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Designing a high-quality plasma injector electron source driven by a laser beam relies on numer-
ical parametric studies using particle-in-cell codes. The common input parameters to explore are
laser characteristics, plasma species and density profiles produced by computational fluid dynamic
studies. We demonstrate the construction of surrogate models using machine learning techniques for15

a laser-plasma injector (LPI) based on more than 3000 particle-in-cell simulations of laser wakefield
acceleration performed for sparsely spaced input parameters published by Drobniak [Phys. Rev.
Accel. Beams, 26, 091302, (2023)]. Surrogate models are relevant for LPI design and optimisation,
as they are approximately 107 times faster than PIC simulations. Their speed enables more efficient
design studies by allowing extensive exploration of the input-output relationship without significant20

computational cost. We develop and compare the performance of three surrogate models, namely,
multilayer perceptron (MLP), decision trees (DT) and Gaussian processes (GP). We show that us-
ing a simple and frugal MLP-based model trained on a reasonable-size random scan data set of
500 particles in cell simulations, we can predict beam parameters with a coefficient determination
score R2 = 0.93 . The best surrogate model is used to quickly find optimal working points and25

stability regions and get targeted electron beam energy, charge, energy spread and emittance using
different methods, namely random search, Bayesian optimisation and multi-objective Bayesian op-
timisation. This simple approach can serve more global design study of an LPI in a start-to-end
linear laser-driven accelerator.

I. INTRODUCTION30

Laser wakefield acceleration (LWFA)[? ] is a promising
method that can produce high-energy electrons within
compact structures. It can achieve peak accelerating
electric field in the order of 100GV/m, 3 order of mag-
nitude higher than the fields generated by RF accelera-35

tors [? ]. Furthermore, LWFA produces electrons with
extremely short pulse duration [? ], typically around
10’s of femtoseconds. This short electron bunch length
is particularly advantageous for applications like radio-
therapy techniques such as FLASH [? ] and the creation40

of coherent X-rays using free electron laser [? ]. In the
past decade, several groups were able to generate electron
beams with desired properties such as high energy [? ],
high charge [? ], low energy spread [? ], low emittance
[? ]. However, these electron beams may not display all45

these properties simultaneously. This is due to the highly
non-linear and coupled nature of the laser wakefield in-
teraction, making it difficult to obtain a stable electron
beam with demanding features.

The nonlinear nature of LWFA makes numerical mod-50

elling such as particle-in-cell (PIC) simulations [? ] nec-
essary for designing reliable laser-plasma accelerators,
which can be intractable if one relies only on limited ex-

perience data points and scaling laws. Machine learning
(ML) techniques [? ] are increasingly used in LWFA55

studies and experiments. Recent papers [? ? ] showed
that optimal working points can be obtained by using
a Bayesian optimisation approach. In this article, we
construct and evaluate surrogate models (SM), including
multilayer perceptron (MLP), decision trees (DT) and60

Gaussian processes (GP). These SM are used to predict
electron beam properties from input configurations of a
laser-plasma injector (LPI) . These models were chosen
because they are easy to implement and readily avail-
able through numerous Python libraries. Furthermore,65

these frugal models[? ] demonstrated a high predic-
tion performance in numerous non-linear physics prob-
lems [? ]. From the models considered, we identify that
MLP achieves the best performance with a coefficient
of determination R2 = 0.97. Using the SM, we identi-70

fied stable operation regions with optimal beam param-
eters surpassing those found in the previous study [? ].
We demonstrate that SM models are ≈ 107 times faster
than PIC simulations, making them significantly more
efficient for rapidly exploring various configurations of75

laser-plasma interactions (LPI) enabling their integration
into a comprehensive start-to-end simulation framework
for advanced laser-plasma-based electron accelerators. In
this paper, SM are applied on SMILEI[? ] PIC simula-
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tions, but could be used with any PIC code. Moreover,80

they could be integrated with experimental data for real-
time operation and optimisation. This study is a nec-
essary step towards providing an efficient approach for
designing high-quality electron beams in Laser-wakefield-
acceleration applications.85

The article starts with the numerical experiment sec-
tion II. detailing the setup and input parameters used
for simulations. In section III. we present the data sets
and discuss the construction of simple model for predict-
ing injection and filtering data. In section IV. we exam-90

ine different machine learning approaches for surrogate
modelling. In section V. we highlight the performance of
these models, discuss some optimisation strategies, and
compare SM with conventional methods. Concluding re-
marks summarise the study’s impact on LWFA numerical95

optimisation.

II. NUMERICAL EXPERIMENT

The data set used for the SM training comes from
PIC simulations aiming to deliver electron beams rang-
ing from 150 − 250 MeV, 30 − 50 pC of charge, an en-100

ergy spread lower than 5% and an emittance of less than
2mm.mrad as presented in [? ]. The LASERIX platform
at IJCLab provides the laser driver with a power in the
range of 40 to 80TW. The LPI relies on an ionisation
injection scheme [? ] with a plasma target divided into105

two regions [? ]. The first region comprises a gas mixture
of He doped with N2 whose length is 0.6mm. The in-
ner shell electrons of N5+ and N6+ can be injected in the
plasma wakefield. The second region is composed of pure
He, 1.2mm long and dedicated to the acceleration of the110

injected electrons. The main objectives of the numeri-

x(i) injection prediction

injectionLPI SM

y(j) = NaN

y(j)

evaluation of f(y(j))

False

True

Optimiser (update)

FIG. 1. Surrogate models and injection prediction based LPI
design optimisation studies flowchart. The dashed line repre-
sents the potential optimisation loop update of the input x(i).

cal experiments are: (i) construct a classification-based
model that predicts electron beam injection as a function115

of input parameters; (ii) construct ML-based SM from
simulation data that are able to predict the LPI electron
beam parameters; (iii) use both classification model and

SM to optimise LPI configurations and investigate the
stability of optimal beam parameters.120

The scheme in Figure Fig 1 illustrates the principle of
the numerical experiments. An LPI configuration input
x(i) can be filtered by an injection prediction model, pro-
viding inputs for the LPI SM to predict the electron beam
parameters y(j). An objective function f built from the125

outputs y(j) can feed an optimisation routine.

III. DATA SETS GENERATION

Two large data sets of LPI simulations were produced
using the SMILEI[? ] PIC code with azimuthal mode
decomposition, envelope approximation[? ? ? ] and a130

low number of macroparticles per cell (MPC). A single
run is performed in 130 core-hours at the GENCI High-
performance computing (HPC) Irene Joliot Curie facility
[? ], compared to 450 core-hours for more standard set-
tings with a higher number of MPC using the envelope135

and azimuthal mode decomposition. The reduced num-
ber of MPC had only a modest impact on the simulation
results, as specified in [? ]. The simulation data are
available online [? ]. The simulations had a set of 4 in-
put variable parameters namely: x(i) = (a0, xoff , p1, cN2

)140

with a0 the laser pulse normalised vector potential in vac-
uum, xoff the laser focal position in vacuum, p1 the gas
pressure in the first region and cN2

the concentration of
nitrogen in the same region. It is important to notice that
the pressure in the second region was kept equal to the145

one in the first region p1 ≃ p2, leading to a difference in
electron density between the two chambers coming from
the 10 electrons of N atoms in the first region. The ref-
erence position xoff = 0 corresponds to the entrance of
the second chamber [? ]. These parameters were selected150

because they provide a sufficient basis for adjusting and
controlling the electron beam parameters in the current
design of the LPI project. The input parameters x(i) can
vary up to the values indicated in Tab. I.

a0 xoff [µm] p1 [mbar] cN2 [%]
[1.1, 1.85] [−400, 1800] [14, 119] [0.2, 12]

TABLE I. Interval for the 4 input parameters used for the
random scan simulations

We chose 4 output parameters to characterise the elec-155

tron beam, namely: y(j) = (Emed, δEmad, Q, ϵy). Emed

is the median energy, δEmad = σmad/Emed with σmad

the median absolute deviation, Q the charge and ϵy the
transverse normalised emittance. The laser driver was
linearly polarised along the y-axis. The output parame-160

ters y(j) used as validation data in the model were eval-
uated only at the last time step of the simulation. They
represent the features of the beam right after the plasma
outramp. For additional details on the output beam
parameters evaluation see Appendix A. The first sim-165

ulations data set set1 consists of five massive random
scans, each with 2401 configurations. Each random scan
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explored a part of the input parameter space using ei-
ther a continuous uniform distribution or a skew-normal
distribution. These random scans resulted in some inter-170

vals of the input space being over-represented in the data
set. The histograms in Fig. 2 present the configurations
distribution of the inputs x(i).
The density of points within the random scan data set

set1 was high enough to explore the input parameter175

space finely. The resolution is largely above the one that
can be obtained experimentally. For example, with xoff ,
we reach a numerical resolution as low as 1µm where it
is barely 50µm in standard experimental conditions.

data set Emed [MeV] δEmad [%] Q [pC] ϵy [mm.mrad]
set1 [41, 355] [0.01, 58] [3, 791] [0.6, 78]
set2 [44, 368] [0.01, 56] [3, 837] [0.6, 76]

TABLE II. Interval for the 4 output electron beam parameters
of the simulations data set

A second simulations data set set2 was produced us-180

ing an injection prediction model (see IIIA) for filtering
input parameters x(i) resulting in 3536 simulations. For
the set2 data, the input parameters x(i) were randomly
drawn from the intervals presented in Tab. I using a
continuous uniform distribution (Fig. 2).185

FIG. 2. Distribution of the input parameters for the 9846
training data simulations (blue) and the 3536 test data sim-
ulations (orange).

For the set1, out of the 12004 simulations, 9846 re-
sulted in injected beams. The output y(j) ranges are
presented in Tab.II for both data set set1 and set2.
The two data set were used both as training data or test
data.190

A. Injection prediction model

We constructed an injection model trained on the ini-
tial data set SET1. This model predicts whether in-
jection will happen for the input x(i). It uses a simple
random forest algorithm to make its prediction. The ac-195

curacy of the model is 98%. Accuracy denotes the num-
ber of correct predictions over the total number of pre-
dictions. This injection prediction model can save com-
putational time before launching new simulations or be
used as a constraint in the Bayesian optimisation search200

to filter the input parameters.

FIG. 3. Injection model tested on randomly generated points.
The dark-blue curve is the critical pressure necessary for self-
focusing.

Fig. 3 shows, as a function of the input parameter
(a0,p1): in blue, the points corresponding to no injec-
tion, in orange injection. The definition of injection is
an accelerated beam (γz > 10) with charge Q > 3 pC.205

The black curve corresponds to the critical pressure pc
for self-focusing as defined in [? ? ].

pc = 32 · ϵ0kBTmec
2

e2w2
LτL

· 1

a20
· 1

(1 + 4cN2)
(1)

with wL laser waist, τL laser pulse length and normalised
potential vector a0. It can be seen that the injection210

condition determined by the model follows the theoretical
limit set by the self-focusing threshold.

IV. MODEL CONSTRUCTION

The current section intends to present the training pro-
cess of the models and the importance of the input pa-215

rameter distribution in the training data set.

A. LPI model

We study and compare various ML methods and even-
tually determine which one would be the most appropri-
ate to model and optimise the LPI. The methods consid-220

ered are:
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• Neural network (NN) like multilayer perceptron
(MLP) – which is a well-generalised robust method
for learning nonlinear data [? ].

• Trees like Extreme gradient boosting (XGB)– a225

classical method for learning by splitting data into
different branches. These methods are fast but tend
to overfit [? ].

• Gaussian Processes (GP) - a statistical method al-
lowing the prediction of the expected value and its230

variance. It has no hyper-parameters to tune after
the Kernel and length are defined. It is at the core
of Bayesian Optimisation, which has been success-
fully used in multiple accelerator physics applica-
tions and studies [? ].235

1. multilayer perceptron (MLP)

The first method used to construct a surrogate model
of the LPI consisted of four different MLP’s. These
MLP’s were implemented using Tensorflow and Keras
python library [? ]. Each MLP predicts one output240

parameter. For Emed, Q and ϵy. The MLPs have the
following architecture: 5 layers in total, 1 input layer
with 4 neurons, 1 output layer with 1 neurons, and 3
intermediate layers with 100 neurons. Each layer has a
20% dropout rate. We used the function PRELU [? ]245

as an activation function for the 3 intermediate layers
and a sigmoid function for the last layer. Altogether,
this model contains 21101 trainable parameters. This
model was trained on 200 epochs with a batch size of
50. The loss function used was the mean squared er-250

ror (MSE). To avoid over-fitting, we also used a K-fold
cross-validation method [? ]. For predicting δEmad the
architecture is modified to improve accuracy, since this
parameter is highly correlated with energy and charge.
The input layer contains 6 neurons instead of 4. These255

additional input neurons are the prediction of Emed and
Q from the already trained MLP.

2. Extreme gradient boosting (XGB)

We implemented this method by using the xgboost li-
brary[? ]. The maximum tree depth was set to 10, and260

the loss function was also MSE in this case. We used
K-fold cross-validation.

3. Gaussian Process (GP)

We implemented this method by using the Scikit-learn
library [? ]. The kernel used was Matérn, which is a265

generalisation of the Gaussian radial basis function and
allows the capture of physical processes due to double
differentiability by the choice of a smoothness parameter
ν = 2.5.

The training process on a high-performance laptop is270

relatively quick, and it takes only a few seconds for the
XGB model and a few minutes for the GP and MLP mod-
els. Additionally, the computation time for LPI config-
urations is significantly shorter than that of low-fidelity
simulations on HPC CPU nodes. The MLP, XGB, and275

GP models are approximately 107 , 108, 107 times faster
than simulations, respectively. The time taken for train-
ing and inference are presented in Appendix B. It is im-
portant to note that for all models (MLP, XGB, GP), it
is mandatory to rescale the outputs and the inputs from280

0 to 1 to get the most accurate results. The output pa-
rameters, y(i), are scaled so that the calculation of the
loss function is well-weighted, corresponding to the same
magnitude in all of the outputs.

4. Importance of the input parameters distribution285

All three models MLP, XGB, and GP were tested on
the set2 data, consisting of 3700 test points, separate
from the 10977 samples of set1 used for training. We
observe that the coefficient of determination R2 between
the SM predictions and the outputs of set2 is above290

0.85. However, this score significantly decreases in re-
gions where the density of training points is lower than
1. The density is defined as the number of points inside
a hypercube of a side 0.1 in the normalised hyperspace.
We propose a reliability criteria for the SM models295

based on the relation between R2 and MSE :

R2 = 1−
∑4

i=1

∑N
j=1(yij − fij)

2∑4
i=1

∑N
j=1(yij − ȳi)2

=

1−
4
∑N

j=1 MSEj∑4
i=1

∑N
j=1(yij − ȳi)2

(2)

With y: output value of the test data, f : predicted
value by the surrogate, ȳ: simulation mean value for a
batch of size N . The index i represents the 4 output300

parameters, and j represents the test points. MSEj is
the mean squared error for a specific test point MSEj =∑4

i=1(yij − fij)
2/4.

The relationship between MSE and R2 can be used
to define reliability criteria for the test points in a given305

region of the input parameter space. We observe that
R2 ≥ 0.9 for a given batch corresponds toMSE < 4.10−3

and that the probability of getting a small MSE in-
creases with the local density of training points as shown
in Fig. 4. Thus, to be confident that R2 ≥ 0.9 in ev-310

ery region of the 4-dimensional input space we need to
have a high enough density, which was unfortunately not
the case for at least 30% of the parameter space when
using the simulation data of SET1 [? ] as training.
This is why the following models were trained with data315

from SET2 uniformly distributed points and tested on
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FIG. 4. Scatter plot showing the relationship between the
density of input data configuration points and MSE for every
test point for the MLP model. The blue points represent the
different configurations.

the data of SET1. As shown in Fig. 5, 6 a better homo-
geneity largely compensates for reducing the number of
training points for our LPI SM.

V. RESULTS320

A. Performances of surrogate models

The SM trained on the data set2 showed good correla-
tion with MLP, XGB and GP model having an R2 score
of 0.97, 0.90 and 0.96, respectively, across all output pa-
rameters. However, as shown in Table III, the median325

energy and charge are consistently better predicted by
the models compared to δEmad and ϵy. To compare the
results of the SM with a more standard method, we added
nearest-neighbour interpolation.

Emed δEmad Q ϵy
MLP 0.99 0.96 0.99 0.95
XGB 0.97 0.88 0.96 0.78
GP 0.99 0.95 0.99 0.90
interpolation 0.90 0.83 0.91 0.72

TABLE III. R2 correlation score for the different surrogate
models trained on SET2 and evaluated on SET1.

Figure 5 illustrates that the MLP and GP model ar-330

rive at R2 = 0.93 with a training size of approximately
500 samples. All SM outperform a simple interpolation
model, which only reaches a R2 score of 0.85 when the
training size exceeds 3000 samples compare to less than
300 samples for MLP and GP SM.335

To evaluate the performance of the SM across the en-
tire output interval, we computed the mean absolute er-
ror (MAE) for each small slice of these intervals.
Fig. 7 shows, that the MLP model is the best followed
by the GP. Although the MLP model is the best overall340

Fig. 8 shows that the GP model is the best in the ranges

FIG. 5. coefficient of determination R2 as a function of the
training size in log scale, for all the SM trained on SET2 and
tested on SET1. R2 was taken as the average over 10 train-
ing sessions, with the vertical bars representing the standard
deviation

FIG. 6. Coefficient of determination R2 as a function of the
training size in log scale, for all the SM trained on SET1 and
tested on SET2. R2 was taken as the average over 10 train-
ing sessions, with the vertical bars representing the standard
deviation.

of interest ( 150 − 250 MeV, with 30 − 50 pC of charge,
an energy spread lower than 5% and an emittance of
less than 2mm.mrad). Additionally, the MAE tends to
increase for the highest output values since these values345

are underrepresented in the training data set as shown by
the histograms depicting the distribution of the output
parameters of set2 in Fig. 7.

In Fig. 9, the prediction of each SM is represented in a
2D subspace of cN2

and p1. The projections are made350

for the input laser parameters fixed to a0 = 1.43 and
xoff = −265µm. One should notice that a complete set
of projections can be generated in a few seconds on a
laptop for a complete scan of a0 and xoff or other target
parameters for more complex studies.355
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FIG. 7. MAE for all the SM and all of the output with his-
tograms representing the distribution of the output parame-
ters of training data set set2 in log scale

FIG. 8. MAE for all the SM and all of the output with his-
tograms representing the distribution of the output param-
eters of training data set set2 in log scale zoomed on the
region of interest for outputs.

B. Optimisation with the surrogate models

The GP model was employed in the subsequent analy-
sis due to its superior performance compared to the XGB
and interpolation methods. Although it is less accurate360

than the MLP across the entire output space, the GP
model demonstrates higher efficiency within the specific
range of interest 150–250 MeV peak energy, 30–50 pC
charge, energy spread below 5%, and emittance under 2
mm·mrad—as illustrated in Fig. 8.365

1. Optimum LPI working point stability

Using the GP model, we looked for optimal working
points. Several methods can determine these configura-
tions of target and laser for the optimal electron beam
parameters. The simplest approach is to generate many370

data points using a continuous uniform distribution of
4D input parameters. The input range is kept within the
boundaries of Tab. I.
From this data set, our model can then be used to

select beams with the desired characteristics. Selection375

is performed using the following filter: F̃1 = {Emed ∈
[205, 215]MeV, δEmad < 3.5%, Q ∈ [25, 35] pC, ϵy <
2mm.mrad}. We generated 5million random configura-
tions using a uniform distribution and then used the in-
jection model to keep only the configurations that predict380

injection. From these configurations, 2347 were selected
by filter F̃1. We can see in Fig. 10, for each value of xoff ,
cN2 logically decreases with a0 since the target charge is
fixed in the filter. If the laser energy is lower, the charge
can be maintained at a certain level by increasing the385

doping rate, as explained in [? ]. Not only the number
of injected electrons can be increased, but also increasing
the self-focusing helps to reach the threshold value for a0.
One interesting aspect to examine with this method is

the stability across a target working point. Since the 5390

million points were generated using a uniform distribu-
tion, each region of the 4D input space contains roughly
the same number of points. Thus, we consider that the
region with the highest density of remaining points after
applying F̃1 in the input space is the most stable. In395

Fig. 11, we present stability maps as projections in 2D
sub-spaces, showing the density of points ηstab in the in-
put space of filter F̃1, the density is represented with the
colours scale. These stability maps can guide the search
for ideal electron beams. From this analysis, we identified400

that the most stable region is centred around the follow-
ing point: a0 = 1.31, cN2

= 6.1%, xoff = 1.676mm,
p1 = 39mbar.

2. Bayesian optimisation

Bayesian optimisation can also be used with SM. We405

can employ either single or multi-objective Bayesian op-
timisation (MOBO). For single-objective optimisation,
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FIG. 9. Surrogate LPI models prediction for all of the output in a 2D subspace of p1 and cN2 for a0 = 1.43 and xoff = −265µm.
Other snapshots of 2D subspace can be generated using the python notebook available on the online repository[? ]

we used the following function to be optimised: f̃3 =√
QEmed/δEmad [? ]. The optimisation consisted in

one hundred steps with 20 random evaluations. Out of410

the 120 points from the Bayesian optimisation, 39 met or
exceeded 95% of the maximum of the objective func-
tion. These configurations have an average charge of
149± 6 pC, an energy of 236± 3MeV and energy spread
of 2.8± 0.05%.415

The MOBO aims at optimising simultaneously the ele-

ments of the following vector G̃ = (δEmad(x), |Emed(x)−
E0|, Q(x)) where x is the 4D input vector. Our goal here
is to maximise charge and minimise energy spread for
a given median energy. We tried three MOBO searches420

with the vector G̃ for three different central median en-
ergies 150, 200 and 250 MeV within a ±10 MeV. Each
MOBO consisted in 80 steps with 10 random evaluation
and 10 evaluation for each step. This MOBO search re-
sulted in Pareto fronts [? ], illustrated in Fig. 12.425
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FIG. 10. 2D subspace of xoff and cN2 of the input parameters

for the configurations selected by filter F̃1 with a0 as a color
scale.

FIG. 11. Stability map: Projection in the 2D sub-spaces of
the configurations selected by filter F1 with ηstab as a color
scale. These maps allow us to see the location of the most
stable regions. The ⋆ symbol is the configuration 7516 from
SET1 and the ▽ symbol is most stable point in the filter F1

FIG. 12. Scatter plot showing the result of MOBO search for
3 different energies 150, 200 and 250 MeV within a ±10 MeV

Here, we can see a clear trade-off between charge and
energy spread. These solutions correspond to Pareto-
optima [? ] as we cannot improve one of the objectives
without deteriorating the other.
These three approaches permit the finding of target430

working points for the LPI. However, we want to empha-
sise that the first one with filter F̃1 is the most mature one
because this allows us to find the beams of interest and
the most stable LPI configurations. This approach, how-
ever, requires generating a large amount of data, which435

is not a problem with the MLP model contrary to PIC
simulations.

C. Comparison with random scan optimisation

The previous method can be used to seek configura-
tions that outperform the best ones identified in [? ].440

In this work, two criteria were used for beam selection:
f3 = Emed · Q/σmad and filter F = {Emed > 150MeV,
δEmad < 5%, Q > 30 pC, ϵy < 2µm}. The best beams
were chosen based on the following: The configuration
that maximised f3 (configuration 3702) from SET1, the445

configuration within filter F that had the smallest δEmad

(configuration 7516) from SET1. The characteristics of
configurations 3702 and 7516 are presented in Tab .IV.
To compare our method with the results from [? ], within
the 5 million random configurations, we identified 3779450

configurations with higher f3 values than configuration
3702 and 408 configurations that satisfied the conditions
of filter F with a smaller δEmad than configuration 7516.
The results are presented in Tab .IV.

For configuration SM f
(opt)
3 , we have an upstream fo-455

cus coupled with a high pressure in target chamber 1
and high dopant concentration, leading to strong self-
focusing; all of which leads to a high charge beam even
with relatively low intensity. However, the high amount
of charge leads to a high emittance value. For SM F(opt) ,460



9

f
(opt)
3 [? ] F

(opt)
2 [? ] SM f

(opt)
3 SM F

(opt)
2

xoff 558 1680 -372 1798
a0 1.43 1.23 1.24 1.33
CN2 1.88 6.17 9 7.70
p1 58.6 47.8 88 40.7
Emed 215 212 103 185
δEmad 3.53 1.55 3.09 0.9
Q 198 30 311 45
ϵy 5.03 1.74 38 1.5

TABLE IV. Input and output parameters of the best config-
urations found by the random scan and filter

we have a downstream focus with moderate pressure and
intensity, which leads to a low injected charge where very
low energy spread is possible. We can thus see that the
SM can find working points that outperform a simple ran-
dom scan. In addition, it is interesting to look at regions465

of interest, for example, we show in Fig. 13. the 2D sub-
spaces of all the points that have f3 values superior to
configuration 3702 and identify regions of interest with
different colours. At first glance, the different beams are
clustered in different areas. A first group of interest is470

Emed > 215, δEmad < 3.53%. Most of this set is located
at high xoff and high p1 values, with xoff above 1500
µm. The combination of high pressure and downstream
focus leads to a more important a0 in the accelerating
region, leading to a higher wakefield amplitude and high475

energy beams. This set also displays low cN2 and low a0,
which limits the amount of injected charge to reasonable
values (58 to 94 pC) despite the high pressure. The rea-
sonable electron bunch charge also allows for maintaining
small energy spread by limiting space charge and unwar-480

ranted beam loading. The most prominent group is the
high charge case Q > 198 pC. This set is distributed all
over the hyperspace but we find that it generally follows
this guideline the higher a0, CN2, p1 the higher the charge
will be. Increasing any of these three parameters means485

increasing the number of inner-shell ionised electron, all
other things being equal. The lower xoff , the higher the
charge will be following the trends of a lower xoff bal-
ances a higher a0 in the injection region and thus a higher
inner-shell ionisation rate.490

VI. CONCLUSION AND PERSPECTIVE

In conclusion, our in-depth numerical study focused
on applying machine learning in the context of a laser
plasma injector optimisation design. It demonstrates
that a surrogate model approach is relevant for beam op-495

timisation and stability, increasing efficiency and requir-
ing a lower simulation cost. We successfully constructed
models that exhibit high performance in predicting elec-
tron beam parameters.

We emphasised the importance of data distribution500

in achieving accurate results with SM. Our analysis
has shown that R2 scores converge rapidly towards 1 if

FIG. 13. 2D subspaces of the configurations selected by the
function f3 higher than 3702 with regions of interest high-
lighted by different colours.

trained on sufficiently uniform data sets. This capabil-
ity enabled us to use the surrogate models effectively to
identify optimal working points for designing LPI elec-505

tron sources.

Furthermore, SM provides a comprehensive view of po-
tential LPI beam parameters, facilitating the identifica-
tion of stable operational regions and can drive the devel-
opment of plasma targets for higher repetition rate laser-510

plasma accelerators with limited laser intensity. These
models are straightforward to implement and can be con-
tinuously refined by incorporating new simulation data.

However, we identified certain limitations of the sur-
rogate models. They tend to underperform in regions515

where data points are sparse and exhibit poorer perfor-
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mance at the lower end of the output range (low charge,
low emittance and low energy spread). A potential im-
provement could be to add new simulation data in those
regions and train our model on a larger interval of the520

output space than the test region.
Our study highlighted the ability of MLP and GP to

generalise well and achieve the highest predictive perfor-
mance among the ML methods considered. The LPI sur-
rogate model can be used as an electron source for start-525

to-end simulation studies, opening the way to model a
full accelerator beamline with variation in LPI electron
source input parameters.

These promising results show that these methods could
eventually be used with experimental data of the LPI530

or a hybrid version between experimental and simulation
data since the time necessary to gather a large amount of
experimental data is much shorter than PIC simulations.
Such models could be implemented using a multi-fidelity
approach as in [? ]. More weight would be added to535

experimental data in comparison to simulations.
The next step is to create a reverse SM[? ? ] to

go from the output space to the input space. This task
is numerically challenging since the 4 output parameters
are not independent, and the existence and unicity of540

the solution are not guaranteed. However, this is a key
step because it will help properly design stable and effi-
cient LPI. This would be a tool to introduce an efficient
feedback loop for LPI beam stabilisation and control.
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data are available from the corresponding author upon
reasonable request.
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Appendix A: Output electron beam parameters
evaluation

The electron beam features are retrieved using a post-
processing script based on APtools python code [? ]560

for the last time step corresponding to the end of the
electron plasma density longitudinal profile. The figure
Fig. 14 shows an example of median energy Emed, me-
dian absolute deviation Emad and charge corresponding
to the integration of the electron beam energy distribu-565

tion from the minimum energy tracked in the PIC code
to the maximum energy.

FIG. 14. electron beam statistical features processed from the
energy distribution

Only the trackParticles SMILEI openPMD[? ] out-
put is used to post-process electron beam features. The
method used in the present paper can be extended to any570

PIC code data using openPMD format.

Appendix B: Training surrogate model construction
resources requirement

The training of the LPI surrogate models, as the num-
ber of input and output is limited, was done using a stan-575

dard I7 Intel cpu.

The following table tab summarises the SM training
time and computing time to generate 105 LPI configura-
tions. V.

time [s] training computing 105 configurations
MLP 850 10
GP 52 14
XGB 13 0.34

TABLE V. Training time and computing for each type of
method used to build the LPI model using I7 Intel cpu.

580


