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Abstract. The main challenge presents in bitemporal building change
detection (BCD) in remote sensing (RS) is to detect the relevant changes
that are related to the buildings, while ignoring changes induced by other
types of land cover as well as varied environmental condition during the
sensing process. In this paper, we propose a new BCD model with a dou-
ble encoder architecture. The Gabor wavelet-based encoder which aims
to highlight the characteristic of buildings on RS imagery i.e., the com-
paratively more regular and repetitive texture than other objects on RS
images. This Gabor Encoder is used in addition to the convolutional-
neural-network-based encoder that extracts other meaningful and high-
level information from the images. Moreover, we also propose Feature
Conjunction Module to efficiently combine the extracted features by
characterizing possible types of changes. Comparative results with State-
of-the-art models on 3 different BCD datasets (LEVIR-CD, S2Looking,
and WHU-CD) confirm that the proposed model outperforms current
BCD methods in producing a highly accurate change map of buildings.
Our code is available on https://github.com/Ayana-Inria/AYANet.

Keywords: Gabor wavelet - Convolutional Neural Network - Building
Change Detection - Remote Sensing.

1 Introduction

Change Detection aims to identify changes occurred in a scene between two dif-
ferent times, based on a pair of (geometrically) registered images acquired at pre
and post-event. Some examples of the event that can cause the changes include
urban expansion, deforestation, or natural disaster. The challenge is to recog-
nize changes attributed to the event, while ignoring any other visual changes that

* The first author performed the work while at Inria, Université Cote d’Azur, France.
University of Genoa and Université Cote d’Azur are part of the Ulysseus Alliance
(European University). https://ulysseus.eu/.
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are unrelated to the event itself, which are generally due to lighting conditions,
shadows, seasonal variations, or changes in other environmental conditions. An
important special case of change detection is Building Change Detection (BCD),
where the goal is to highlight changes only in buildings and ignore the irrele-
vant changes of other objects (e.g. vegetation) [22]. In remote sensing imagery,
built-in regions typically have a distinctive repetitive visual pattern compared
to other natural regions. Thus, such characteristics are important in identifying
built-in areas as well as any changes related to buildings (either buildings that
are demolished or newly constructed). The typical BCD task creates a change
map that highlights appearance and disappearance of buildings, which can be
used as the starting point of a broad range of applications, such as urban growth
analysis [9], and disaster assessment and recovery [20].

Traditional change detection methods can be divided into pixel-based and
object-based methods. While pixel-based methods rely on pixel-wise spectral
value changes between bi-temporal images, object-based methods can incorpo-
rate both spectral and spatial (e.g. shape, texture) contextual information of
images. The former approach is challenged by the limited spatial contextual
information provided by a small neighborhood of pixels, while the latter one is
subject to object segmentation errors and lacks the capability to include both lo-
cal and global features which are crucial as local features preserve spatial details
and global features provide a bigger context information to accurately recognize
the semantic information of pixels.

Deep Convolutional Neural Networks (CNN) have demonstrated promising
performance in addressing the complexities of the BCD task [1,4, 13,18, 26].
CNN is able to extract image features via spatial convolutions and hierarchical
feature representations, which successfully combines local features by gradually
increasing the effective receptive field of subsequent layers as it goes deeper in
the network, creating a pyramid-like stack of features at multiple resolution.
Recently, Transformer networks are becoming popular in BCD because of their
efficiency in capturing the global context of the features. It can be incorporated
in combination with CNN [3, 15], or it can also be used without feature extraction
by CNNs [2]. Theoretically, both CNN and Transformer can learn texture fea-
tures from the training image data [17,19], assuming sufficiently many training
data are available. However this is not the case in remote sensing imagery. While
general purpose large datasets exist to train such networks, e.g. ImageNet 8]
which contains around 14 million images, and JFT-3B [27] with approximately
3 billion images, open BCD datasets generally contain fewer images by several
order of magnitude (less than hundreds of thousands). This is a serious con-
straint when more and more complex models are appearing with several million
parameters to learn.

Models based on CNN, Transformer, or both, incorporate typical strategies
such as metric-based learning [4], as well as integrating attention mechanisms |1,
4,10, 18]. Indeed, attention-based approaches put weights on relevant features
e.g. temporal attention which emphasizes the relation between the features of
the bi-temporal images that accentuate the change [4]. However, considering
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the typical size of BCD datasets, it is by far not evident that such complex
networks can learn features effectively, especially Transformer which may fail to
learn some specific features if the training data are not provided sufficiently [19].
On the other hand, other approaches are using fewer parameters to learn by
reducing the complexity of the network [3, 7, 10, 15]. While all of the State-of-the-
Art methods mentioned above, including attention-based, Transformer-based or
CNN-based ones, perform well (see Section 3.3), none of them explicitly perform
feature extractions that are characteristic to the particular texture properties of
building in spite of its importance in differentiating buildings from other objects
in the BCD task.

Fig. 1. Some examples of features extracted at different stages of the Gabor Encoder.
The deeper the stage goes, the lower the resolution is. Notice that regions with buildings
are clearly highlighted at each resolution, while other regions (in spite of being textured
but without regularity) are supressed in the feature maps.

To address this issue, we propose AYANet which adopts a double-encoder
feature extraction backbone that provides rich texture features in a Siamese
network to extract multi-scale features from bi-temporal image pairs. At each
resolution, feature differences are extracted and forwarded to a final decoder,
which identifies building changes and provides the final change map. The main
contributions of this paper are:

1. We integrate local feature extraction from a CNN-based encoder which is
based on EfficientNet-B7 [23], and explore the advantages of a dedicated
multi-scale texture feature encoder based on Gabor wavelets [11], in the
form of a so called double encoder where CNN-extracted hierarchical features
are augmented by features directly representing repetitive visual patterns at
different scale and orientation. One can also interpret it as a kind of attention
to highly regular textured regions. Fig. 1 illustrates some multi-scale features
extracted by the proposed Gabor Encoder. We can observe that the extracted
features highlight the textures of buildings that are located on the right side
of the image. While a CNN can already extract general texture features
from the input images, the intuition we have in mind when designing the
Gabor Encoder is to ensure the encoder to extract the textures belong to
the buildings by imposing Gabor filters when the network learns to update
the convolutional filters which are integrated together as the building block
of the encoder (more detail in Section 2.1).
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2. Features from corresponding scale in the Siamese network are processed by
a Feature Conjunction Module (FCM), which will characterize their dissim-
ilarity for the decoder.

The quantitative and qualitative experimental results on standard datasets demon-
strate the superiority of our method.

2 AYANet
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Fig. 2. The architecture of AYANet. The design follows the style of a Siamese network
i.e., the same Encoder and Gabor Encoder are used to process the two input images.

The proposed model, shown in Fig. 2, is a Siamese network with three main
components:
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1. double encoder consisting of our Gabor Encoder and the EfficientNet-based
general Encoder

2. Feature Conjunction Modules at 4 resolutions

3. the Decoder and Classifier which produces the final change map

A pair of pre-change and post-change images with input size H x W x C' ( H,
W, C refer to height, width, channels respectively), goes directly to the En-
coder. The Encoder produces multi-scale features from each block with a size
of 2@ X 2& x C;, where i = {1,2,3,4}, and C;41 > C;. The same pair of input
images is converted to grayscale and is duplicated to H x W x C; before being
fed to the Gabor Encoder in order to accommodate the depthwise mechanism
used in that block, which will be explained in detailed in Subsection 2.1. The
Gabor Encoder extracts features at different scales at the same resolution as the
features extracted by the Encoder. Features are then concatenated and being
passed to the Feature Conjunction Module where pre-change and post-change
features are combined such that feature changes are highlighted. These conju-
gated features are subsequently passed to the Decoder. The Decoder of AYANet
utilizes the decoder part of [5], which comprises several upsampling layers. The
operation includes a simple bilinear upsample followed by the sum of upsampled
features, and the features coming directly from the FCM module at every stage.
The binary change map is produced by classifying the features upsampled by
transposed convolution layers.

2.1 Double Encoder

Feature extraction by the double encoder comprises two components. One CNN-
based Encoder, which consists of the first 4 mobile inverted bottleneck blocks
(MBConv) of EfficientNet-B7 [23]|. The depthwise separable convolution imple-
mentation in the building block of EfficientNet allows deep feature extraction
with less computational cost compared to architectures using regular convolu-
tion blocks. Moreover, the squeeze and excitation (SE) block [12] in MBConv
will act as the channel attention mechanism in the Encoder which models the
interdependencies among channels of the features. The other one is our Gabor
Encoder which focuses on the repetitive visual patterns of the buildings.

Gabor Encoder. The main element of Gabor Encoder is inspired by Gabor
Orientation Filters (GoFs) proposed in [17]. A GoF consists of a group of filters
in which each of the filter is a learnable convolutional filter modulated by a
Gabor filter [17]. Gabor filters [11] are biologically motivated as mammalians’
vision system uses similar multiscale filters to extract texture information from
retinal images. Gabor filters are represented by the following equation [16, 17,
25]:

K o||? .
Glu,v) = | Z,Zv” e~ Uun U2l /26%) itz _ g=a?/2) (1)
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Fig. 3. The upper part of the image shows how GoF is obtained and the lower part

indicates the difference on how the filters work between standard convolution (left) and
depthwise convolution (right).
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where z = (z,y), Ku,0 = (kﬂ> N (kv o ku>, frequency k, = (W/Q)/\/i(v_l),

kjy ky, sin ky,
orientation k, = ug;, and o = 27. The scale parameter v = 1,..., V' controls the
frequency of the filter in inverse proportion while the parameter ©u =0, ...,U — 1
determines the orientation of the filter.
Each filter in a GoF is a product of element-wise multiplication of a convo-
lutional filter C; of size N x K x K with a Gabor filter G(u,v) with size K x K,
orientation u, and scale v

Czlju =C; 0 G(’U,, ’U), (2)

Thus, a GoF [17] comprises a group of filters with a scale v and a set of orien-
tations U

ézv :( ZJ,Oa--wa,U—l)’ (3)

The upper part of Fig. 3 illustrates the process to obtain a GoF. We intuitively
interpret the integration of Gabor filters in the convolutional block, in some
way, guides the parameter learning in the Gabor Encoder to be imposed by
Gabor filters we set in the GoFs because the backpropagation process will take
into account the Gabor filters in each block [17]. Additionally, we modified the
original GoF by replacing standard convolution to depthwise convolution [6],



AYANet 7

which changes the operation (assume stride=1 with padding) from

Fian= E K jmnEroti—1,045—-1,m; (4)
©,J,m
to
Frim= E K jomFrtio1+j—1,m (5)
%,

where K is the filter, F' is the input image or feature, and F is the output
feature. (7, ) denotes the position of the cell indexed based on the kernel size,
(k,1) defines the position of the cell indexed based on the output feature size, m
increments until the number of input channel, and n is looped until the number
of output channel. The lower part of Fig. 3 shows the difference between convo-
lution operation on the left and depthwise convolution on the right. Depthwise
convolution applies one kernel to each input channel, which provides the fol-
lowing benefits: 1) less computational cost and 2) filtering the features spatially
without the mixing of channel-wise information. In order to implement this, we
need to make sure that the number of input channels is the same as the number
of filters or the output channels, which is the reason why we need to duplicate
the input image to the number of filters of the first block in the Gabor Encoder.

Referring back to Fig. 2, The block of operations between the input image
or input features and GoF with the depthwise convolution is called GDConv.
Two blocks of GDConv with kernel size of 7 x 7 are responsible to produce
the Gabor Encoder’s output features at a particular resolution. These output
features from each stage are then to be concatenated with the output features
from the EfficientNet encoder at the same resolution. The orientation of GDConv
was set to U = 4 to represent the horizontal, vertical, and diagonal orientations.
The scale parameters were v = 1 and v = 2 for the first and second GDConv
block respectively. A depthwise convolution with stride 2 is used in the second
block to bring down the spatial resolution to half of the input size. In order
to adjust the channel size, we implement Convolution 1 x 1 before every first
block of each stage except for the first stage where the channel adjustment is
handled by duplicating the image channel. Every second block of each stage is
also followed by Batch Normalization and ReLLU activation function.

fo o | A fo = /i N =

fo 1+ A Ma.\{fo N }—Min{ fo || A }

Conv 1x1 ‘

Conv 3x3 '

Fig. 4. The structure of Feature Conjuction Module.



8 P. I. Osa et al.

2.2 Feature Conjunction Module

The extracted multi-resolution features concatenated from both encoders are
processed by the Feature Conjunction Module (FCM). As shown in Fig. 4,
we treat pre-change feature fy and post-change feature f; with several oper-
ations similar to [24], in order to explicitly represent the behavior of bi-temporal
changes. Referenced from [24], fo — f1 and f; — fo define the appearance and
disapperance of the object, while Max(fo, f1) — Min(fo, f1) intends to capture
exchanging objects. We additionally add fy+ f1 to highlight the changed objects
from the unchanged ones. All of the products of these operations are concate-
nated together with the original features fy and fi, then they undergo a 1 x 1
convolution which will learn the important channels related to the changes and
reduce the resolution from g X % x 6C; to g X % x C;. A 3 x 3 convolution fol-
lowed by Batch Normalization and ReLU activation are added as the last stage
to further learn the relevant features.

3 Experiments

The performance of AYANet has been evaluated on 3 standard RS building
change detection datasets. Comparison with State-of-the-Art (SOTA) methods is
done both quantitatively using standard metrics, and qualitatively by visualizing
the change maps. Some of the SOTA methods have been trained and tested
in-house to ensure a fair comparison, while for other methods we report the
measurements on the standard test split of the datasets published in papers.

3.1 Datasets

LEVIR-CD [4] consists of very high-resolution (VHR) RGB imagery highlight-
ing the change in the development as well as the decline of buildings in Texas,
USA. The dataset has 31333 change instances of various types of buildings such
as large warehouses, tall apartments, villa residences, and small garages. For
the experiment, we cropped 637 pairs of 0.5m resolution images with a size
of 1024 x 1024 pixels to 256 x 256 patches without overlap. Following the de-
fault split of the dataset, the total pairs used for training/validation/test is
7120/1024,/2048.

S2Looking [21] has 5000 bitemporal VHR side-viewing satellite imagery
obtained at several off-nadir angles. The images are captured from various satel-
lites such as GaoFen, SuperView, and BeiJing-2 with a size of 1024 x 1024 pixels
and spatial resolutions ranging from 0.5m to 0.8m. The S2Looking dataset con-
tains scenes of rural areas from around the world which adds the complexity
of features of the dataset. The default split of train/validation/test consists of
3500/500/1000 pairs of images. For the experiment, the images were cropped
into 256 x 256 patches which makes the final split adds up to 56000,/8000/16000.

WHU-CD [14] records the building changes in Christchurch, New Zealand
between 2012 and 2016. This dataset contains a pair of RGB aerial images with
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0.2m spatial resolution. The training split has a size of 21243 x 15354 pixels and
the test split is 11256 x 15354 pixels. Like the other two datasets, the images
were cropped to 256 x 256, and we randomly split the images to 6096/762 /762
for train/validation/test.

3.2 Implementation Details

The implementation of the proposed model was done using PyTorch and we
run experiments on two GPUs: NVIDIA Quadro GV100 and NDVIA GeForce
RTX4090. Input images were augmented geometrically (random flipping, ran-
dom cropping) or photometrically (Gaussian blur). Weights of the model were
randomly initialized. We trained the model using cross-entropy loss and AdamW
optimizer (weight decay 0.01 and beta values (0.9,0.999)). The model started
the training with learning rate from 0.0001 linearly decaying to 0. We set the
batch size to 8 and stopped the training at 300 epochs.

We utilized Precision, Recall, F1-score, and Intersection over Union (IoU) for
the quantitative evaluation of our model.

Table 1. Quantitative results of AYANet and State-of-The-Art models on the LEVIR-
CD dataset. The best result is highlighted in bold. Results of all SOTA models are as
reported in the original papers.

Model Precision Recall Fl-score IoU
AFCF3D-Net [26]| 91.35% 90.17% 90.76% 83.08%
BIT [3] 89.24% 89.37% 89.31% 80.68%

ChangeFormer [2]| 92.05% 88.80% 90.40% 82.48%
DMI-Net [10] 92.52% 89.95% 90.71% 82.99%
DUNE-CD [1] | 92.27% 88.83% 90.52% 82.68%

FHD [18] 92.61% 89.61% 91.09% 83.63%
GVA-CD [13] 92.63% 87.88% 90.31% 82.51%
MSFCTNet[15] | 92.06% 90.00% 91.02% 83.52%

STANet-PAM [4] | 83.81% 91.00% 87.26% 77.40%

TINYCD [7] |92.68% 89.47% 91.05% 83.57%
AYANet 92.60% 90.25% 91.41% 84.17%

3.3 Comparison with SOTA

We listed the comparison of performances among our proposed model and sev-
eral SOTA models on the LEVIR-CD dataset in Table 1. We make use of the
default train/validation/test split, which has been used by many papers to re-
port their results as well - which allows us a direct comparison with numerous
SOTA methods. Furthermore, we only report results published in the original
paper of the methods (which are the optimized results of the authors them-
selves) to guarantee a fair comparison with our method. The SOTA methods
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listed in Table 1 represent a broad range of techniques and strategies. AFCF3D-
Net [26] treats bitemporal images like a video and uses 3D CNN as its backbone.
CNN-based models such as DMI-Net [10], DUNE-CD [1], FHD [18], STANet-
PAM [4], and TINYCD |[7] incorporate various attention mechanisms including
self-, channel-, global-, local-, and cross-attention. GVA-CD [13] focuses on the
feature difference method by taking into account the geometric structure of the
object. BIT [3], ChangeFormer [2], and MSFCTNet [15] utilizes Transformer
either in hybrid style or using it purely without CNN.

It can be observed that AYANet performs better than most of the listed
SOTA models and outperforms all in terms of Fl-score and IoU. This includes
surpassing the models that implement Transformer, for example the CNN-Trans-
former-hybrid BIT by 2.10% and 3.49%, and the pure Transformer-based Change-
Former by 1.01% and 1.69%. The proposed model also exceeds the performance
of TINYCD by 0.36% and 0.60%. TINYCD also uses EfficientNet as their fea-
ture extractor, and a more sophisticated technique to manipulate the features
extracted, as opposed to a simpler operation used in our FCM. We intuitively
correlate this outcome to the addition of the Gabor Encoder helping extracting
relevant features of the buildings such that only a simple feature manipulation
is necessary to highlight the change of the buildings. Comparing to the method
that explicitly target the pattern of the object on the image i.e. GVA-CD which
focuses on geometric variation, our proposed model which targets building’s tex-
tures, has a 1.10% higher Fl-score and a 1.66% higher IoU.

Table 2. Quantitative results of AYANet and State-of-The-Art models on the
S2Looking dataset. The best result is highlighted in bold. All SOTA models’ results
are reproduced.

Model Precision Recall Fl-score IoU
BIT [3] 73.99% 52.73% 61.58% 44.49%
ChangeFormer [2]| 68.04% 57.03% 62.05% 44.98%
STANet-PAM [4] | 36.30% 61.84% 45.74% 29.65%
AYANet 69.37% 58.70% 63.59% 46.62%

Table 3. Quantitative results of AYANet and State-of-The-Art models on the WHU-
CD dataset. The best result is highlighted in bold. All SOTA models’ results are re-
produced.

Model Precision Recall Fl-score IoU
BIT [3] 87.65% 90.91% 89.25% 80.59%
ChangeFormer [2]| 94.15% 85.52% 89.63% 81.20%
STANet-PAM [4]| 70.65% 93.54% 80.50% 67.37%
AYANet 95.56% 92.89% 94.21% 89.05%
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The evaluation on the S2Looking dataset and the WHU-CD dataset were also
done. The S2Looking dataset covers a more challenging task where images are
taken from off-nadir angles. Perhaps for this reason, relatively few papers report
evaluation results on this difficult dataset and the reported IoU numbers are all
below 50%. The WHU-CD dataset does not have a standard train/val/test split
such that most of the literature present their results by randomly splitting the
set. Unlike on the LEVIR-CD dataset, a fair comparison thus cannot be done
based on only the published numbers. Therefore we re-trained and evaluated rel-
evant SOTA methods on the same split of this dataset. We selected three models
representing pure CNN (STANet-PAM), hybrid CNN and Transformer (BIT),
and pure Transformer models (ChangeFormer). Table 2 and Table 3 show the
quantitative results of AYANet and SOTA models on the S2Looking and the
WHU-CD datasets respectively. The proposed model shows the highest perfor-
mance in terms of Fl-score and IoU among the evaluated methods on both
datasets. There are minimal differences of 1.54% and 1.64% on the S2Looking
dataset as well as significant improvement by 4.58% and 7.85% on the WHU-CD
dataset, w.r.t. the second-best performer model i.e. ChangeFormer.

STANet-PAM BIT ChangeFormer AYANet

Image 1 Image 2 Ground Truth

Fig. 5. Qualitative comparison of the change maps predicted by the proposed model
and the SOTA models. The first 2 rows are the results on LEVIR-CD, while the third
and fourth rows are from the WHU-CD and S2Looking datasets respectively. Color
representation: TP (white), FP (light blue), TN (black), FN (red).

The qualitative comparison is shown in Fig. 5 where it can be seen that
AYANet’s change maps have less false positive (light blue area) and false negative
(red area) in several cases, such as detecting changes of big building on the third
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row of the figure, recognizing changes in smaller buildings on the first row, as
well as change detection in the environment with poor lighting condition shown
in the last row of the figure. Moreover, our model produces more precise masks
like what we can observed in the second row of the figure where the boundary
of the buildings located close to each other appears to be clearer.

We did an additional experiment to test our models that were trained on
one particular dataset, with another datasets. The goal of this experiment is to
show the proxy of generalization ability of the models. Results in Table 4 show
the performance of the models trained on LEVIR-CD and tested on the WHU-
CD dataset The proposed model outperforms other models in Fl-score and IoU
at least by 2.28% and 2.85%. The difference can also be confirmed in Fig. 6
where we can observe that AYANet’s change maps have less false positive and
false negative prediction. However, note that even our best performing model
reaches only 60%, which is obviously much lower than anything trained on the
WHU-CD dataset itself. Other SOTA models also reported the same tendency
which may be related to the rather large difference in remote sensing imagery
making change detection methods generalization challenging, partially because
the pre and post-images are already registered so change detection requires only
a pixel-wise analysis of changes thus more global changes are not learned well
by these models and this is not even their goal to do so.

Table 4. The results of cross-dataset evaluation. All models are trained on the LEVIR-
CD dataset and are tested on the WHU-CD dataset.

Model Precision Recall Fl-score IoU

BIT [3] 58.36% T79.52% 67.32% 50.74%
ChangeFormer [2]| 76.87% 70.10% 73.33% 57.89%
STANet-PAM [4] | 28.31% 14.27% 18.98% 10.48%

AYANet 77.60% 73.66% 75.58% 60.74%

Ground Truth STANet-PAM ChangeFormer AYANet

i

Fig. 6. Qualitative performance of the models on cross-dataset evaluation. Color rep-
resentation: TP (white), FP (light blue), TN (black), FN (red).
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3.4 Ablation Study

An ablation study was conducted to check how the proposed model behaves
according to different settings of encoder. Table 5 shows the qualitative results
of AYANet with the proposed double encoder, and the cases where we only use
the Gabor Encoder as well as modified EfficientNet we use as the Encoder,
exclusively. We find that using only the Gabor Encoder does not give the model
a satisfactory performance as it only reaches 88.92% in F1l-score, and 80.05% in
IoU compared to AYANet which has 91.41% and 84.17% in the same metrics.
However, adding the Gabor Encoder to the deep convolutional feature extractor,
EfficientNet does increase the result, especially in IoU which implies a better
agreement between the area of prediction and the ground truth. Some examples
of the predictions shown in Fig. 7 confirm this IoU improvement. It can be seen
that AYANet enhances boundary between buildings compared to the cases when
we only use one single encoder.

Table 5. The experiments on the encoder of AYANet on the LEVIR-CD dataset.

Encoder |Precision Recall Fl-score IoU

Gabor 90.51% 87.38% 88.92% 80.05%
EfficientNet| 92.15% 90.35% 91.24% 83.90%

AYANet |92.60% 90.25% 91.41% 84.17%

4 Conclusion

We introduce AYANet, a remote sensing change detection model using double
encoder as the features extractor. The design of the double encoder includes
CNN-based encoder and the Gabor Encoder which aims to extract the texture
features of buildings. Moreover, Feature Conjunction Module is also proposed to
process the extracted features from the double encoder in order to characterize
the changes. Based on the comparison with SOTA models and the experimental
evaluation, the proposed model demonstrates a good performance on 3 different
building change detection datasets that have different characteristics. The abla-
tion study confirms that adding the Gabor Encoder to the CNN-based encoder
predicts a more accurate boundary between buildings. Future work will focus
on a novel learning strategy that accommodates for domain adaptation, and
unsupervised or semi-supervised learning approaches to cater to the problem of
limited amount of data.
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Image 1 Image 2 Ground Truth Gabor EfficientNet AYANet

Fig. 7. The visualization of the ablation study on encoder. Visualization is done with
and without color representation to make the boundary between buildings more visible.
Color representation: TP (white), FP (light blue), TN (black), FN (red).
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