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To the Editor,

Acute myeloid leukemia (AML) is a heterogeneous disease with the
accumulation of cytogenetic or genetic aberrations leading to the
overgrowth of malignant cells and in which the first cancer stem cells
(SC) have been identified (leukemic stem cells—LSC) [11. The dynamic
crosstalk between LSC and their bone marrow (BM) microenviron-
ment is crucial for controlling leukemic progression and response to
therapy [2]. Among the main pathways that participate in this dialog,
the Bone Morphogenetic Proteins (BMP) signaling constitutes a major
bi-directional actor as BMP molecules govern SC regulation in
developmental stages and many adult tissues [3]. Intrinsic and
extrinsic alterations of BMP signaling have been identified at different
stages of myeloid leukemia, including initiation, expansion, persis-
tence, and resistance of immature cells [3-7]. We unveiled a signaling
cascade involving the binding of BMP4 to BMPR1A that drives ANp73
and NANOG expression to imprint immature-like properties and
which is predictive in the diagnosis of AML patients at risk of relapse
[5]. Bioinformatics analyses also identified BMP4 as one of the key hub
genes and pathways in AML [8]. In normal human hematopoiesis, we
showed that BMP2 and BMP4 regulate HSC maintenance [9],
commitment toward erythroid [10], and megakaryocytic lineages
[9]. Regarding existing data on other lineage regulation, the lack of
extensive data on myeloid lineage regulation by BMP4 and the fact
that we recurrently document an increase in BMP4 in myeloid
leukemia at the time of diagnosis [5] or at relapse [7], we wondered if
BMP4 could contribute to myeloid cell differentiation. We isolated
CD34" cells from BM samples collected from healthy donors (NBM) or
AML patients at diagnosis (Table S1). Cells were treated with BMP4
(20ng/mL) as described (Fig. 1A). The induction of myeloid
differentiation was quantified by CD14 cell surface expression (a
marker of monocytic cells). We observed a significant induction of
CD14-expression in healthy (Fig. 1A, left panel) but not AML (Fig. 1A,
right panel) BMP4-treated CD34" cells. Using a BMPRTA blocking
antibody (AF346) [5] prevented the BMP4-induced CD14 expression in
healthy CD34" cells (Fig. 1B), confirming that BMP4 signaling is
directly involved in monocytic differentiation. In the NBM progenitors
compartment, exposure to BMP4 led to a slight decrease in total
colonies (CFC) (Fig. 1C, left panel) but induced a strong reduction of
erythroid progenitors (early-BFU-E and late-CFU-E) in healthy BMP4-
treated cells (2 folds)(Fig. 1C, pie charts). Even if erythroid progenitors’
frequency in AML BM samples is very low, BMP4 treatment induces a
further 3-fold decrease. We performed functional assays (Long Term
Culture-Initiating Cell; LTC-IC) to assess the effect of BMP4 on NBM
and AML immature CD34" cells. Their capacity to generate
progenitors after 5 weeks of co-culture with the feeder layer was
unaltered (Supplementary Fig. 1A), indicating that BMP4 does not
foster HSC expansion in these conditions. To evaluate the effect on
HSC commitment toward different lineages, we performed single-cell

functional analyses on CD347CD38 CD90"CD123" sorted sub-
fraction, highly enriched in HSC. Single sorted cells were treated for
10 days with BMP4 prior to semi-solid medium addition, and
progenitors scored after another period of 14-21 days (Supplemen-
tary Fig. 1B, left panel). While, as expected, sorted AML LSC fate is
biased toward the myeloid lineage, BMP4 neither changes the
capacity of HSC to generate colonies (Supplementary Fig. 1B, middle
panel), nor to direct their fate toward erythroid or myeloid lineages
(Supplementary Fig. 1B, right panel). Therefore, BMP4 controls healthy
immature cells by promoting the myeloid progenitor's compartment
expansion at the expense of erythroid progenitors but without
instructing HSC commitment. This BMP4 effect on myeloid differ-
entiation is lost in AML LSC.

To gain insight into the mechanism by which BMP4 regulates the
myeloid lineage, we evaluated well-established regulatory signaling
pathways and chose Vitamin D (VD) signaling and its receptor VDR
involved in myeloid differentiation and altered in AML [11]. We
exposed 7 days of NBM or AML CD34"-sorted cells to VD (300 nM)
and observed, as expected, the induction of CD14 surface expression
in NBM cells (Supplemental Fig. 1C). This effect was not observed in
CD34" AML primary cells confirming that VD induced myeloid
differentiation is lost in leukemic cells. As with BMP4-treatment (Fig.
10), VD-treated CD34" cells decreased the total number of
progenitors with a significant drop from 43% to 18% in the erythroid
compartment (respectively early and late sub-types)(Fig. 1D pie Chart).
Unlike healthy cells, AML CD34" cells displayed a reduced capacity to
generate progenitors in CFC assays, which remained unaffected by
VD treatment (Fig. 1D left panels). Conversely to BMP4 (Supplemen-
tary Fig. 1B), VD treatment enhanced the frequency of colonies
generated from healthy single stem cells (Fig. 1E left panel) without
significantly affecting their fate between erythroid or myeloid lineages
(Fig. 1E right panel). Our data show comparable effects of BMP4 and
VD signaling on healthy primary stem cells to promote myeloid
progenitor expansion and favor CD14" cells, effects abrogated in
AML-sorted LSC.

At the molecular level, we observed a significantly lower expression
in AML cells of VDR and of its target genes directly involved in
myeloid differentiation (CAMP and CYP24A1 [11]), but not of
CYP27B1, involved in T lineage differentiation [12] (Fig. 1F). Based
on an AML dataset (GSE76008) [13] we observed a positive correlation
between the expression of BMPR1A and of VDR in unsorted cells
(Supplementary Fig. 1D), and a lower transcriptional level of VDR and
CAMP genes in CD34" compare to CD34 cells from the same patients
(Supplementary Fig. 1F), suggesting that the BMP4-induced myeloid
regulation could involve VD signaling. Treating CD34" cells with
BMP4 (20ng/mL) for 4 days led to a significant increase in the
expression of VDR, its target genes (CAMP, CYP24A1) and TREML2
(also implicated in myeloid differentiation [14]) only in NBM cells,
while this up-regulation was not observed in BMP4-treated AML cells
(Fig. 1G). VDR is a nuclear receptor that, following its cytoplasmic to
nuclear translocation, drives transcriptional activation of factors to
induce myeloid differentiation. Confocal analysis confirmed the
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overall lower level of VDR in CD34" AML cells compared to their
normal counterparts (Supplementary Fig. 1G). Following BMP4
treatment, we observed by compartment delineation an increase in
VDR nuclear staining in NBM CD34"-cells, but no difference in its
cytoplasmic localization (Fig. 1H, I). While similar VDR shuttling to the
nucleus in response to BMP4 treatment was measured in mature

SPRINGER NATURE

Arbitrary units

5000 —
4000
3000
2000
1000
0

UT  BMP4

HL60-AML cells (Supplementary Fig. 1H), this was not the case in
immature CD34"-AML KG1A cells (Fig. 1)). In addition, KG1A cells
showed no cytoplasmic VDR staining, confirming a decrease in VDR
expression in AML CD34™" cells (Fig. 1J). Altogether, our data strongly
indicate a loss of VDR regulation by BMP4 in immature AML cells,
including a dysregulated VDR shuttling between cellular
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Fig. 1 Response of bone marrow immature cells to BMP4 and VD mediated-myeloid progenitors’ differentiation is lost in AML.
A Experimental protocol for differentiation analysis of normal and leukemic samples. CD34™ from healthy and AML samples were cultured at
0.4 M/mL in serum-free medium in the presence of IL-3 (10 ng/mL), G-CSF (50 ng/mL), and BMP4 treatment for 7 days. Cell membrane analysis
of CD14" was performed by flow cytometry, and data represent the percentage of positive cells. Healthy CD34" samples are presented in gray
(n = 8) and AML samples in black (n = 15). Wilcoxon matched-pairs signed rank test B CD34" from healthy samples were also treated with or
without BMPR1A blocking antibody (AF346 R&D System), and data are presented as violin plot of n=5 independent experiments using
CD347" isolated from different healthy donors. C The progenitor content of treated cells was analyzed using the clonogenic CFC assay. We
scored them as early or late erythroid-E and early or late granulo-monocytic-GM colonies. Results are expressed as the number of CFC for 1000
cells and represent the mean value + SEM n = 14. D CD34" from healthy and AML samples were cultured for 4 days at 0.4 M/mL in serum-free
medium in the presence of VD (300 nM) treatment. The progenitor content of treated cells was analyzed using the clonogenic CFC assay. We
scored them as early or late erythroid-E and as early or late granulo-monocytic-GM. Results are expressed as the number of CFC for 1000 cells
and represent the mean value = SEM of 12 or 11 experiments for healthy donors and AML patients, respectively. E Frequency of single cell-
derived CFC and absolute number of colonies per CFC obtained and type. Results are expressed as the percentage of wells that gave rise to
colonies and represent the mean value = SEM of five experiments for healthy donors and 7 AML patients. UT Untreated, NBM Normal Bone
Marrow, CFC Colony-Forming Capacity. F Transcript levels in bone marrow CD34" healthy (gray) and AML samples (black) were evaluated by
RT-PCR using primers (Table S2). G After 4 days of BMP4 exposure of CD34" isolated from NBM or AML samples transcript levels of TREML2,
VDR, and its target genes were evaluated by RT-PCR. H VDR receptor (green fluorescence revealed by green staining with secondary anti-
rabbit AlexaFluoro-488 conjugated antibody) confocal microscopy images of healthy donor bone marrow-derived CD34+ cells following
BMP4 treatment (20 ng/mL during 4 days). | The VDR receptor distribution in the cytoplasmic and nuclear region of CD34+ bone marrow-
derived cells of a healthy donor, confocal microscopy images of VDR receptor and analysis of stain intensity in cytoplasmic and nuclear region
(Sytox deep red staining of nuclei). J KG1A confocal microscopy images of VDR receptor, green fluorescence (Sytox deep red staining of
nuclei), and analysis of stain intensity in the cytoplasmic and nuclear region of cells after BMP4 treatment (20 ng/mL during 4 days). Graphpad

Prism analysis and paired t-test were performed unless specified.

compartments. Interestingly, it was suggested that AML-associated
translocation products block differentiation by interfering with
chromatin-modeling but also by sequestering factors such as VDR
in the VD-induced differentiation [15]. Our data thus raise the
hypothesis of an alteration of LSC control by BMP4 through re-
localization of VDR in the absence of transcriptional regulation. This
supports the participation of the BMP pathway in blocking cell
differentiation through non-genomic VDR activity.

Hence, our data show that in a normal context, BMP4 binding to
BMPR1A contributes to myeloid differentiation through VDR pathway
activation. In AML, this mechanism is impaired, likely due to a change
in VDR localization mediated by BMP4, which likely prevents its
nuclear pro-differentiation function. These findings provide insight
into the mechanism of differentiation blockade and myeloid
expansion of AML LSC, opening new clinical perspectives to restore
VD pro-differentiation potential.
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