , in), then

e′ = ((i1, i2, . . . , in), ((i1, i2, . . . , in), (j
′
1, j

′
2, . . . , j

′
n)))

∗.

From the definition of S ′(n+1, k), the corresponding vertices

(i1, i2, . . . , in, jh) and (i1, i2, . . . , in, j
′
h′) of e, e′ are adja-

cent in S ′(n + 1, k), respectively, where the hth component

is the first different component between (i1, i2, . . . , in) and

(j1, j2, . . . , jn) and the h′th component is the first different

component between (i1, i2, . . . , in) and (j′1, j
′
2, . . . , j

′
n).

Fact 2. If the common vertex is ((i1, i2, . . . , in),

(j1, j2, . . . , jn)), then

e′ = ((j1, j2, . . . , jn), ((i1, i2, . . . , in), (j1, j2, . . . , jn)))
∗.

Since the common vertex ((i1, i2, . . . , in), (j1, j2, . . . , jn))

is a new vertex which is inserted in the edge

((i1, i2, . . . , in), (j1, j2, . . . , jn))
∗ of S ′(n, k), then the

vertices (i1, i2, . . . , in) and (j1, j2, . . . , jn) are adjacent in

S ′(n, k). Therefore, there exists an h such that

(i) for all t, we have t < h⇒ it = jt,

(ii) ih 6= jh,

(iii) for all t, we have t > h⇒ it = jh and jt = ih.

Then the number of different vector components of

(i1, i2, . . . , in) and (j1, j2, . . . , jn) is n+1−h. Thus, the cor-

responding vertices (i1, i2, . . . , in, jh) and (j1, j2, . . . , jn, ih)

of e, e′ are adjacent in S ′(n+ 1, k).

For the edges on the pendent path P3, we have the

following.

• The edge (wi, (wi, (i1, i2, . . . , in)))
∗, where i1 = i2 =

· · · = in = i, 0 ≤ i ≤ k, is adjacent to the edge

((i1, i2, . . . , in), (wi, (i1, i2, . . . , in)))
∗ in S(S ′(n, k)) if

and only if the vertex wi is adjacent to the vertex

(i1, i2, . . . , in, in+1) in S ′(n + 1, k), where i1 = i2 =

· · · = in = in+1 = i, 0 ≤ i ≤ k.

• The edge ((i1, i2, . . . , in), (wi, (i1, i2, . . . , in))) is adja-

cent to the edge

((i1, i2, . . . , in), ((i1, i2, . . . , in), (j1, j2, . . . , jn)))
∗

in S(S ′(n, k)) if and only if the vertex

(i1, i2, . . . , in, in+1) is adjacent to the vertex

(i1, i2, . . . , in, jh) in S ′(n + 1, k), where i1 =

i2 = · · · = in = in+1 = i, 0 ≤ i ≤ k.

From the above arguments, we have L(S(S ′(n −

1, k))) = S ′(n, k). The result follows.

Figure 4 shows that S(S ′(2, 3)) is the subdivision

graph of S ′(2, 3) and the graph S ′(3, 3) is the line graph

of S(S ′(2, 3)).

Lemma 2.2. For n ≥ 1 and k ≥ 1, we have

L(S ′(n, k)) = ST (n+ 1, k).

Proof: We now construct a bijection between the edge

set E(S ′(n, k)) and the vertex set V (ST (n + 1, k)) as

follows.

• For any edge ((i1, i2, . . . , in), (j1, j2, . . . , jn))
∗ ∈

E(S ′(n, k)), we know that the hth component

is the first different component between

(i1, i2, . . . , in) and (j1, j2, . . . , jn). Let
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Figure 4: The relation between S ′(3, 3) and S(S ′(2, 3)).

the edge ((i1, i2, . . . , in), (j1, j2, . . . , jn))
∗

correspond to the vertex (i1, i2, . . . , in, jh) or

(j1, j2, . . . , jn, ih) in V (ST (n + 1, k)), where

(i1, i2, . . . , in), (j1, j2, . . . , jn) ∈ V (S ′(n, k)).

• The edge (wi, (i1, i2, . . . , in))
∗ in S ′(n, k), where i1 =

i2 = · · · = in = i and 0 ≤ i ≤ k, is the corresponding

edge of the vertex (i1, i2, . . . , in, in+1) in ST (n+1, k),

where i1 = i2 = · · · = in = in+1 = i and 0 ≤ i ≤ k.

• For any vertex (i1, i2, . . . , in, in+1) ∈ V (ST (n +

1, k)) − {(i1, i2, . . . , in+1) | i1 = i2 = · · · = in+1 =

i, 0 ≤ i ≤ k}, there exists some h such that

ih 6= ih+1 and ih+1 = · · · = in = in+1, then the

vertex (i1, i2, . . . , in, in+1) corresponds to the edge

((i1, i2, . . . , in), (j1, j2, . . . , jh−1, jh, . . . , jn))
∗, where

(i1, i2, . . . , ih−1) = (j1, j2, . . . , jh−1), jh = in+1 and

jh+1 = jh+2 = · · · = jn = ih.

• For any vertex (i1, i2, . . . , in, in+1) ∈

{(i1, i2, . . . , in+1) | i1 = i2 = · · · = in+1 = i, 0 ≤ i ≤

k}, let (i1, i2, . . . , in, in+1) correspond to the edge

(wi, (i1, i2, . . . , in))
∗, where i1 = i2 = · · · = in = i

and 0 ≤ i ≤ k.

It remains to consider the correspondence between

the adjacent relation of two edges in S ′(n, k) and the

adjacent relation of two vertices in ST (n+ 1, k). Except

for the edge induced by the vertices wi and (i1, i2, . . . , in)

(i1 = i2 = · · · = in = i and 0 ≤ i ≤ k) in S ′(n, k), for any

two edges

e = ((i1, i2, . . . , in), (j1, j2, . . . , jn))
∗,

e′ = ((i′1, i
′
2, . . . , i

′
n), (j

′
1, j

′
2, . . . , j

′
n))

∗,

if they are adjacent, then the common vertex between

them is (i1, i2, . . . , in) or (j1, j2, . . . , jn).
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Table 2. The corresponding relation of elements in E(S′(n, k)) and

V (ST (n+ 1, k)).

E(S′(n, k)) V (ST (n+ 1, k))

((i1, . . . , in), (j1, . . . , jn))∗ (i1, . . . , in, jh)((j1, . . . , jn, ih))

(wi, (i1, . . . , in))∗ (i1, . . . , in, in+1)

Furthermore, we have the following facts.

Fact 3. If the common vertex is (i1, i2, . . . , in), then

e′ = ((i1, i2, . . . , in), (j
′
1, j

′
2, . . . , j

′
n))

∗ and the corresponding

vertices (i1, i2, . . . , in, jh) or (j1, j2, . . . , jn, ih) of e, and

(i1, i2, . . . , in, j
′
h′) or (j′1, j

′
2, . . . , j

′
n, ih′) of e′ are adjacent in

ST (n + 1, k), where the hth component is the first different

component between (i1, i2, . . . , in) and (j1, j2, . . . , jn) and

the h′th component is the first different component between

(i1, i2, . . . , in) and (j′1, j
′
2, . . . , j

′
n).

Fact 4. If the common vertex is (j1, j2, . . . , jn), then

e′ = ((i′1, i
′
2, . . . , i

′
n), (j1, j2, . . . , jn))

∗ and the corresponding

vertices (i1, i2, . . . , in, jh) or (j1, j2, . . . , jn, ih) of e, and

(i′1, i
′
2, . . . , i

′
n, jh′) or (j1, j2, . . . , jn, i

′
h′) of e′ are adjacent

in ST (n + 1, k), respectively, where the hth component

is the first different component between (i1, i2, . . . , in) and

(j1, j2, . . . , jn) and the h′th component is the first different

component between (i1, i2, . . . , in) and (j′1, j
′
2, . . . , j

′
n).

For the edge (wi, (i1, i2, . . . , in))
∗ in S ′(n, k), where

i1 = i2 = · · · = in = i, 0 ≤ i ≤ k, we have

the edge (wi, (i1, i2, . . . , in))
∗ is adjacent to the edge

((i1, i2, . . . , in), (j1, j2, . . . , jn))
∗ in S ′(n, k) if and only if

the vertex (i1, i2, . . . , in, in+1) is adjacent to the vertex

(i1, i2, . . . , in, jh) or (j1, j2, . . . , jn, ih) in ST (n + 1, k),

where i1 = i2 = · · · = in = in+1 = i, 0 ≤ i ≤ k.

From the above arguments, we have L(S ′(n, k)) =

ST (n+ 1, k).

Figure 5 shows that the graph ST (3, 2) is the line

graph of S ′(2, 2).

000

(001) (002)

010 020

011 022

111

110

(021)012

112 (121) 122

(120)
(101)

(100)

102

222

(200)

(220)

(221)212

202

(211)

(210)
201

00

01 02

10 20

11 2212 21

w0

w1 w2

(a) S ′(2, 2) (b) ST (3, 2)

Figure 5: The relation between S ′(2, 2) and ST (3, 2).

We are now in a position to show the number of

spanning trees of k-dimensional Sierpiński graph and

k-dimensional Sierpiński triangle graph.

Theorem 2.3. The number of spanning trees on the k-

dimensional Sierpiński graph S(n, k) is given by

τ(S(n, k)) = (k+1)
k−1
2k ((k+1)n+kn−1)(k+3)

k−1
2k ((k+1)n−kn−1).

Proof: From Observation 1.2, we know that

|V (S ′(n, k))| = (k + 1)n + k + 1, |E(S ′(n, k))| = (k +

1)((k + 1)n + 1)/2 and there are exactly k+ 1 vertices of

degree 1 in S ′(n, k), and the degree of other (k + 1)n−1

vertices are exactly k+1. From Observation 1.3, we have

τ(S ′(n, k)) = τ(S(n, k)). From Lemma 2.1, S ′(n, k) is the

line graph of S(S ′(n−1, k)). From Theorem 2.2, we have

τ(S(n, k)) = τ(S ′(n, k))

= (k + 1)
(k+1)((k+1)(n−1)−1)

2 +(k+1)−(k+1)(n−1)
−1

·(k + 3)
(k+1)((k+1)(n−1)−1)

2 −(k+1)(n−1)+1

·τ(S ′(n− 1, k))

= (k + 1)
(k+1)((k+1)(n−1)−1)

2 +(k+1)−(k+1)(n−1)
−1

·(k + 3)
(k+1)((k+1)(n−1)−1)

2 −(k+1)(n−1)+1

·τ(S(n − 1, k)).

Since τ(S(0, k)) = 1, it follows that

τ(S(1, k)) = (k + 1)k−1(k + 3)0τ(S(0, k)) = (k + 1)k−1

τ(S(2, k)) = (k + 1)
k(k+1)

2 −1(k + 3)
k(k+1)

2 −kτ(S(1, k))

= (k + 1)
k(k+1)

2 +k−2(k + 3)
k(k+1)

2 −k

...

τ(S(n, k)) = (k + 1)
(k+1)((k+1)(n−1)−1)

2 +(k+1)−(k+1)(n−1)
−1

·(k + 3)
(k+1)((k+1)(n−1)−1)

2 −(k+1)(n−1)+1

·τ(S(n − 1, k))

= (k + 1)
∑

n
i=1(

(k+1)((k+1)i−1−1)
2 +(k+1)−(k+1)i−1

−1)

·(k + 3)
∑

n
i=1(

(k+1)((k+1)i−1−1)
2 −(k+1)i−1+1)

τ(S(0, k))

= (k + 1)
(k−1)((k+1)n−1)

2k + k−1
2 n

·(k + 3)
(k−1)((k+1)n−1)

2k −
k−1
2 n.
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Figure 6: Graphs Pn, Rn, Tn and Ln.

Theorem 2.4. The number of spanning trees on the k-

dimensional Sierpiński triangle graph ST (n, k) is given by

τ(ST (n, k)) = 2α(k + 1)β(k + 3)γ ,

where the exponents are α = k−1
2 ((k + 1)n−1 − 1), β =

k−1
2k ((k + 1)n + k(n − 1) + k − 1), γ = k−1

2k ((k + 1)n−1 −

k(n− 1)− 1).

Proof: From Observation 1.2, we know that |V (S ′(n−

1, k))| = (k + 1)n−1 + k + 1, |E(S ′(n − 1, k))| =
(k+1)((k+1)n−1+1)

2 and there are exactly k + 1 vertices of

degree 1 in S ′(n−1, k), and the degree of other (k+1)n−1

vertices are exactly k+1. From Observation 1.3, we have

τ(S ′(n−1, k)) = τ(S(n−1, k)). From Lemma 2.2, ST (n, k)

is the line graph of S ′(n− 1, k). From Theorems 2.3 and

2.1, the number of spanning trees of ST (n, k) is

τ(ST (n, k)) = (k + 1)(
(k+1)((k+1)n−1−1)

2 +k+1−(k+1)n−1
−1)

·2(
(k+1)((k+1)n−1−1)

2 −(k+1)n−1+1)

·τ(S ′(n− 1, k))

= (k + 1)(
(k+1)((k+1)n−1−1)

2 +k+1−(k+1)n−1
−1)

·2(
(k+1)((k+1)n−1−1)

2 −(k+1)n−1+1)

·τ(S(n − 1, k))

= 2
k−1
2 ((k+1)n−1

−1)

·(k + 1)
(k+1)((k+1)n−1−1)

2 +k+1−(k+1)n−1
−1

·(k + 1)
(k−1)((k+1)n−1−1)

2k + k−1
2 (n−1)

·(k + 3)
(k−1)((k+1)n−1−1)

2k −
k−1
2 (n−1)

= 2
k−1
2 ((k+1)n−1

−1)

·(k + 1)
k−1
2k ((k+1)n+k(n−1)+k−1)

·(k + 3)
k−1
2k ((k+1)n−1

−k(n−1)−1).

Let Pn, Rn, Tn be the sets of spanning subgraphs of

S(n, 2), each of which consists of two trees with the

outmost vertex 00 . . . 0, 11 . . .1, 22 . . .2 belonging to one

tree while the other two outmost vertices being in the

second tree, respectively. Let Ln denote the set of s-

panning subgraphs of S(n, 2), each of which contains

three trees with every outmost vertex in a different tree.

These four types of spanning subgraphs are illustrated

in Figure 6.

Let pn, rn, tn and ln denote the cardinality of sets

Pn, Rn, Tn and Ln.

Theorem 2.5. [43] The number of spanning trees τ(S(n, 2))

and the number of spanning subgraphs pn, rn, tn and ln are

τ(S(n, 2)) = 3
1
4 3

n+ 1
2n−

1
4 5

1
4 3

n
−

1
2n−

1
4 ,

pn =
1

6

5n − 3n

5n
3

1
43

n
−

1
2n+

3
4 5

1
43

n+ 1
2n−

1
4 ,

ln =
1

4
(3n − 5n)23

1
43

n
− 3

2n+
3
4 5

1
4 3

n
− 1

2n−
1
4 .

By symmetry, rn = tn = pn.

Theorem 2.6. The number of the spanning trees on +S(n, 2)

is

τ(+S(n, 2)) = 3τ(S(n, 2)) + 6p+ l,

where

τ(S(n, 2)) = 3
1
43

n+ 1
2n−

1
4 5

1
4 3

n
− 1

2n−
1
4 ,

p =
1

6

5n − 3n

5n
3

1
43

n
−

1
2n+

3
4 5

1
43

n+ 1
2n−

1
4

and l = 1
4 (3

n − 5n)23
1
43

n
− 3

2n+
3
4 5

1
43

n
− 1

2n−
1
4 .

Proof: Notice that the number of spanning tree on
+S(n, 2) can be enumerated by the case in Figure 7. Then

we have

τ(+S(n, 2)) = 3τ(S(n, 2)) + 2pn + 2rn + 2tn + ln

= 3τ(S(n, 2)) + 6pn + ln.

3 RESULTS FOR DATA CENTER NETWORKS

Methods for computing the number of spanning trees,

such as the well-known Matrix-Tree Theorem and tech-

nique of electrical networks are not easy for the larger
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Figure 7: Illustration of the configurations needed to

find τ(+S(n, 2)).

number of vertices of the graph. Naturally it is necessary

to find other methods to produce exact expressions for

the number of spanning trees of graphs and networks.

Some bounds and algorithms can be found in [6, 10, 29].

In this section, we give the results for the number of

spanning trees of data center networks.

3.1 Number of spanning trees of D1,n

A well known result on the number of spanning trees,

called Cayley Theorem, is that τ(Kn) = nn−2. Note that

D0,n is isomorphic to Kn, so τ(D0,n) = nn−2. The line

graph of a graph G, denoted by L(G), is defined as the

graph with V (L(G)) = E(G) and E(L(G)) = {veivej :

eiej ∈ E(G)}.

In [44], Zhang et al. gave a succinct relation of the

number of spanning trees between a regular graph and

the line graph of its subdivision.

For τ(D1,n), we have the following result by Theorem

2.2.

Corollary 3.1. For n ≥ 2, we have

τ(D1,n) = n
1
2
(n2

−n−4)(n+ 1)n−1(n+ 2)
1
2
(n2

−n).

Proof: Since D1,n is the line graph of S(Kn+1), it

follows from Theorem 2.2 that

τ(D1,n) = n
1
2 (n

2
−n−4)(n+ 1)n−1(n+ 2)

1
2 (n

2
−n),

as desired.

Spectrum graph theory plays an important role in

counting the number of spanning trees. Let us introduce

the method to the proof of Corollary 3.1 by the idea in

[44].

Let G be a graph with V (G) = {v1, v2, . . . , vn}. The

Laplacian matrix of G, denoted by Q(G), is a n×n matrix

whose entries qij are given by

qij =











dG(vi), if i = j;

−1, if i 6= j and vivj ∈ E(G);

0, otherwise.

Theorem 3.2. [14] (Matrix-Tree-Theorem) Let 0 = λ1 <

λ2 ≤ · · · ≤ λn be the Laplacian eigenvalues of a connected

graph G of order n. Then

τ(G) =
1

n
λ2λ3 · · ·λn.

For a matrix M of order n, the characteristic polynomial

of M on λ, denoted by P (M,λ), is defined as det(λI−M),

where I is an identity matrix of order n. For simplicity,

we write P (G, λ) for short of P (Q(G), λ), where G is a

graph.

Theorem 3.3. [15] For any d-regular graph G, we have

P (S(G), λ) = (−1)e(G)(2− λ)e(G)−ν(G)P (G, λ(d+2− λ)).

where e(G) and ν(G) are the size and order of G, respectively.

A relation of spectrum between a semi-regular graph

and its line graph was obtained by Mohar in [20].

Theorem 3.4. [20] For any semi-regular graph Ra,b, we have

P (L(Ra,b), λ) = (−1)ν(Ra,b)(λ− (a+ b))e(Ra,b)−ν(Ra,b)

·P (Ra,b, a+ b− λ).

We now introduce the proof idea for the number of

spanning trees of D1,n. Note that D1,n is the line graph of

the semi-regular graph Rn,2 obtained from Kn+1 by sub-

dividing each edge, i.e., D1,n = L(Rn,2) = L(S(Kn+1)).

It is easy to see that ν(Rn,2) =
1
2 (n+1)(n+2), e(Rn,2) =

ν(D1,n) = n(n+1) and P (Kn+1, λ) = λ(λ− (n+1))n. By

Theorem 3.4, we have

P (D1,n, λ) = (−1)ν(Rn,2)(λ− (n+ 2))e(Rn,2)−ν(Rn,2)

·P (Rn,2, n+ 2− λ)

= (−1)
(n+1)(n+2)

2 (λ− (n+ 2))
1
2 (n+1)(n−2)

·P (Rn,2, n+ 2− λ).
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By Theorem 3.3, we have

P (Rn,2, n+ 2− λ)

= (−1)e(Kn+1)(λ− n)e(Kn+1)−ν(Kn+1)P (Kn+1, λ(n+ 2− λ)

= (−1)
n(n+1)

2 (λ − n)
1
2 (n+1)(n−2)λ(n+ 2− λ)

· (λ(n+ 2− λ)− (n+ 1))n

= (−1)
(n+1)(n+2)

2 (λ− n)
1
2 (n+1)(n−2)λ(λ− (n+ 2))(λ− 1)n

· (λ− (n+ 1))n,

and hence

P (D1,n, λ) = λ(λ − 1)n(λ− n)
1
2 (n

2
−n)−1

·(λ− (n+ 1))n(λ− (n+ 2))
1
2 (n

2
−n).

Therefore, all spectra λ1, λ2, · · · , λn(n+1) of Q(D1,n) are

Spec(Q(D1,n))

=

(

0 1 n n+ 1 n+ 2

1 n 1
2 (n

2 − n)− 1 n 1
2 (n

2 − n)

)

.

By Matrix-Tree-Theorem, we have

τ(D1,n) = n
1
2 (n

2
−n−4)(n+ 1)n−1(n+ 2)

1
2 (n

2
−n),

as required.

The following table shows the number of spanning

trees of D1,n.

Table 3. Number of spanning trees of D1,n.

n = 2 n = 3 n = 4 n = 5

D1,n 6 6000 1492992000 143003094806250000

3.2 Number of spanning trees of Dk,n

We first present a lower bound of τ(Dk,n) for k ≥ 2.

Lemma 3.1. For k ≥ 1, we have

τ(Dk,n) ≥ 2(tk−1,n)
tk−1,n−1τ(Dk−1,n)

tk−1,n .

Proof: Note that

V (Dk,n) =

tk−1,n
⋃

i=0

V (Di
k−1,n)

and V (Di
k−1,n) ∩ V (Dj

k−1,n) = ∅ for any 0 ≤ i < j ≤

tk−1,n. For each i (0 ≤ i ≤ tk−1,n), there are τ(Dk−1,n)

spanning trees in Di
k−1,n. Let T ′

i be a spanning tree of

Di
k−1,n. Then

⋃tk−1,n

i=0 T ′
i is a spanning forest of Dk,n. The

reduced graph H of Dk,n is constructed by contracting

each Di
k−1,n by a single vertex ui (0 ≤ i ≤ tk−1,n).

Observe that H is a complete graph of order tk−1,n + 1

and V (H) = {ui | 0 ≤ i ≤ tk−1,n}. Then the number of

spanning trees of H is (tk−1,n + 1)tk−1,n−1.

Now let us consider the case where the spanning trees

of Dk,n contains no edges of Dl
k−1,n for the unique l

with 0 ≤ l ≤ tk−1,n. Let H ′ = H − ul. Then H ′ is a

complete graph of order tk−1,n and V (H ′) = {ui | i 6=

l, 0 ≤ i ≤ tk−1,n}. Then the number of spanning trees of

H ′ is (tk−1,n)
tk−1,n−2, and hence

τ(Dk,n) ≥ (tk−1,n + 1)tk−1,n−1τ(Dk−1,n)
tk−1,n+1

+(tk−1,n + 1)(tk−1,n)
tk−1,n−2τ(Dk−1,n)

tk−1,n

≥ 2(tk−1,n)
tk−1,n−1τ(Dk−1,n)

tk−1,n ,

as desired.

Theorem 3.5. The number of spanning trees of Dk,n, k ≥ 1,

n ≥ 1, is

τ(Dk,n) ≥ 2p
k−1
∏

i=1

tqi,nn
1
2 r(n

2
−n−4)(n+1)r(n−1)(n+2)

1
2 r(n

2
−n),

where p = 1 +
∑k−1

i=2

∏k−1
j=i tj,n, q = (ti,n − 1)

∏k−1
j=i+1 tj,n

and r =
∏k−1

i=1 ti,n.

Proof: We prove this theorem by induction on k. If

k = 2, then it follows from Lemma 3.1 that τ(D2,n) ≥

2(t1,n)
t1,n−1τ(D1,n)

t1,n . Suppose that the result holds for

k = m− 1, that is,

τ(Dm−1,n)

≥ 21+
∑m−2

i=2

∏m−2
j=i

tj,n

m−2
∏

i=1

t
(ti,n−1)

∏m−2
j=i+1 tj,n

i,n

·
(

n
1
2 (n

2
−n−4)(n+ 1)n−1(n+ 2)

1
2 (n

2
−n)
)

∏m−2
i=1 ti,n

.

For k = m, we have

τ(Dm−1,n)
tm−1,n

≥ 2tm−1,n+
∑m−2

i=2

∏m−1
j=i

tj,n

m−2
∏

i=1

t
(ti,n−1)

∏m−1
j=i+1 tj,n

i,n

· n
1
2 (n

2
−n−4)

∏m−1
i=1 ti,n

(

(n+ 1)n−1(n+ 2)
1
2 (n

2
−n)
)

∏m−1
i=1 ti,n

,

and hence

τ(Dm,n)

≥ 2(tm−1,n)
tm−1,n−1τ(Dm−1,n)

tm−1,n

≥ 21+
∑m−1

i=2

∏m−1
j=i

tj,n

m−1
∏

i=1

t
(ti,n−1)

∏m−1
j=i+1 tj,n

i,n

·
(

n
1
2 (n

2
−n−4)(n+ 1)n−1(n+ 2)

1
2 (n

2
−n)
)

∏m−1
i=1 ti,n

,
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as desired.

Next, we use a recent result, due to Klee et al., to get

an upper bound of τ(Dk,n) for k ≥ 2.

Theorem 3.6. [16] For a simple graph G, we have

τ(G) ≤
1

|V (G)|2

∏

v∈V (G)

(d(v) + 1).

Theorem 3.7. For k ≥ 2 and any n, we have

τ(Dk,n) ≤
(n+ k)(n+1)2

k
−1

((n+ 1)2k − 1)2
.

Proof: Since Dk,n is a n + k − 1-regular graph, it

follows from Theorem 3.6 that

τ(Dk,n) ≤
(n+ k)tk,n

t2k,n
.

By Theorem 1.1, we have

τ(Dk,n) ≤
(n+ k)(n+1)2

k
−1

((n+ 1)2k − 1)2
,

as desired.

4 SPANNING TREE ENTROPY

Zhang, Wu and Lin [41] compared the entropy of s-

panning trees for Farey network, pseudofractal fractal

web, the square lattice, and the 2-dimensional Sierpiński

triangle graph. Comellas, Miralles, Liu and Zhang [5]

compared the entropy of spanning trees for M(t), the

honeycomb lattice, the 4-8-8 lattice (bathroom tile), and

3-12-12 lattice. Zhang, Wu and Comellas [42] compared

the entropy of spanning trees for the Apollonian net-

work, 3-dimensional Sierpiński triangle graph, and the

3-dimensional hypercubic lattice.

We now calculate the entropy of spanning trees for k-

dimensional Sierpiński graph, k-dimensional Sierpiński

triangle graphs and data center network D1,n.

Corollary 4.1. The spanning tree entropy of k-dimensional

Sierpiński graph S(n, k) is k−1
2k ln(k + 1)(k + 3).

Proof: From Observation 1.1 and Theorem 2.3, we

get that

ln τ(S(n, k))

|V (S(n, k))|

=
ln((k + 1)

k−1
2k ((k+1)n+kn−1)(k + 3)

k−1
2k ((k+1)n−kn−1))

(k + 1)n

=
k−1
2k ((k + 1)n + kn− 1) ln(k + 1)

(k + 1)n

+
k−1
2k ((k + 1)n − kn− 1) ln(k + 3)

(k + 1)n
,

and hence

z(S(n, k)) = lim
n→∞

ln τ(S(n, k))

|V (S(n, k))|
=
k − 1

2k
ln(k + 1)(k + 3),

as desired.

From the definition of k-dimensional Sierpiński trian-

gle graphs, the order of ST (n, k) is (k+1)n+k+1
2 .

Corollary 4.2. The spanning tree entropy of k-dimensional

Sierpiński triangle graph ST (n, k) is

k − 1

k(k + 1)
(k ln 2 + (k + 1) ln(k + 1) + ln(k + 3)) .

Proof: From Theorem 2.4, we have

ln τ(ST (n, k))

|V (ST (n, k))|

=
ln(2

k−1
2 ((k+1)n−1

−1)(k + 1)
k−1
2k ((k+1)n+k(n−1)−1)

(k+1)n+k+1
2

·
(k + 3)

k−1
2k ((k+1)n−1

−k(n−1)−1))
(k+1)n+k+1

2

=
(k − 1)((k + 1)n−1 − 1) ln 2

(k + 1)n + k + 1

+
(k − 1)((k + 1)n + k(n− 1)− 1) ln(k + 1)

k((k + 1)n + k + 1)

+
(k − 1)((k + 1)n−1 − k(n− 1)− 1) ln(k + 3)

k((k + 1)n + k + 1)
,

and hence

z = lim
n→∞

ln τ(ST (n, k))

|V (ST (n, k))|

=
k − 1

k + 1
ln 2 +

k − 1

k
ln(k + 1) +

k − 1

k(k + 1)
ln(k + 3)

=
k − 1

k(k + 1)
(k ln 2 + (k + 1) ln(k + 1) + ln(k + 3)) .

Note that the order of D1,n is n(n+ 1). Then we have

the following corollary.

Corollary 4.3. The spanning tree entropy of D1,n is ∞.

Proof: From Corollary 3.1, we have

ln τ(D1,n)

|V (D1,n)|

=
ln(n

1
2 (n

2
−n−4)(n+ 1)n−1(n+ 2)

1
2 (n

2
−n))

n(n+ 1)

=
1
2 (n

2 − n) ln(n2 + 2n) + (n− 1) ln(n+ 1)− 4 lnn

n(n+ 1)
,

and hence,

z = lim
n→∞

ln τ(D1,n)

|V (D1,n)|
= ∞.
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Felker and Lyons [8] gave an interesting large-k

asymptotic expansion of k-dimensional hypercubic lat-

tice Lk to order 1/k14,

z(Lk)

= ln(2k)−
1

4k
−

3

16k2
−

3

16k2
−

7

32k3
−

45

128k4

−
269

384k5
−

805

512k6
−

3615

1024k7
−

23205

4096k8
−

23205

4096k8

+
144963

10240k9
+

2187031

8192k10
+

40225409

16384k11
+

1277353077

65536k12

+
668172164455

458752k13
+

271891453119

262144k14
−O

(

1

k15

)

.

The definition of k-dimensional hypercubic lattice Lk

and the entropy of the spanning trees for Lk can be

found in [30]. We can compare the asymptotic values

of the entropy of spanning trees for k-dimensional Sier-

piński triangle graphs ST (n, k), (2k − 1)-dimensional

Sierpiński graphs S(n, 2k − 1), and (k + 1)-dimensional

hypercubic lattice Lk+1 with the same asymptotic aver-

age degree 2k, where 2 ≤ k ≤ 6; see Table 4.

Table 4. The spanning tree entropy of ST (n, k), S(n, 2k − 1) and

Lk+1.

k z(ST (n, k)) z(S(n, 2k − 1)) z(Lk+1)

2 1.5851 1.0594 1.6685

3 2.4653 1.5485 1.9991

4 3.0824 1.8780 2.2424

5 3.5591 2.1278 2.4366

6 3.9477 2.3291 2.5987

From Table 4, the asymptotic value for the entropy

of spanning trees of k-dimensional Sierpiński graphs

S(n, k) is the lowest among these graphs with average

degree 2k, where 2 ≤ k ≤ 6. This suggests that k-

dimensional Sierpiński graphs S(n, k) would be less reli-

able to a random removal of edges than the graphs men-

tioned above. However, the degree distribution means

that the reliability of graphs, and as we know, graphs

with a scale-free degree distribution are more resilient

than homogeneous graphs (like regular and exponential

graphs, where all vertices are statistically identical), see

[34]. By considering this, it would be of interest to study

the connections among the spanning tree entropy of

a graph and other relevant graph parameters, such as

degree distribution, degree correlation, etc.
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