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Abstract—Datacenter applications are well-known for their
large code footprints. This has caused frontend design to
evolve by implementing decoupled fetching and large prediction
structures – branch predictors, Branch Target Buffers (BTBs)
– to mitigate the stagnating size of the instruction cache by
prefetching instructions well in advance. In addition, many
designs feature a micro operation (µ-op) cache, which primarily
provides power savings by bypassing the instruction cache and
decoders once warmed up. However, this µ-op cache often has
lower reach than the instruction cache, and it is not filled up
speculatively using the decoupled fetcher. As a result, the µ-op
cache is often over-subscribed by datacenter applications, up to
the point of becoming a burden.

This paper first shows that because of this pressure, blindly
prefetching into the µ-op cache using state-of-the-art standalone
prefetchers would not provide significant gains. As a consequence,
this paper proposes to prefetch only critical µ-ops into the µ-
op cache, by focusing on execution points where the µ-op cache
provides the most gains: Pipeline refills. Concretely, we use hard-
to-predict conditional branches as indicators that a pipeline refill
is likely to happen in the near future, and prefetch into the µ-op
cache the µ-ops that belong to the path opposed to the predicted
path, which we call alternate path. Identifying hard-to-predict
branches requires no additional state if the branch predictor
confidence is used to classify branches. Including extra alternate
branch predictors with limited budget (8.95KB to 12.95KB), our
proposal provides average speedups of 1.9% to 2% and as high
as 12% on a subset of CVP-1 traces.

I. INTRODUCTION

The number of processor stall cycles attributed to the
frontend in datacenter workloads is reported to reach 23.5%
[13], which is significant as one would rather expect stall
cycles to stem mostly from (i) waiting on data in the backend
and (ii) branch mispredictions. As a result, both industry and
academia have proposed several solutions to mitigate these
stalls, including instruction prefetching [16], [47], [47], [55],
[56], [59], [70], improving branch predictors [34]–[36], [44],
[65], [68], [71] and using larger branch target buffers (BTBs)
[19], [25], [32], [64].

Despite continuous advancements, increasing pressure is
applied to these structures by growing code footprints,
especially in datacenter-class workloads. These workloads
run deep stacks and their code footprint can exceed current
L1 instruction cache (L1I) capacities by two orders of
magnitude [13]. Furthermore, it is predicted that their code
footprint will keep increasing at the rate of 20% per year [13].
Not only does the code not fit in the L1I cache, but the

large BTBs also struggle to provide enough reach to track all
branches [12]–[14], [21], [28], [29], [38], [39]. On one hand,
L1I misses contribute to performance degradation by stalling
the frontend while an instruction is being retrieved from the
memory system. This is mitigated by Decoupled Fetching (or
Fetch Directed Prefetching, FDP) [55], [56], in which fetch
address generation and instruction retrieval from the memory
system are decoupled. This allows fetch address generation
to run ahead during L1I misses, enabling the overlap of
instruction misses and performing instruction prefetching
based on branch direction and target predictions. On the other
hand, FDP relies on the BTB to guide instruction fetch, that
is, the burden of caching information about the whole code
footprint is shifted from the L1I to the BTB, which, despite
steady growth across commercial processor generations, often
struggles to capture the whole code footprint. BTB misses
cause potentially wrong path instructions to be fetched from
the L1I and inserted in the pipeline, causing additional pipeline
re-steers once the taken branches are identified in decode.

Last but not least, large code footprints exceed the
microarchitectural operation (µ-op) cache capacity, limiting its
usefulness. A µ-op cache is currently implemented in many
processor designs used in datacenters [8], [61]. This structure
caches decoded instructions (µ-ops) instead of architectural
instructions and serves two purposes. The first is power
efficiency, as consistently hitting in the µ-op cache avoids
accessing the L1I and bypasses the decoders. The second
is performance, as the throughput of the µ-op cache is
generally higher than the one of the “slow path” decoders.
This, combined with a shortened pipeline length when hitting
in the µ-op cache, can reduce the average cost of branch
mispredictions. However, modern µ-op caches generally have
smaller reach than instruction caches. For instance, Amd Zen4
can cache up to 6.75Kops [8], amounting to 24.9KB worth of
x86 instructions (if (1) all instructions are assumed to decode
to a single µ-op and (2) one x86 instruction occupies 3.7B
on average, as in SPEC CPU 2k6 INT [15]). As a result,
in the context of large instruction footprint workloads, the µ-
op cache struggles to retain enough useful µ-ops to provide
the power and performance improvements it was designed
for. Even worse, switching from the µ-op cache as a source
of µ-ops to the decoders can incur a penalty [57], even on
recent microarchitectures such as Amd Zen [8]. In other words,
continuously alternating between hits and misses can actually
degrade performance.



In this paper we argue that the µ-op cache is too small
for datacenter applications and cannot deliver the power
savings and additional throughput it has been designed
for. Nevertheless, increasing its size to address large code
footprints is not more feasible than increasing the size of the
L1I cache, and most datacenter commercial processors remain
limited to a 32KB L1I [8], [61]. Rather, we argue that the
µ-op cache insertion policy should take into account the over-
subscription level of the µ-op cache, such that some of the
benefits are retained even for large-footprint workloads.

This paper first quantifies the inability of the µ-op
cache to accommodate the ever-increasing code footprint of
datacenter workloads. We then emphasize the criticality of
the instructions fetched from the not predicted (alternate)
path immediately after a branch misprediction and show
that a significant fraction of the µ-op cache benefits can be
retained in large code footprint workloads by maximizing µ-
op cache hits on pipeline refills. Finally, we introduce UCP
(µ-op cache prefetching), a microarchitecture that selectively
prefetches alternate path instructions into the µ-op cache.
Alternate-path prefetching is triggered when hard-to-predict
(H2P) conditional branches are fetched, thus accelerating
pipeline refill should the branch mispredict. This contrasts with
prior work where alternate path instructions must reach the
execution stage to become useful, thus consuming significant
resources, only to be discarded if they are in fact not needed
[11], [17].

UCP provides benefit from the alternate path by prefetching
alternate-path µ-ops in the µ-op cache and leveraging the
prefetched instructions to speedup pipeline (re)fills. By
prefetching selectively, the prefetched µ-ops remain in the µ-
op cache longer, and can be fetched not only for the current
instance of an H2P branch, but also for upcoming executions.
In other words, even if the current instance of the H2P branch
is not mispredicted, by the H2P definition, it is likely to be
mispredicted in a subsequent execution. Hence, caching the
alternate path is highly likely to be useful in the near future.
This work makes the following contributions:

• We quantify the µ-op cache hit rate and impact on
performance for applications with large code footprints.

• We propose selective µ-op cache prefetching by caching
instructions from the alternate path (i.e. the opposite of
the predicted path) for H2P branches.

• We improve on state-of-the art branch prediction
confidence estimation by building on storage-free
confidence estimation using TAGE prediction counters
[67].

• We show that for prefetching the alternate path, a low-
storage alternate conditional branch predictor suffices.

• Our results show that µ-op cache prefetching can achieve
2% IPC (resp. 1.9%) IPC improvement (geomean) with
modest hardware overhead 12.95KB (resp. 8.95KB), and
increases the proportion of workloads that benefit from
the µ-op cache to 90%, from 80.7%.
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Fig. 1: Processor frontend

II. BACKGROUND

This section offers an overview of the frontend of a modern
processor featuring a µ-op cache, illustrated in Fig. 1. The
addresses of the instructions to fetch are generated by the
branch prediction unit (BPU). The BPU consists of a branch
direction predictor, a BTB, an indirect target predictor, and
a return address stack (RAS). Up to 16 instruction addresses
can be generated by the BPU per cycle [5], which are placed
in the fetch target queue (FTQ). Addresses in the FTQ are
used to index either or both the L1I cache and the µ-op
cache, depending on the current frontend operating mode.
The L1I cache contains recently-used encoded architectural
instructions, while the µ-op cache holds µ-ops recently
generated by decoding instructions fetched from L1I.

The frontend is able to operate in two modes [73]. In stream
mode, the FTQ only queries the µ-op cache. On a hit, µ-ops
are directly sent to the µ-op queue. This represents the fast
path and saves power as the L1I and decoders are bypassed.
All the entries from the µ-op queue move to the dispatch queue
to be allocated and issued in the processor backend. On a µ-
op cache miss, the mode is switched to build mode. The L1I
is then queried to provide instructions that will flow through
the decoders to generate µ-ops, before being inserted in the
µ-op queue. As instructions are decoded, a hardware block is
responsible for building µ-op cache entries following specific
rules that dictate the termination of a µ-op cache entry [43]: (1)
A predicted taken branch (2) Crossing an L1I line boundary
(3) Exceeding a statically defined number of (a) µ-ops (b)
immediate or displacement fields (c) micro-coded µ-ops.

In build mode, the frontend keeps querying both the L1I
and the µ-op cache in parallel until encountering a number of
consecutive hits in the µ-op cache, upon which the frontend
switches back to stream mode to save power. L1I hits therefore
represent the slow path, as architectural instructions need to
be decoded. Furthermore, continuously alternating between the
two modes introduces latency overhead [3], [57].

The µ-op cache has been primarily designed for power
savings [73], by holding the µ-ops of frequently executed



instructions. However, in modern x86 processors, its role goes
beyond that. Indeed, since decoding multiple x86 instructions
in parallel is a hard problem, decode width remains limited
to 4-5 architectural instructions even in aggressive designs.
However, the µ-op cache width can exceed this limit at
minimal cost, by caching more µ-ops per entry. For instance,
AMD Zen4 can provide up to 9 macro ops1 per cycle from
the µ-op cache, while it is limited to decoding 4 architectural
instructions per cycle, which generally yield fewer than 9
macro ops [8]. Therefore, from a performance standpoint,
the larger width combined with the shortened frontend length
stemming from bypassing decoders makes the µ-op cache an
efficient pipeline (re)fill accelerator, as long as the requested
µ-ops are found in the µ-op cache. We emphasize that caching
µ-ops is not limited to microarchitectures implementing
complex instruction sets. For instance, the ARM Neoverse V2
microarchitecture features a 1.5K-entry decoded cache [30].

III. MOTIVATION

This section presents a study of the performance impact of
the µ-op cache for –mostly datacenter– applications featuring a
large code footprint. In an attempt to justify why performance
remains far from ideal, we analyze two complementary
metrics: (1) the µ-op cache hit rate and (2) the number
of switches between the build and stream modes per kilo
instructions (PKI). Next, we show that simply increasing the
µ-op cache size does not translate to proportional performance
gains. To this end, we conduct a sensitivity study with
respect to the µ-op cache size, its impact on the hit rate and
performance. We then analyze whether state-of-the-art L1I
instruction prefetching techniques, extended to prefetch also in
the µ-op cache, can sufficiently increase the µ-op cache hit rate
to close the performance gap with an ideal µ-op cache. Finally,
we demonstrate that targeting certain critical instructions and
prefetching those in the µ-op cache can noticeably improve
performance despite modestly improving the µ-op hit rate.
This is enough to prevent the µ-op cache from degrading
performance in datacenter applications with large instruction
footprints.

A. The impact of the µ-op cache on performance

We use ChampSim to model an Alder Lake pipeline
and we analyze the behavior of datacenter applications
using the “secret” set of 1st Championship Value Prediction
(CVP-1) [50] traces (model and trace details can be found
in Section V). In the traces, 90% (resp. 100%) of the
most frequently fetched 64B cache lines represent 120KB
(resp. 720KB) of static code on average, for only 100M
instructions. This highlights that pressure on the L1I and µ-op
cache is significant. It should be noted that the CVP-1 traces
are ARMv8 traces. Thus, instructions fit and are aligned on
4 bytes. For simplicity, this work assumes that one ARMv8
instruction translates to a single µ-op and implement 8 µ-
op in each µ-op cache entry, with an entry covering 32B.

1Amd translates x86 instructions to one or more macro ops. Macro ops are
therefore decoded instructions.
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Fig. 2: IPC Improvement of a 4Kops µ-op cache normalized
with a no µ-op cache baseline for CVP-1 traces
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Fig. 3: µ-op cache hit rate and switch PKI across the CVP-1
traces. Sorted by hit rate.

In practice, choosing how many µ-op should reside in an
entry depends on the actual µ-op set implemented by the
microarchitecture as well as the average (or wost case) number
of µ-op per architectural instruction. However, to the best
or our knowledge, neither pieces of information are publicly
available for any state-of-the-art microarchitecture. Moreover,
we assume enough immediate/displacement storage for two
branch targets per entry, but optimistically do not implement
a limit on other immediates as the traces do not contain the
information. The same applies for micro-coded µ-ops. If more
than two branches are required, a new entry that covers the
same 32B region is started and will be inserted in another way
of the same set [57].

Fig. 2 shows the instructions per cycle (IPC) improvements
when using a 4Kops µ-op cache over not using a µ-op cache.
While beneficial for 80.7% of the traces, the µ-op cache
degrades performance in 19.3% of the traces. The slowdown
comes from the mode switching penalty when alternating
between µ-op cache hits and misses, which confirms that the
µ-op cache is only beneficial for applications that exhibit long
enough streams of consecutive hits [3], [5].

In fact, the µ-op cache is often unable to accommodate the
code footprint, as illustrated in Fig. 3 which shows the per-
instruction hit rate of the CVP-1 traces in a 4Kops µ-op cache.

The average (amean) µ-op cache hit rate reported in Fig. 3
is 71.6%, with very few applications reaching 99%. In the
worst cases, the hit rate is as low as 30.7%. Overall, we
found that about half of the applications considered in this
work exhibit a hit rate of 70% or less, suggesting that the
code footprint of datacenter workloads overwhelms the µ-
op cache. Additionally, applications showing less than 95%



8Kops
16Kops

32Kops
64Kops

-op cache entries

0
2
4
6
8

10
12

IP
C 

Im
pr

ov
em

en
t (

%
)

(a) Speedup

4Kops
8Kops

16Kops
32Kops

64Kops

-op cache entries

0
20
40
60
80

100

-o
p 

ca
ch

e 
hi

t r
at

e 
(%

)

(b) µ-op cache hit rate

Fig. 4: Analysis increasing the µ-op cache size. The blue line
represents an ideal µ-op cache.
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Fig. 5: Instruction prefetchers versus alternate path

hit rate suffer from significantly more mode switches, thus
partially offsetting the benefits of using a µ-op cache. In fact,
19.3% of the traces slightly lose performance when a µ-op
cache is implemented.

B. Increasing the µ-op cache size

As a second step, we analyze whether larger µ-op
caches would sufficiently increase the hit rate and therefore
performance. Fig. 4 reports IPC and µ-op cache hit rate
when increasing the µ-op cache size from 4Kops to 64Kops.
Doubling the size from 4Kops to 8Kops increases the hit
rate from 71.6% to 78.2% and yields an IPC improvement
of only 0.18%, with a maximum improvement of 1.3% and a
maximum slowdown of -3.6%. Even a 16x larger µ-op cache
provides IPC improvements of only 1.2% with a hit rate of
91.2%. This is still far from the average performance gain of
an ideal µ-op cache, which stands at 10.8% (blue line).

We conclude that merely increasing the µ-op cache size is
insufficient to reach significant performance gains. While the
theoretical limit is as high as 36%, in practice, growing the
µ-op cache would increase its latency and power consumption.
As a result, the next tool in the microarchitect toolbox is to
keep the µ-op cache small, but to prefetch µ-ops, either through
a dedicated prefetcher or through FDP.

C. State-of-the-art L1I prefetchers versus alternate path

As a first approximation, one would assume that instruction
prefetching through decoupling branch prediction and fetch
(FDP) would be sufficient to hide instruction misses, should
branch prediction be able to run ahead far enough. However,
FDP can only prefetch predicted-path instructions: On a
branch misprediction, long latency instruction fetches can
harm performance since the correct path was not prefetched.

Conversely, standalone L1I prefetchers are able to issue
prefetches for alternate path instructions even though the
pipeline is on the predicted path. This is a fundamental
advantage and partially explains why standalone prefetchers
can bring additional gains on top of FDP [32]. We compare
the impact of employing state-of-the-art L1I prefetchers to
(ideally) prefetch in the µ-op cache and the potential benefits
of prefetching critical instructions, i.e. the alternate path (see
Fig. 5). Note that contrary to L1I prefetching, µ-op cache
prefetching will require either sharing decoders with the
decode stage, or implementing dedicated decoders. In this
experiment, we assume dedicated decoders.

We evaluate three leading L1I prefetchers from the
1st Instruction Prefetching Championship (IPC1) [2]: FNL-
MMA [70] (including its latest available version, labeled
as FNL-MMA++), D-JOLT [47], and Entangling Prefetcher
(EP) [58] (both its cost-effective version [59] and its further
optimized version [60], labeled as EP and EP++, respectively).
Fig. 5a presents the improvements in IPC with no L1I
prefetcher as a baseline, whereas Fig. 5b illustrates the µ-
op cache hit rate. The figures report numbers for three
configurations for each L1I prefetcher:

a) Standalone L1I Prefetcher (Base): This configuration
confirms that adding a standalone L1I prefetcher modestly
improves performance (between 1.1% and 1.6%) over the No
Standalone L1I Prefetcher (first bar, first group). Since the L1I
prefetchers only target the L1I, the µ-op cache hit rate remains
unchanged across the Base configurations. The No Standalone
L1I Prefetcher serves as a baseline for all other configurations
presented in this figure.

b) All L1I Hits are µ-op Cache Hits (L1I-Hits): This
configuration is akin to immediately inserting all cache lines
obtained through decoupled fetching in the µ-op cache. It
achieves a µ-op cache hit rate as high as 97% when using the
EP L1I prefetcher on top of FDP, while the IPC gain increases
from 1.3% to 1.9%.

c) All Instructions after a Conditional Branch
Misprediction are µ-op Cache Hits (IdealBRCond-8/16):
Building on the insight that prefetching on the alternate
path can provide benefits, we study IdealBRCond-8, where
all instructions after a conditional branch misprediction are
marked as µ-op cache hits, until 8 conditional branches have
been fetched. IdealBRCond-16 is similar to IdealBRCond-
8 but marks all instructions as µ-op cache hits until 16
conditional branches have been fetched. This is akin
to perfectly prefetching µ-ops after branch mispredictions.
IdealBRCond-8 provides a better opportunity for improvement
than L1I-Hits at 2.3%, despite the hit rate increase being
quite modest (from 71.6% in the baseline to 73.5%). When
up to 16 branches are considered, the IPC increase is 2.9%
(min 0% & max 13.6%). This improvement comes from
expediting instruction dispatch after a branch misprediction,
that is, on a pipeline refill.

The previous experiments highlight that an efficient
approach to µ-op cache prefetching would be to focus on
alternate path instructions that follow a branch misprediction.



Indeed, on one hand, larger µ-op sizes and ideal prefetching
bring only moderate speedups, despite significant hit rate
increases: L1I-Hits achieved a minimum hit rate of 83.2%
without any L1I prefetcher and a maximum of 97% when
using EP as the L1I prefetcher. Yet, the pipeline often cannot
consume µ-ops at the rate at which the µ-op cache can provide
them, limiting the usefulness of a higher hit rate from the
performance point of view. Furthermore, maximizing µ-op
cache hit rate can still struggle to push performance up if the
streams of hits are too short and the mode switching penalty
is paid often. On the other hand, focusing on pipeline refills
has higher potential for performance gains, as during a refill,
the backend is starved for instructions more often. Moreover,
ensuring that consecutive basic blocks after a pipeline flush
are in the µ-op cache provides smooth µ-op delivery without
triggering any switch to the L1I & decoder pipeline. Finally,
prefetching only a small portion of the code decreases the
likelihood of thrashing the µ-op cache.

IV. ALTERNATE PATH µ-OP CACHE PREFETCHING

Motivated by our previous study on traditional prefetching
versus alternate path prefetching, we propose to trigger
alternate path µ-op cache prefetching (UCP) on low-confidence
conditional branch predictions. By targeting conditional
branches, there is a unique alternate path to follow, which
simplifies our detection and prefetching mechanisms. The
first step to enable UCP consists in detecting low-confidence
conditional branch predictions, which we treat as hard-
to-predict (H2P) branches. Second, we start generating
the alternate path addresses, prefetch their corresponding
instructions, decode, and store them in the µ-op cache, without
hindering the progress of the predicted path. Finally, the last
step consists in determining when the alternate path is unlikely
to be useful, in order to stop prefetching and prevent µ-op
cache pollution.

A. Branch Prediction Confidence

This section presents the mechanism to estimate the
confidence of conditional branches, which we use both to
initiate and stop alternate path prefetching.

Our predictor is based on the confidence estimation heuristic
that can be built within the TAGE branch predictor [67],
which determines the confidence of a direction prediction
(low, medium, and high) based on the table that provided
the prediction and the value of the saturating counter. TAGE
employs 37 [68] tagged tables and a Bimodal base predictor.
A prediction is provided either by Bimodal, or by one of the
tagged tables, but TAGE distinguishes between the HitBank
and the AltBank. Both are tagged tables that match the context,
but HitBank is the one using the longest global branch history,
while AltBank is the one using the second longer global branch
history. In the initial heuristic, high confidence predictions are
the ones that find the counter saturated regardless of which
table provides it, unless the prediction comes from the bimodal
table and there was at least one misprediction in the last eight
predictions provided by the bimodal table.
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Fig. 6: Average misprediction rate for different components in
a 64KB TAGE-SC-L, per output value
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Fig. 6 displays the average miss rate of a state-of-the-
art 64KB TAGE-SC-L [68] predictor, depending on the
component used for the prediction and the counter values.
Fig. 6a shows that indeed, when the prediction uses the
saturated counters of HitBank or of the bimodal predictor,
the probability of a misprediction is close to zero. However,
when there was a miss in the last eight predictions provided
by the bimodal predictor (bimodal >1in8), the misprediction
rate is higher than 6% on average, although the counters are
actually saturated (-2 and 1). Fig. 6b shows a similar trend for
the Statistical Corrector (SC), that is, the higher the absolute
value of the output is, the higher the prediction confidence.
Yet, the miss rate remains quite high (around 10%) even if
the output value is saturated.

Fig. 6 is completed by Fig. 7, which illustrates the
misprediction contribution of different components within
TAGE-SC-L. One can observe that, on average for the traces
used in this work, 66.7% of the mispredictions are provided
by the HitBank. The AltBank account for 8.1% of the total
mispredictions. The bimodal component incurs 6.2% when
no misses are found in the last 8 predictions and 7.5%
otherwise. The Loop Pedictor (LP) negligibly contributes
to mispredictions (0.1%). SC accounts for 11.1% of the
mispredictions.

Driven by the miss rates shown in Fig. 6, we improve
the TAGE confidence estimation heuristic [67] in several
ways. First, we underline that the original heuristic does not
differentiate between predictions stemming from the HitBank
or from the AltBank. In contrast, we analyze the confidence of
the predictions per bank and show that predictions stemming
from the AltBank always exhibit a very high miss rate,



regardless of the value of their counter, as shown in Fig. 6a.
Hence, in this work, we consider that any prediction provided
by AltBank has low confidence, which is noticeable, given its
8.1% fraction of the total mispredictions.

Second, since the original TAGE confidence estimation was
developed for a simpler TAGE predictor, we extend in this
work the confidence estimation to LP and SC. Fig. 6b shows a
particularly low miss rate in predictions originating from LP in
TAGE-SC-L (<3%, independently from the confidence value)
and therefore consider LP predictions as high-confidence. On
the other hand, the confidence of SC predictions in TAGE-SC-
L vary depending on the absolute SC output value (Fig. 6b)
from 10% to 50%, so they cannot be considered as high
confidence. SC represents 11.1% of the total mispredictions.
These extensions improve both the accuracy and coverage of
the original TAGE confidence estimator and add support for
LP and SC, as shown in Section VI, without any extra storage.

B. Initiating the Alternate Path

Using our described confidence estimator built on top of
TAGE-SC-L, we classify a given branch instance as H2P if
its prediction is from (1) bimodal if there was a misprediction
in the past 8 branches predicted by bimodal. (2) bimodal or
HitBank for which the prediction counter is not saturated, (3)
AltBank, and (4) SC. Generally, this corresponds to predictor
entries for which the misprediction rate is above 5%, according
to Fig. 6. At branch prediction time, if a conditional branch
is identified as H2P, alternate path generation is initiated.

C. Generating the Alternate Path

To generate alternate path addresses past a single basic
block, an entire BPU is required, including a BTB, an indirect
target predictor, a RAS, and a branch predictor. Replicating
those structures to predict the alternate path would add
considerable area overhead, since they are the largest frontend
structures, e.g. 560KB for the BTBs and branch predictor [25].

Hence, we opt for doubling the number of banks (from 16 to
32) of our baseline banked BTB design [49], which are shared
between the predicted path and the alternate path. This lets
us retrieve branch targets on both the predicted and alternate
paths without implementing a separate BTB, at the cost of
bank conflicts. Practically, at the beginning of the BTB access
cycle, we determine which banks need to be accessed by the
predicted and alternate path. On a conflict, rather than selecting
a winner that ”takes all”, accesses are resolved in the following
way: UCP keeps a 3-bit saturated counter to track the number
of cycles that the current alternate path PC has been delayed
due to a conflict. When the counter saturates, the alternate path
is allowed to win the conflicted banks, causing the demand
path to retry in the next cycle. The counter resets when the
current PC of the alternate path changes.

As banking incurs area and latency costs, other BTB
organizations such as the region BTB (an entry covers n
taken-at-least-once branches of an aligned code region) or
block-based BTB (an entry covers a dynamic block of i
instructions with at most n taken-at-least-once branches) could

be considered [51]. With those, both paths would access
a single entry, such that concurrent predictions could be
achieved with only a handful of banks. However, since UCP
is conceptually agnostic of the BTB organization, we only
considered the instruction BTB.

For conditional branches, we use a small TAGE-SC-L
branch predictor [69] (Alt-BP). The reason for building a
dedicated conditional predictor on the alternate path is that
naively banking the tagged tables by restricting each PC
to a single bank within a tagged table significantly harms
performance, and efficiently banking TAGE to enable multiple
predictions per cycle has not been covered in the literature
and is beyond the scope of this work. Alt-BP is updated
along with the main branch predictor, meaning that its GHR
will diverge from the predicted path only when alternate
path is initiated. In practice, Alt-BP implements two GHRs.
When alternate path starts, the predicted path GHR pre-H2P
branch is copied into the alternate path GHR, and the two
are speculatively updated with the predicted direction and
its opposite, respectively. From that point on, the predicted
path GHR of Alt-BP is speculatively updated with predictions
from the main predictor, while the alternate path GHR is
speculatively updated using predictions from Alt-BP, which
are made using the alternate path GHR. When the alternate
path exits, no specific care has to be taken, as the alternate
path GHR will be resynchronized once a new alternate path
starts again.

Operating Alt-BP in this fashion implies that its prediction
tables are not updated if the alternate path is incorrect. Indeed,
during alternate path operation, predictions are generated for
the alternate path only. Therefore, if the predicted path is
correct, there is no corresponding state captured in the FIFO
structure used to update Alt-BP (i.e. entry number, counter
value). However, updates on the alternate path are performed
if the alternate path becomes correct, as a pipeline flush will
take place and Alt-BP will eventually be updated with the
corrected path information.

Our UCP proposal leverages a small ITTAGE [66] (Alt-
Ind) indirect predictor to prevent early exiting the alternate
path because an indirect branch target is unknown. We use
a dedicated predictor for the same reason as the branch
predictor: banking efficiency. It operates similarly to Alt-BP
(GHR, updates). However, and as we will show in Section VI,
the gains brought by a dedicated indirect target predictor are
generally limited on average and UCP could be implemented
without a dedicated indirect target predictor to limit overhead.
Finally, to handle returns on the alternate path, we use a
dedicated RAS (Alt-RAS). The main RAS is copied into the
Alt-RAS when alternate path UCP starts, and it is updated
speculatively when walking the alternate path.

Both main path and alternate path address generation are
performed in parallel. The generated addresses from both paths
are added to their respective FTQs (named Alt-FTQ for the
alternate path).



TABLE I: Weights added to the saturation counter on specific
events on the alternate path.

Prediction Source Predictor Output Weight
C

on
di

tio
n

BiModal -2 & 1 1
-1 & 0 2

BiModal (>1in8) -2 & 1 2
-1 & 0 6

HitBank

-4 & 3 1
-3 & 2 3
-2 & 1 4
-1 & 0 6

AltBank -4 & 3 5
-3, -2, -1, 0, 1, 2 7

Loop Predictor Any 1

SC

128 to 255 3
64 to 127 6
32 to 63 8
0 to 31 10

Ta
rg

et BTB Miss – ∞
Indirect branch – 1 (or ∞)
Return branch – 1

D. Prefetching the Generated Alternate Path

Addresses at the head of the Alt-FTQ are first used to
perform a µ-op tag check before initiating a prefetch request,
to prevent prefetching instructions already present in the µ-op
cache. This tag check is conducted simultaneously with other
ongoing tag checks on the predicted path, and is facilitated
by set interleaving the µ-op cache into two 2-ported banks. In
the event of a conflict during the tag check process, priority is
given to the address on the predicted path, while the alternate
path address attempts again in the next cycle, similar to the
BTB accesses. Once the µ-op cache tag check completes, the
address is removed from Alt-FTQ.

Upon a µ-op cache miss, a prefetch request for the cache
line corresponding to the missing instruction is recorded in the
µ-op cache Miss Status Holding Register (MSHR) and inserted
in the L1I prefetch queue (PQ). From the PQ, it proceeds as
a standard L1I prefetch: if the entry is not already present in
L1I, the cache line will be fetched from L2, LLC, or memory.
The system is able to process only one prefetch request per
cycle, but since the L1I is set-interleaved, both demand and
prefetch requests can proceed in the same cycle if they map to
different banks. When a cache line returns whose retrieval was
initiated by alternate path UCP, the requested instructions are
directed to a dedicated decode queue where they are decoded
and inserted in the µ-op cache.

E. Stopping the Alternate Path

The alternate path address generation stops automatically in
the following two cases: (1) a new H2P branch is detected,
and therefore a new alternate path is initiated; (2) the path
being explored is considered too unlikely to become the
correct path. The heuristic to stop the alternate path builds
on the heuristic for estimating confidence of branches and
additionally considers target predictions.

The stopping heuristic relies on a 6-bit saturated counter
that is initialized to zero when alternate path prefetching is
triggered. The counter is incremented with a different weight
every time a branch is encountered on the alternate path. The
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Fig. 8: New structures and data-paths required by UCP

weights are adjusted based on the average hit rate of each
branch prediction category (Fig. 6) (approximately 1 unit per
extra 5% miss rate – see Table I for details). The higher the
value of the counter, the more unlikely for the next basic block
in the alternate to become the correct path.

The alternate path stops either when the counter reaches an
established threshold (e.g., 500 in our work) or when a clear
low confidence event (e.g. a BTB miss) occurs. We also stop
on the detection of an indirect branch if we do not employ
an Alt-Ind predictor. Finally, to avoid indefinitely generating
addresses for loops never predicted to end, and to restrict it to
the critical instructions, the threshold is incremented by 1 for
high confidence branches. As the threshold is updated only
when a predicted branch is encountered, UCP can continue
generating prefetching addresses if no branches are found.
To avoid this, UCP keeps a 6-bit counter that resets on each
predicted branch and is incremented by 1 for each instruction
on the alternate path. The alternate path will cease once the
counter has reached its maximum value.

F. Overview and Hardware Overhead

Fig. 8 depicts the modifications required for UCP. Gray
boxes indicate the added components and dotted lines
represent newly introduced data paths. Our design incorporates
an 8KB TAGE-SC-L branch predictor (Alt-BP), a 4KB
ITTAGE indirect target predictor [66] (Alt-Ind), and a 16-
entry Alt-RAS (0.06KB), that are combined to the BTB
for generating alternate path addresses. These addresses
populate an alternate 24-entry FTQ that holds µ-op cache
entry addresses (0.14KB) 1 . A 32-entry µ-op cache MSHR
(0.19KB) is also employed to monitor ongoing prefetch
requests 2 . We double the tag check bandwidth to the µ-
op cache by banking the µ-op cache and managing conflicts
3 , as in the BTB. Prefetches that miss the µ-op cache are

inserted in the L1I Prefetch Queue (PQ, 0.25KB) 4 . After
prefetch completion 5 , instructions enter a 32-entry alternate
decode queue (0.12KB) and are subsequently decoded using
6 dedicated Alt-Decoders 6 before being added to the µ-op
cache 7 . The overall memory overhead required by UCP is
12.95KB (8.95KB when not leveraging an Alt-Ind predictor).



G. Other Concerns & Design Points

1) Impact of ISA on µ-op Cache Prefetching: The main
concern regarding the ISA is whether instruction decoding is
stateful or not. Consider the following example where a basic
block starts at byte 16 in cache line A, and ends at position
61 in cache line A + 1. In x86, in which decoding is stateful
(handling variable length instructions), decoding instructions
in cache line A + 1 requires having decoded instructions
in cache line A. In the context of µ-op cache prefetching,
although we enqueue prefetches in program order, i.e. A then
A + 1, it is possible that cache lines are retrieved from the
memory hierarchy out-of-order, i.e., A + 1 then A. In this case,
the decoding process has to either stall until A returns from
memory, or, decode another younger line that starts a new
basic block, if available. The latter approach runs the risk that
when A returns from memory, the decoders are busy, and A
misses its window to be decoded and inserted in the µ-op cache
in a timely fashion. In contrast, in ARMv8, in which decoding
is stateless (because instruction length is fixed and instructions
are aligned) decoding may be performed out-of-order, as the
cache lines return from the memory hierarchy.

2) L1I Inclusivity of µ-op Cache: Similarly to instruction
and data caches, the µ-op cache may be indexed using virtual
addresses or physical addresses. The former may have lower
latency if the Instruction TLB (ITLB) is large and its latency
cannot be fully hidden by the tag array access. Indeed, as long
as the ITLB maintains inclusivity of the µ-op cache, the ITLB
check can be bypassed as any hit on a virtual tag implies
that the translation is valid. Aliasing needs to be handled, but
invalidation of aliased lines can be achieved by invalidating
the whole set as long as aliases reside in the same set, which
is the case if set index bits are not translated. Alternatively,
aliasing can be prevented by also keeping the L1I inclusive
of the µ-op cache and preventing two entries of the same µ-
op cache set from pointing to the same L1I way (assuming,
again, that all aliases have to reside in the same set in the µ-op
cache). This seems to be the approach favored by Intel [31]
(256-entry ITLB in Alder Lake).

However, virtually tagging the µ-op cache has significant
drawbacks, especially in processors implementing
Simultaneous Multithreading (SMT), as code shared in
the physical space of the L1I will create distinct entries in
the virtual space of dynamically shared µ-op cache [40]. We
speculate that this is the reason why Amd favors a physically
tagged µ-op cache in its recent Zen 4 microarchitecture [8]
(64-entry ITLB). A physically tagged µ-op cache does not
need to be contained into the L1I or the ITLB, although
doing so may facilitate invalidations caused by e.g., cache
maintenance operations. For instance, if the geometries are
similar (number of sets, ways, and bytes covered by an
entry), invalidation requests need only search one structure
and invalidate the matching set/way in both.

Nevertheless, keeping the µ-op cache included in the L1I
and ITLB prevents from caching a larger portion of the
code within the core, as the maximum amount of cached

instructions is still limited by the size of the L1I. While this
may be a worthy trade-off when the µ-op cache is virtually
tagged if the ITLB lookup is costly, it does not appear
advantageous if the µ-op cache is physically tagged, especially
as cache line invalidations are not the common case.

In this work, we use a physically tagged µ-op cache that
is not included in the L1I or ITLB, so as to maximize reach.
Although a miss in L1I when performing alternate path UCP
behaves much in the same way as it would in an inclusive L1I
(a line is allocated in both structures), we are able to retain µ-
op cache entries even if the corresponding L1I entry is evicted
by the replacement policy.

V. METHODOLOGY

We evaluate UCP by integrating our modifications in
the develop branch of ChampSim [4].2 ChampSim includes
a detailed frontend model implementing fetch-directed
prefetching (FDP) [56], a branch target Buffer (BTB), indirect
target predictor, return address stack (RAS), and conditional
branch predictor. L1I prefetch requests issued through FDP are
actually demand accesses and, therefore, we do not consider
them as prefetch requests. That is, we assume a given address
in FTQ checks the L1I tags a single time and fetches the
instruction bytes, as opposed to checking it once for the
purpose of prefetching and a second time when it reaches the
head of the FTQ as a demand request.

We extend ChampSim’s standard µ-op cache design to
reflect the frontend described in Section II. Specifically, our
frontend works either in stream mode or in build mode, paying
a 1-cycle penalty when switching modes [57]. The µ-op cache
entries follow all termination conditions discussed in Section
III. The L1I is even/odd interleaved so that basic blocks
spanning two cache lines can be retrieved in a single cycle.
Interleaving also enables sharing the L1I tag lookup bandwidth
between the predicted path and alternate path at no extra cost
over the baseline. The baseline µ-op is dual ported, and its tag
arrays are even/odd interleaved in UCP.

The processor and memory hierarchy are configured
following the specifications of an Intel’s latest Alder Lake
performance core. The primary parameters are listed in
Table II.

We evaluate our proposal using the Qualcomm Datacenter
traces provided in the first Championship on Value Prediction
(CVP-1) [1]. The traces [50], which also include the 50 IPC1
traces [2], have been converted to ChampSim format using
the most recent converter [20]. Our analysis considers the 306
(out of 2011) CVP-1 traces (2 FP, 97 INT, 73 Crypto and 134
datacenter traces) that show at least a 5% IPC improvement
over our baseline configuration when using an ideal µ-op
cache. We execute 100 million instructions, the first 50 million
used for warm-up and the next 50 million used to collect
statistics. We use the geometric mean for speedups, and the
arithmetic mean for other metrics.

2Commit c8eff1dafdb398fcb9a40c95994cb202d831d678



TABLE II: Baseline configuration

Out-of-order processor

Branch
prediction

64K-entry 16-bank instruction BTB [51] LRU, 64KB
ITTAGE [66], 64-entry RAS, 64KB TAGE-SC-L [68]

µ-op cache 4Kops, 64 sets, 8 ways, 8 µ-op/entry, 1-cycle hit,
LRU [40], [43], 2 ports

Frontend
Stages

Up to 16 sequential addresses predicted per cycle, 16-
wide fetch, 6-wide Decode, 6-wide Dispatch, 192-entry
FTQ, 32-entry decode buffer, 32-entry dispatch buffer

Backend
Stages

10-wide Execute, 3x load, 2x stores, 10-wide Commit,
512-entry ROB, 192-entry LQ, 114-entry SB

Memory hierarchy

ITLB 256 entries, 8 ways, 1-cycle hit, 8-entry MSHR
DTLB 96 entries, 6 ways, 1-cycle hit, 8-entry MSHR
STLB 2048 entries, 16 ways, 8-cycle hit, 16-entry MSHR
L1I 32KB, 8 ways, 4-cycle hit, 32-entry PQ, 16-entry MSHR,

LRU, 2 banks
L1D 48KB, 12 ways, 5-cycle hit, 16-entry MSHR, IP-stride

prefetcher, 8-entry PQ, LRU
L2 1.25MB, 20 ways, 10-cycle hit, 32-entry MSHR, LRU
LLC 30MB, 12 ways, 40-cycle hit, 64-entry MSHR, LRU
DRAM 2-channel, 8-bank, tRP: 12.5ns, tRCD: 12.5ns, tCAS: 12.5ns

VI. RESULTS

A. Coverage and accuracy of detecting H2P branches

Fig. 9 displays the coverage (indicating how many
conditional branches mispredicts are marked as H2P) and
accuracy (illustrating how many H2P branches actually
mispredict) of TAGE-Conf and UCP-Conf respectively, as
H2P predictors. As detailed in section IV-A, UCP extends
the TAGE-Conf design to include SC, LP and AltBank. This
enhancement enables UCP-Conf to improve coverage from
48.5% to 70%. Additionally, since both SC and AltBank
exhibit high miss rates, accuracy also improves from 12% in
TAGE-Conf to 14.66% in UCP-Conf.

B. Performance

Fig. 11 demonstrates how UCP improves performance
compared to the baseline across diverse applications along the
conditional branch MPKI. Fig. 11 shows UCP improvement
over baseline (Table II), while Fig. 10 presents the
improvement of both UCP and the baseline over a
configuration without a µ-op cache. With UCP, 90% of the
applications used in this study benefit from a µ-op cache,
compared to 80.7% in the baseline, while the remaining 10%
show negligible performance degradation (<0.8%).

On average, performance is increased by 2%, up to 12%,
with an average MPKI of 1.56 and 6.17 respectively, for the
workload benefiting the most from UCP. Although a higher
MPKI does not guarantee speedup, it generally entails it,
confirming that it is beneficial to ensure that the µ-op cache
contains the µ-ops that follow a misprediction, so that the
pipeline can be swiftly refilled.

However, UCP is occasionally detrimental to performance,
as shown in Fig. 11. One major reason for this degradation
is higher fetch pipeline switch frequency. For example, in
application srv207, the switches PKI increase from 9.8 to
10.2, yielding a 0.5% slowdown. Switches PKI can increase
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Fig. 11: Speedup and conditional branch MPKI

because although we improve likelihood for seeing a long
stream of µ-op cache hits after a branch misprediction, the
µ-ops brought by UCP displace existing entries. This can split
a long stream of hits into multiple smaller streams, incurring
the switch penalty more often. If this penalty is not hidden,
performance decreases.

We have built two UCP flavours, with and without a
dedicated indirect predictor, trading storage for lookahead
potential. We observed that, in the absence of an indirect
predictor, if the alternate path is correct, approximately 33.7%
of the generated paths are halted. We therefore experiment
with adding a 4KB ITTAGE [66] to act as the alternate
path indirect predictor. The IPC improvement is depicted in
Fig. 12a along the baseline UCP configuration: a dedicated
alternate indirect predictor further pushes the speedup from
1.9% to 2%. The maximum benefit stands at 10.6% when not
using a dedicated indirect predictor and 12% when using a
4KB ITTAGE. Similarly minimum benefit is -1.4% without
indirect predictor and -1.3% when using an indirect predictor.

As UCP relies on information from the branch predictor to
initiate the alternate path, having a confidence mechanism that
offers high coverage and accuracy is crucial for UCP. Fig. 12b
illustrates the IPC improvement when using Seznec’s TAGE-
based confidence mechanism [67] compared to the improved
version we use in UCP. As detailed in section IV-A, the
updated mechanism achieves superior accuracy and coverage,
leading to an 10% additional IPC improvement compared
to TAGE-conf (1.8% vs. 2% average speedup). TAGE-Conf
achieves a maximum speedup of 11.6%, while UCP-Conf
reaches a maximum speedup of 12%. Similarly, the minimum
benefits stand at -2.6% and -1.3%, respectively.
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Fig. 14: Prefetch accuracy

C. µ-op cache hit rate

Fig. 13 illustrates the µ-op cache hit rate for UCP. As
expected, on average, the UCP µ-op cache hit rate shows
little improvement, from 71.4% to 74%, as our prefetching
strategy is directed towards very few, but critical instructions.
On average, UCP prefetches as little as ten cache lines per
alternate path.

D. Prefetch accuracy

Fig. 14 displays the prefetch accuracy of UCP, calculated
as the number of timely prefetches over the total number of
prefetches, at the µ-op cache entry granularity. On average,
the accuracy is 67.7%. Note that prefetches are considered
timely with respect to the current instance of the target H2P
branch. However, if the H2P branch was correctly predicted
and the alternate-path is not useful for the current instance,
once the µ-ops are cached, they are likely to be useful for
future instances of the same H2P branch, as they are likely to
mispredict. In our study we found that 8% (maximum 18%)
of the prefetched µ-op cache entries are used at least once
even if they were prefetched on an incorrect alternate path.
These cases are not accounted for in the computation of the
accuracy.

E. Stopping Threshold Sensitivity Analysis

Fig. 15 depicts the improvements in IPC across various
threshold values (ranging between 10 to 10000) used to
terminate alternate path for prefetching in the µ-op cache
and prefetching only until the L1I (UCP-L1I). For prefetching
till µ-op cache we observe that applications where branches
on the alternate path are comparatively easy to predict tend
to perform better with higher thresholds, thanks to longer
correct alternate paths (e.g. 21.5 cache lines on average per
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Fig. 15: Sensitivity analysis of average IPC for various
saturation values under.

alternate path in srv203, compared to the 9.9 lines average
across all applications). Conversely, some applications benefit
from lower threshold values, because of a higher number of
low-confidence predictions on the alternate path. A smaller
threshold allows prefetching to conclude early, preventing the
µ-op cache from being cluttered with µ-ops that will not be
immediately required if the predicted path proves incorrect.
However, the trend across traces is that for threshold values
higher than 500, the IPC improvement reaches a plateau.
This is due to the fact that the majority of the speedup is
derived by prefetching the µ-ops immediately following a
branch misprediction. Once the pipeline is populated again,
the benefits of prefetching longer alternate paths diminish.
However, if the threshold is increased beyond a certain limit
(around 1000 in our study), µ-op cache thrashing is observed,
as shown in Fig. 15.

Prefetching only until L1I, alleviates the need for dedicated
decoders and results in a performance improvement in the
range of 0.6% to 1.7%. The highest IPC improvement is
obtained at a threshold value of 1000 (an improvement of 1.6%
is observed at the same threshold as UCP). This threshold
is distinct from that of the µ-op cache, as L1I is typically
larger than µ-op cache, and thus the cache thrashing effect is
observed at a higher threshold. Without being the main goal
of UPC, using only L1I prefetching with a threshold of 1000
outperforms several previously proposed state-of-the-art L1I
prefetchers, delivering a 1.7% improvement with relatively low
hardware overhead. UCP provides 2% when prefetching till
the µ-op cache. Nonetheless, this leaves part of the potential
untapped. Ideal branch recovery up to the next 8 (resp. 16)
branches can provide improvements of 2.3% (resp. 2.9%), as
discussed in Section III.

F. Cost/Benefit analysis

Performance improvement is typically achieved with an
increase in hardware complexity. Thus, we compare UCP
to other frontend techniques (L1I prefetchers, µ-op caches,
Misprediction Recovery Cache or MRC [48], and an improved
branch predictor) in terms of speedup per invested hardware.
The storage cost/benefit analysis is plotted in Fig. 16. Our
analysis highlights that both UCP flavours (8KB TAGE-SC-L
with and without a 4KB ITTAGE indirect branch predictor for
the alternate path) are on the Pareto front, i.e. provide the most
improvement per KB of storage. In terms of absolute IPC,
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doubling the size of the branch predictor achieves marginal
improvement over UCP, at multiple times the cost.

We also implemented MRC as a fully associative cache with
an LRU replacement policy. Each MRC entry stores a tag, 64
µ-ops per entry, and replacement information. On a branch
misprediction, an MRC entry is allocated and records the 64
µ-ops following the corrected path. It is tagged with the correct
branch target. The MRC is thus able to stream up to 64 µ-ops
on a misprediction, on a tag match, thus accelerating pipeline
refill. We tested MRC sizes of 16.5KB, 33KB, 66KB, and
132KB, yielding IPC improvements of 0.3%, 0.4%, 0.55%,
and 0.7% respectively. This is because MRC records a single
trace among the many possible for each conditional branch,
while UPC can generate address traces on the fly through the
BTB and branch predictors.

In addition, we tested sharing the 6 baseline decoders
between the two paths, to determine the impact of not
implementing dedicated decoders. Sharing is “winner takes
all”, that is, the alternate path can decode only when the
predicted path is hitting in the µ-op cache (in streaming
mode). Doing so (UCP-SharedDecoders) allows UCP to
provide a geomean improvement of 1.8% (vs. 2% when
using dedicated decoders). Regardless, we argue that dedicated
decoders will have only moderate impact on the dynamic
energy consumption as UCP increases the number of decoded
instructions by merely 25.5% (Section VI-D).

Lastly, UCP has been tested in an ideal BTB banking
environment, meaning there cannot be BTB conflicts between
PCs on the alternate and demand paths. Our study shows that
in an ideal BTB setting (UCP-NoBTBConflict), UCP has the
potential to further increase the IPC improvement from 2% to
2.2%, on average.

VII. RELATED WORK

While a plethora of L1I prefetchers have been proposed,
none were considered to tackle µ-op cache prefetching, to
the best of our knowledge. Prefetching the alternate-path

resembles prior techniques that exploit wrong-path execution,
although our technique only adds lightweight hardware as it
does not speculatively allocate backend resources to wrong-
path instructions, to be reused upon a misprediction. This
section briefly overviews standalone L1I prefetchers and
fast pipeline refills, then delves in techniques to leverage
the alternate-path, and finally in prior work on µ-op cache
management.

A. Standalone L1I Prefetchers

Recent years have seen many standalone L1I prefetcher
proposals [9], [24], [27], [37], [45], [47], [59], [70]. Both
L1I and µ-op cache prefetching are designed to complement
FDP, that is limited to fetching instructions only from the
predicted path. In contrast, we rely on the existing BTB and
small predictors to generate another path to follow, whereas
standalone prefetchers can require up to 125KB (D-JOLT) to
provide lower IPC improvements than UCP.

B. Fast Pipeline Refill

Grayson et al. introduces the Mispredict Recovery Buffer
(MRB) in the Samsung Exynos 5 microarchitecture [25].
The MRB contains the addresses of the next three basic
blocks following low confidence branches, and can provide
the addresses much faster than the main BTB, hastening
refills. Perais et al. proposes Elastic Instruction Fetching (ELF)
[52], aiming to hide the increased misprediction penalty of
decoupled fetching. ELF enables the fetch stage run ahead
of the branch prediction stage on pipeline restarts, using a
dedicated branch predictor. As these schemes relate to fetch
address generation, rather than instruction retrieval, and do not
target the µ-op cache, they are orthogonal to our work.

The Mispredict Recovery Cache (MRC) [48] stores streams
of decoded instructions following branch mispredictions. On
a misprediction, the MRC is accessed, and if there is a hit,
the cached instructions are fed to the execution unit directly,
averting the penalty of refilling the entire pipeline. This work
is the most relevant to our proposal as it explicitly focuses
on caching decoded instructions on alternate paths. However,
the MRC only participates in frontend operation following a
misprediction, whereas a µ-op cache can provide µ-ops at any
time. Moreover, the MRC should likely grow with the code
size to remain beneficial. Conversely, our proposal leverages
decoupled fetching to prefetch as needed. Lastly, the MRC is
akin to a trace cache [62] and is more complex to maintain
coherent than the µ-op cache.

C. Leveraging the Alternate Path

We distinguish two types of techniques that rely on the
alternate path: control-flow reconvergence (CFR) and multi-
path operation (MPO).

CFR preserves instructions that are not dependent on
the branch, once the branch is found to be mispredicted.
Those instructions are executed on either path, and do not
conceptually need to be re-fetched, re-dispatched and re-
executed. CFR requires logic to identify the reconvergence



point [7], [18], [22], [42], [53], [63] and is orthogonal to µ-op
prefetching as it does not fetch the pre-reconvergence point
alternate path until the misprediction is detected.

MPO techniques process both taken and not-taken paths
concurrently. They competitively fetch, allocate [11], and
execute instructions [41], [74], [76]–[78], from both paths,
such that, upon a misprediction, some correct control-flow
instructions have certainly been executed. While processing
two or more paths reduces branch recovery time, it comes
at the cost of either (1) significant hardware complexity,
if additional resources are added to absorb the processing
of alternate paths, or (2) running the risk of decreasing
performance if alternate paths competition for pipeline
resources is not well managed. Moreover, pipeline resources
allocated to incorrect path eventually need to be scrubbed.
Conversely, UCP does not allocate pipeline resources to
alternate path instructions, except for µ-op cache entries. As
such, the competition between the two paths is kept minimal,
and terminating alternate path µ-op cache prefetching only
requires flushing the A-FTQ. Akin to prior work, our proposal
also requires additional hardware, as we introduce dedicated
decoders and an alternate branch predictor, but the complexity
and overhead is comparatively limited (8.95 to 12.95KB).

D. Identifying Hard to Predict Branches

Alternate path processing requires confidence information
to filter which branches trigger alternate path processing. This
is achieved either through dedicated structures [6], [10], [26],
[33], [67], [75] or using information readily available in the
branch predictor [6], [67], [72].

Jacobsen et al. predict whether a branch has low confidence
by monitoring the outcome history (correct/incorrect) of
branches xor global branch histories, e.g. if there are more
incorrect than correct outcomes in the selected history vector,
then the branch is hard to predict. This scheme is used in
Polypath to drive alternate path execution [41] and improved
on by Grunwald et al. [26].

Tyson et al. [75] build a set of global branch histories that
correspond to high confidence branches through profiling. At
runtime, if the current global history is found in the set, the
branch is confident, otherwise alternate path fetching starts.
Pruett et al. [54] introduce a Hard Branch Table (HBT) for
identifying H2P branches. Each entry, allocated upon the
retirement of a conditional branch, includes a 5-bit saturating
misprediction counter whose saturation indicates an H2P
branch. Similarly, Gao et al. [23] introduce the H2P Branch
Tracking Table (HBTT) which is a cache-like structure that
tracks the misprediction and increment a saturation counter
when the miss occurs. Finally, Aragón et al. [10] propose
the Branch Prediction Reversal Unit (BPRU), which relies
on data value correlation to identify low confidence branches.
However, its overhead is prohibitive as the BPRU is larger than
the branch predictor itself. In general, all these approaches
may face challenges with datacenter traces, as the tables
tracking hard-to-predict branches are typically small and may
be overwhelmed by large instruction footprints.

Conversely, Seznec [67] and Akkary et al. [6] leverage
the value of prediction counters of the TAGE and Perceptron
branch predictors respectively, to estimate branch prediction
confidence. Our confidence estimator is largely based on
Seznec [67], with improvements such as considering which
table provides the prediction.

E. µ-op Cache Management

A number of previous studies have attempted to increase
µ-op cache efficiency by relaxing entry termination rules.
Kotra et al. [43] identifies heavy fragmentation in µ-op
cache and mitigate it through dedicated optimizations: Cache
Line boundary AgnoStic µ-op cache design (CLASP) and
µ-op cache compaction. In the same spirit, Moody et
al. [46] introduces Speculative Code Compaction (SCC),
a microarchitectural technique that speculatively eliminates
dead instructions from hot code regions in the µ-op cache.
Kim et al. [40] identifies significant congestion in the µ-op
cache of a simultaneous multithreading processor employing
competitively shared µ-op caches. They propose a software-
based logical partitioning of the µ-op cache that relies on
a just-in-time compiler to rearrange the code of competing
threads. Yet, this is not applicable to multiprogrammed
workloads where native binaries execute concurrently, as they
cannot easily be re-arranged to improve µ-op cache utilization.
In a nutshell, prior techniques for µ-op cache management
improve the utilization of the µ-op cache, but do not focus on
reducing the processor stalls caused by critical instructions, as
is the case for UCP.

VIII. CONCLUSION

In this paper we show that by targeting code that Fetch
Directed Prefetching cannot prefetch by construction and
by focusing on few but critical instructions, significant
performance benefits can be obtained. Specifically, we prefetch
in the µ-op cache only a few cache lines worth of the alternate
path of hard-to-predict conditional branches, achieving an
average of 2% and up to 12% speedup (resp. 1.9% and up
to 10.6%) with a moderate storage overhead of 12.95KB
(resp. 8.95KB), which includes alternate predictors and
queues to track and follow the alternate path. Our technique
outperforms larger µ-op caches or prefetching in the µ-op
cache using a standalone L1I prefetcher.
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APPENDIX

A. Abstract

The artifact contains a Docker image that launches
experiments and collects results. The image executes the set of
traces used to evaluate UCP and presents the IPC improvement
of different UCP configurations discussed in the paper. It also
reports UCP Conf ’s coverage and accuracy for hard-to-predict
branches.

B. Artifact check-list (meta-information)
• Program: Docker
• Compilation: Docker
• Data set: Subset of CVP1 traces provided within the docker

image
• Run-time environment: Almalinux 9 (docker image can be run

from any environment that supports docker)
• Hardware: Minimum requirement is a x86 machine with 16 GB

memory. The suggested requirement for running the artifact in
a reasonable time is a x86 cluster with 128 cores and 256 GB
of memory.

• Metrics: IPC improvement and H2P accuracy and coverage
• Output: Table with final IPC improvement in percentage and

H2P accuracy and coverage in percentage. IPC improvement
graph is also generated.

• Experiments: UCP, UCP-IdealBTBBanking, UCP-
SharedDecoders, UCP-TillL1I, and H2P accuracy and
coverage. All testes are done at the threshold value of 500.

• How much disk space required (approximately)?: 10GB
• How much time is needed to prepare workflow

(approximately)?: 10 min
• How much time is needed to complete experiments

(approximately)?: Sequential execution will take
approximately 1 week, in parallel (128 cores) about 1
day

• Publicly available?: Simulation source code on Zenodo (DOI
provided) and artifact image on DockerHub.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
10891466

• Code licenses (if publicly available)?: Creative Commons
Attribution 4.0 International, except for third-party codes.

C. Description

1) How to access: The Docker image is available
at https://hub.docker.com/repository/docker/sawansingh/ucp
isca24/general and has been tested with docker version 24.0.5.
For more details, please refer to the ’Repository Overview’
section of the link which contains a detailed guide to launch
and verify the results.

2) Software dependencies: Our artifact only requires
Docker (tested on version 24.0.5). With Docker available, the
image will handle all necessary dependencies automatically.

3) Data sets: The evaluation of UCP is performed using
a subset of traces from CVP1, as described in the section V.
Note that the required traces are already included in the docker
image.

D. Installation & running the artifact

Users can choose from two variants of the Docker image.
One variant is configured to run all components automatically
and print the results at the end of the process. The other variant
allows users to enter the terminal of the artifact, check the files,

and then run the main script. Please refer to the following
guidelines to execute both variants.

Automatic, can be configured to run experiments in parallel
or series. When running in parallel it takes the parameter to
throttle the number of parallel jobs. To get started with the
parallel version please run the following.

$ sudo docker pull
sawansingh/ucpisca24:automated↪→

$ sudo docker run -e "RUN_TYPE=parallel"
-e "NUM_JOBS=8"
sawansingh/ucp_isca24:automated

↪→

↪→

The RUN TYPE option allows the user to select between
serial and parallel execution. The NUM JOBS parameter
determines the number of jobs to be run in parallel. It is
recommended that NUM JOBS be set to a value that is less
than or equal to the number of physical cores available on the
machine.

To execute the experiments serially, the following command
may be used. Please note that when executing serially, the
NUM JOBS argument is not required.

$ sudo docker run -e "RUN_TYPE=serial"
sawansingh/ucp_isca24↪→

Manual, allows the users to enter the docker terminal, run
the scripts manually, and check the files. To run the manual
mode, follow the following steps.

$ sudo docker pull
sawansingh/ucpisca24:manual↪→

$ sudo docker run -d --name ucp
sawansingh/ucp_isca24:manual↪→

$ sudo docker exec -it ucp /bin/bash

You should then be able to enter the container and see all the
scripts and files by using the ls command. The main script
that does all the work is named run.sh. To run the simulations
you need to set two variables, RUN TYPE and NUM JOBS.

$ export RUN_TYPE=parallel
$ export NUM_JOBS=8

Then run ./run.sh and you should see the following
information
$ Welcome to UCP artifact! Run type:

parallel, number of jobs: 8 (number
of cores: 8)

↪→

↪→

After that, it will follow the same execution as the automated
version.

E. Additional information

1) Copying files from docker to host: You can use the
docker cp command to copy any file you need from docker to
your machine.

For example, to copy the UCP binary from /champsim/bin/
to your directory, use

https://doi.org/10.5281/zenodo.10891466
https://doi.org/10.5281/zenodo.10891466
https://hub.docker.com/repository/docker/sawansingh/ucp_isca24/general
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$ sudo docker cp ucp:/champsim/bin/UCP
/path/to/your/directory/↪→

Similarly, you can copy all the simulation outputs from
/champsim/results/ by using the following

$ sudo docker cp ucp:/champsim/results/
/path/to/your/directory/↪→

2) Running the artifact in the background: Tmux (https:
//github.com/tmux/tmux/wiki), or similar tools, can be used
to create a terminal window, launch the job, and detach the
terminal. This ensures that the docker image continues to
run in the background even if the terminal is closed. To
install tmux please check https://github.com/tmux/tmux/wiki/
Installing. Once installed you can run the following to create
a new tmux session launch the experiments and then detach
the session.
$ tmux new
$ sudo docker pull

sawansingh/ucpisca24:automated↪→

$ sudo docker run -e "RUN_TYPE=parallel"
-e "NUM_JOBS=8"
sawansingh/ucp_isca24:automated

↪→

↪→

$ Ctrl + b d

To see the list of sessions and then enter the session (session
0 in the example below) please use.

$ tmux ls
$ tmux attach -t 0

F. Evaluation and Expected Results

Once the artifact has run without error, three tables will
appear. The first table is for IPC improvements. The first
column show the different variants used, while the second
column show IPC improvements (in %). The second and third
tables show the H2P accuracy and coverage of UCP Conf,
respectively.

The manual variant of the artifact also generates an IPC
improvement graph in the directory /champsim/pdf. When
the docker is finished, do not close the terminal, before
copying the generated graph. To do this, open another
terminal and run the following command by replacing the
”/path/to/copy/on/host/” with the directory you want to save
the graph.

$ sudo docker cp
ucp:/champsim/pdf/fig_ipc.pdf
/path/to/copy/on/host/

↪→

↪→

After copying, verify that the PDF was copied correctly, and
then the artifact terminal can be closed.

This artifact verifies two main contributions of the paper.
First, the improvements in the detection of H2P branches.
Second, IPC improvement of UCP (for threshold value of 500).
Thus, we have designed the artifact so that after a successful
run the following results are available:

• UCP-Conf, provides an improved H2P coverage and
accuracy compared to TAGE-SC-L (see section VI-A.
The Fig 9 shows the graph comparing UCP-Conf
with the previous state-of-the-art H2P predictor. The
improvements are described in detail in section VI-A.
UCP-Conf provides an accuracy of 14.66% and a
coverage of 70%. Accuracy illustrates how many H2P
branches mispredict. While coverage indicates how many
mispredicted conditional branches are marked as H2P.

• IPC Improvement, UCP comes with several variants
and each of these variants can be verified with the
provided artifact. The IPC improvements are UCP (main
proposal), UCP-IdealBTBBanking (UCP but with an
ideal BTB banking scenario), UCP-TillL1I (UCP version
that prefetches only till L1I and does not decode and
fill the µ-op cache), UCP-SharedDecoders (UCP where
no additional decoders are required and the decoders
are shared). The following table summarizes the IPC
improvement of various UCP variants mentioned in the
paper.

Variant IPC Improvement (%)
UCP 2

UCP-TillL1I 1.6
UCP-SharedDecoders 1.8

UCP-IdealBTBBanking 2.2

G. Notes

To run Docker, sudo privileges are required. If the image
is being run on a cluster, it is recommended to request the
administrator to either grant sudo privileges or create a sudo
group specifically for Docker and add the user to that group.
For more information, please refer to https://docs.docker.com/
engine/install/linux-postinstall/.

H. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-and-badging-current
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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