
HAL Id: hal-04675233
https://hal.science/hal-04675233v1

Submitted on 22 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Solar Radiation Triggers the Bimodal Leaf Phenology of
Central African Evergreen Broadleaved Forests

Liyang Liu, Philippe Ciais, Fabienne Maignan, Yuan Zhang, Nicolas Viovy,
Marc Peaucelle, Elizabeth Kearsley, Koen Hufkens, Marijn Bauters, Colin

Chapman, et al.

To cite this version:
Liyang Liu, Philippe Ciais, Fabienne Maignan, Yuan Zhang, Nicolas Viovy, et al.. Solar Radiation
Triggers the Bimodal Leaf Phenology of Central African Evergreen Broadleaved Forests. Journal of
Advances in Modeling Earth Systems, 2024, 16 (7), �10.1029/2023MS004014�. �hal-04675233�

https://hal.science/hal-04675233v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Solar Radiation Triggers the Bimodal Leaf Phenology of
Central African Evergreen Broadleaved Forests
Liyang Liu1,2 , Philippe Ciais2 , Fabienne Maignan2 , Yuan Zhang2, Nicolas Viovy2 ,
Marc Peaucelle3, Elizabeth Kearsley4,5, Koen Hufkens4,5, Marijn Bauters4,5, Colin A. Chapman6,7,8,
Zheng Fu9 , Shangrong Lin10, Haibo Lu11 , Jiashun Ren1, Xueqin Yang1, Xianjin He2 , and
Xiuzhi Chen1

1Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, School of Atmospheric Sciences,
Sun Yat‐Sen University & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,
2Laboratoire des Sciences du Climat et de l’Environnement, IPSL, CEA‐CNRS‐UVSQ, Université Paris‐Saclay, Gif Sur
Yvette, France, 3INRAE, Université de Bordeaux, UMR 1391 ISPA, Villenave‐d'Ornon, France, 4BlueGreen Labs, Melsele,
Belgium, 5Department of Environment, Computational and Applied Vegetation Ecology, Ghent University, Ghent,
Belgium, 6Biology Department, Vancouver Island University, Nanaimo, BC, Canada, 7School of Life Sciences, University
of KwaZulu‐Natal, Pietermaritzburg, South Africa, 8Shaanxi Key Laboratory for Animal Conservation, Northwest
University, Xi'an, China, 9Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic
Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China, 10Carbon‐Water Research
Station in Karst Regions of Northern Guangdong, School of Geography and Planning, Sun Yat‐Sen University, Guangzhou,
China, 11Department of Geography, Faculty of Arts and Sciences & Zhuhai Branch of State Key Laboratory of Earth
Surface Processes and Resource Ecology, Beijing Normal University, Zhuhai, China

Abstract Central African evergreen broadleaved forests around the equator exhibit a double annual cycle for
canopy phenology and carbon uptake seasonality. The underlying drivers of this behavior are poorly understood
and the double seasonality is not captured by land surface models (LSM). In this study, we developed a new leaf
phenologymodule into theORCHIDEELSM (hereafter ORCHIDEE‐AFP), which utilizes short‐wave incoming
radiation (SWd) as themain driver of leaf shedding and partial rejuvenation of the canopy, to simulate the double
seasonality of central African forests. The ORCHIDEE‐AFP model has been evaluated by using field data from
two forest sites and satellite observations of the enhanced vegetation index (EVI), which is a proxy of young leaf
area index (LAIYoung) with leafage less than 6 months, as well as six products of GPP or GPP proxies. Results
demonstrate that ORCHIDEE‐AFP successfully reproduces observed leaf turnover (R = 0.45) and young leaf
abundance (R = 0.74), and greatly improve the representation of the bimodal leaf phenology. The proportion of
grid cells with a significant positive correlation between the seasonality of modeled LAIYoung and observed EVI
increased from 0.2% in the standard model to 27% in the new model. For photosynthesis, the proportions of grid
cells with significant positive correlations between modeled and observed seasonality range from 26% to 65%
across the six GPP evaluation products. The improved performance of the ORCHIDEE‐AFPmodel in simulating
leaf phenology and photosynthesis of central African forests will allow amore accurate assessment of the impacts
of climate change in tropical forests.

Plain Language Summary Evergreen broadleaved forests in central Africa near the equator have a
unique behavior where their leaf growth and ability to take in carbon peak twice a year. However, the reason
underlying this behavior is not well understood, and the current process‐oriented terrestrial biosphere models
can not represent this double peak. In this study, we integrated a new module, which uses sunlight as the main
factor for when leaves fall and new ones grow in the forest, into a popular process‐oriented terrestrial biosphere
model called ORCHIDEE, to simulate this unique behavior in central African forests (hereafter ORCHIDEE‐
AFP). We tested our model using real‐world data from the forests acquired at the site level and satellite images.
The results show that our new model can successfully simulate when leaves change and how much carbon the
forests take in. The new model demonstrates better performance than the standard model. Our improved model
will be useful for predicting the future of these forests more accurately under climate change.

1. Introduction
Tropical rainforests are of great importance in regulating the global exchange of carbon dioxide, energy, and
water between the land surface and the atmosphere (Chen et al., 2021). Despite a perennial canopy, the leaves of
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tropical rainforests are periodically shed and rejuvenated, leading to seasonal variations of phenology and carbon
uptake (Leff et al., 2012; Sayer et al., 2011; Sun et al., 2022; Yan et al., 2016). The climatic and biotic drivers of
tropical leaf phenology are complex, as the seasonality of old leaves dropping and new leaves sprouting varies
across different regions (Gong et al., 2022; Wu et al., 2021; Yang et al., 2021).

Africa has the second‐largest tropical rainforests in the world (Zhou et al., 2014), representing ∼18% of global
tropical forest areas, but has been understudied compared to the Amazonian and Asian tropical rainforests (Guan
et al., 2013; Malhi et al., 2013), notwithstanding its important contributions to the global carbon cycle (Adole
et al., 2016). While numerous phenological observations have been conducted in tropical Africa, these have
predominantly been centered on flowering or fruiting phenology (Abernethy et al., 2018; Adamescu et al., 2018;
Babweteera et al., 2018). Extensive and long‐term observations of leaf phenology in the tropical African region
remain scarce (Abernethy et al., 2018; Couralet et al., 2013; Kearsley et al., 2013, 2024; Lewis et al., 2009).
Typically, central tropical African rainforests around the equator (5°N–5°S) have two wet‐ and two dry‐seasons
per year (Jiang et al., 2019; Nicholson, 2018; Raghavendra et al., 2018; Sorí et al., 2017; Sun et al., 2022). This
unique bimodal phenology (Yan et al., 2016, 2017) differs from that of the Amazonian and Asian tropical forests
(deWeirdt et al., 2012; Liu et al., 2021; Xu et al., 2015; Zhang et al., 2016). To complete sparse field observations,
satellite sensors have been used to study the leaf phenology of tropical African rainforests (Gond et al., 2013;
Guan et al., 2013; Li et al., 2021; Verhegghen et al., 2012). Yet, previous studies did not come up with a unified
model but rather analyzed correlations between optical satellite data and climate variables. Water availability was
found not to be a dominant limitation of phenology in regions with a marked dry season (Philippon et al., 2016),
and radiation availability was found critical in achieving a high level of carbon uptake during the wet seasons
(Graham et al., 2003). Furthermore, radiation has been reported to correlate with the bimodal seasonal variations
of carbon uptake in tropical African rainforests (Chapman et al., 2018; Li et al., 2021; Yang et al., 2021).

Land surface models (LSMs), such as ORCHIDEE (Krinner et al., 2005), serve as robust tools for studying the
global carbon cycle. A precise representation of the leaf phenology and carbon uptake seasonality is mandatory to
determine the carbon response to past and future climate change (Caen et al., 2022; Fu et al., 2013; Koven
et al., 2011; Peñuelas et al., 2009; Sitch et al., 2003; Wright et al., 2017; Zhou et al., 2021). However, the standard
version of ORCHIDEE poorly represents the leaf phenology of tropical rainforests since it lacks appropriate
mechanisms that relate phenological signals to climate drivers (de Weirdt et al., 2012; Manoli et al., 2018). Chen
et al. (2020, 2021) managed to reproduce the observed canopy phenology of the Amazonian wet rainforests by
implementing a climatic‐triggering scheme into the ORCHIDEE LSM. This scheme used functions of Vapor
Pressure Deficit (VPD) and radiation as prompters of leaf shedding, a process followed by canopy rejuvenation
with the allocation of carbon assimilates to leaves. However, it was not adapted to central tropical African
rainforests that have a distinct bimodal phenology.

To improve the simulation of central tropical African rainforest leaf phenology, we proposed a new equation
using incoming radiation (SWd) as a driver of leaf shedding, adapting the leaf phenology module of Chen
et al. (2021) from the Amazon to central tropical African rainforests (hereafter called ORCHIDEE‐AFP, African
Phenology). The new model was evaluated by using in situ observations from the Yangambi and Kibale sites and
seven observation‐based gridded products, encompassing a young leaf leaf area index (LAI) proxy, three data‐
driven GPP products and three remote sensing GPP proxies (Section 2.5.2 and Table S1 in Supporting Infor-
mation S1). Furthermore, to assess the uncertainty related to climate forcing used in driving the LSM, particularly
for SWd, we performed simulations using two different meteorological forcings, with either the CRUJRA
(Harris, 2019) or the WFDE5 (Cucchi et al., 2020). The scientific questions addressed in this study are: (a)
whether radiation is an adequate climate factor to drive bimodal leaf phenology of central tropical African
rainforests, and (b) if so, to what extent can the new phenological scheme contribute to our understanding of
photosynthetic investment strategies in central African rainforests.

2. Materials and Methods
2.1. Study Area

As in most LSMs, plant species are grouped into plant functional types (PFTs, Prentice et al., 1992) based on their
morphology and behavior. In the ORCHIDEE LSM, vegetation heterogeneity is described using fractions of 15
different PFTs for each grid cell (Boucher et al., 2020). Two PFTs, namely evergreen broadleaved forests and
raingreen broadleaved forests, are used to describe tropical forests in the ORCHIDEE LSM. As this study focuses
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on the evergreen broadleaved forests of central tropical Africa, we selected the grid cells with a mean fraction of
tropical evergreen broadleaved forests (TroEBF) exceeding 50% from 2000 to 2018 as the study area for regional
patterns simulation (Figure S1 in Supporting Information S1). This selection was based on yearly PFT maps
derived from the ESA CCI Land Cover maps (Bontemps et al., 2013).

2.2. Seasonality and Modeling Strategy

Across the study area, there are two dry seasons during the periods from December to February (DJF) and July to
August (JJA) (Figure 1, gray background), and two wet seasons during the periods from March to May (MAM)
and from September to November (SON). For the first half of the year, there are relatively higher SWd, air
temperature (Tair) and VPD, along with lower precipitation (PRE) compared to the second half of the year
(Figure 1a). This indicates that there is a dryer and brighter season in the first half of the year, while the second
half of the year is wetter (lower VPD) and darker (less radiation). Satellite data sets show that both leaf phenology,
here illustrated by LAI from the Global Inventory Modeling and Mapping Studies (GIMMS) (Zhu et al., 2013)
and enhanced vegetation index (EVI) from theModerate Resolution Imaging Spectroradiometer (MODIS) (Huete
et al., 2002), and carbon uptake by photosynthesis, here illustrated by GPP from FLUXCOM data‐driven model
(Tramontana et al., 2016) and Solar‐Induced chlorophyll Fluorescence (SIF) from the Global Ozone Monitoring
Experiment‐2 (GOME2, Joiner et al., 2013, 2016), have a double peak seasonal variation. Those two peaks
mainly arise in April and October, thus during wet seasons (Figure 1b). The surface (SMSurf) and root‐zone
(SMRoot) soil moisture from the GLEAM v3.7 data set (Martens et al., 2017; Miralles et al., 2011) show a

Figure 1. Observed seasonal variations of (a) climate, (b) leaf phenology and photosynthesis, and (c) soil moisture of central
tropical African rainforests. The leaf phenology is illustrated by GIMMS LAI (LAIGIMMS) and MODIS EVI, and both
FLUXCOM GPP (GPPFLUXCOM) and GOME2 SIF (SIFGOME2) are used as photosynthesis representative and proxy,
respectively. The SMSurf and SMRoot are surface and root‐zone soil moisture respectively from the GLEAM v3.7 data set.
The light gray vertical backgrounds indicate the dry seasons and the shading areas with color represent the respective
standard error of the mean.
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seasonal variation with two peaks (Figure 1c) generally lagging by about 1 month behind PRE. The value of
GLEAM soil moisture in volumetric content, ranging from about 0.34 to 0.4 m3 m− 3, is much larger than that of
the wilting point (0.096 m3 m− 3) across the study area (Figure S2 in Supporting Information S1). This suggests
that water stress is unlikely to be a trigger of leaf shedding, at least for rainforests around the equator. The small
seasonal range of soil moisture variation in GLEAM also suggests that soil moisture is unlikely to be a driver of
investment in new leaves, although there may be a specific water potential/soil moisture threshold as a cue to
build up new leaves and, conversely, water availability below this threshold as a cue to stop investing into leaf
building. In addition, previous studies reported that evaporation is not limited by soil moisture across tropical
African rainforests, implying little soil moisture stress in this region during the dry‐down period as vegetation
may access deep water (Feldman et al., 2018, 2019). Temperature is unlikely a major limiting factor for the
litterfall in tropical evergreen forests (De Weirdt et al., 2012; Tang & Dubayah, 2017). Sunlight availability
predominantly governs the seasonal leaf phenology across the tropical region (Li et al., 2021). Previous studies
proved that VPD is a reliable climate factor triggering leaf shedding of tropical rainforests in the Amazon, while
SWd also performs well (Chen et al., 2020, 2021). This is because the seasonal dynamics of VPD and SWd are in
phase in the Amazon. This phasing is visible in tropical Africa during the first half of the year (Figure 1a).
However, for the second half of the year, this coherence weakens considering the variability of its relative
magnitude. Furthermore, the VPD of tropical Africa exhibits little seasonal variation and small amplitude,
ranging from 0.6 to 1 kPa (0.6–0.8 kPa for the second half of the year). In contrast, VPD in the Amazon is almost
larger than 1 kPa and the maximum VPD goes up to 2 kPa in the wet regions (Green et al., 2020). This suggests
that the stability of VPD in tropical Africa may hamper the creation of a reliable signal for leaf shedding, unlike in
the Amazon. Additionally, in terms of interannual variability in seasonality, quantified by coefficient of variation
(CV, unit: %), SWd (mean CV of 12 months is 0.5%) has little interannual variability compared to Tair (mean
CV= 1.2%), SMRoot (mean CV= 2.1%), SMSurface (mean CV = 2.0%), VPD (mean CV= 4.1%), and PRE (mean
CV = 10.1%) (Figure S3 in Supporting Information S1). Therefore, we proposed that SWd predominantly
controls the turnover and flushing of leaves, ultimately driving the double seasonality of leaf phenology and
carbon uptake of central tropical African rainforests.

We described the new phenological scheme put into the ORCHIDEE LSM (v6184) (Krinner et al., 2005) for
central African rainforests, to become ORCHIDEE‐AFP in Section 2.3. Field observed leaf phenology data from
two long‐term observation sites and seven gridded leaf phenology or photosynthesis data sets were used to
evaluate the performance of ORCHIDEE‐AFP in simulating leaf phenology (i.e., LAI) and carbon uptake (i.e.,
GPP) (Section 2.4). The 6‐hourly 0.5° CRUJRA v2.0 climate forcing data set, generated by the combination of the
Japanese Reanalysis data (JRA) and the Climatic Research Unit (CRU) TS 4.03 data (Harris, 2019; Harris
et al., 2014; Kobayashi et al., 2015), was used to drive the model for the period from 2000 to 2018. Previous
studies pointed out that central Africa is one of the cloudiest regions across the tropics (Dommo et al., 2018;
Wilson & Jetz, 2016), which results in low mean incoming solar radiation (SWd) at the surface, especially during
the cool and light deficient dry seasons on the coast of Gabon (Philippon et al., 2019). Considering that SWd is a
critical climatic driver of photosynthesis, and to assess the uncertainty related to the climate forcing used to drive
the ORCHIDEE LSM, especially regarding the impact of SWd on leaf phenology in our new scheme (Sec-
tion 2.3), we employed another hourly 0.5° climate forcing data set named WFDE5 (Cucchi et al., 2020) to drive
the model. WFDE5 is generated through the application of the WATCH Forcing Data (WFD) methodology to
surface meteorological variables derived from the ERA5 reanalysis, with a bias‐correction of Tair, SWd and
precipitation based on stations CRU and GPCC (Global Precipitation Climatology Centre) observations (Cucchi
et al., 2020). Compared with the CRUJRA, SWd from the WFDE5 generally shows a lower solar radiation level,
especially during the second half of the year and in the western regions of Gabon and Cameroon (Figure S4 in
Supporting Information S1).

2.3. Representing Tropical African Evergreen Canopy Phenology in ORCHIDEE‐AFP

In ORCHIDEE‐AFP, we implemented a SWd‐triggered leaf shedding scheme and leaf flushing scheme, as well
as a leaf age‐dependent leaf photosynthetic efficiency. A general description of the physical processes related to
the energy and water balance, vegetation dynamics and biogeochemical processes in ORCHIDEE can be found in
Krinner et al. (2005). Relevant concepts as well as our additions and modifications to the model are presented in
the following sections.
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2.3.1. Canopy Demography of ORCHIDEE

The ORCHIDEE LSM uses four leaf age classes (class 1 to 4) characterized by their fraction of leaf biomass and
mean age, to describe the canopy demography. Leaf age class 1 and leaf age class 4 represent the youngest and the
oldest cohorts, respectively. The canopy demography model solves three processes on a daily time step. The first
process is the allocation of carbohydrates, in which a fraction of the net primary production (NPP) is allocated to
the growth of new leaves (class 1). The second process is the leaf turnover, in which a fraction of the biomass of
any leaf class but the last one, turns over to the next age class, and the leaf ages of the four classes are updated
accordingly. The third process is leaf shedding starting when a leaf age class reaches an age larger than half the
value of the critical leaf age (acrit), at which point leaf loss rapidly increases (with a power law of exponent 4) as
the age of the leaf class approaches the critical leaf age (Krinner et al., 2005).

2.3.2. New Leaf Flushing Scheme

In the standard version, ORCHIDEE has a constant carbon allocation coefficient for the leaves ( fleaf) of tropical
evergreen forests (Krinner et al., 2005). That is, the fraction of NPP allocated to new leaves remains constant until
the total LAI exceeds the maximum value (LAImax) which is preset to 6.0 m

2 m− 2 for tropical evergreen forests
according to de Weirdt et al. (2012). In ORCHIDEE‐AFP, the carbon allocation toward new leaves (class 1) was
parameterized as a function of weekly SWd and LAI of the oldest leaves (class 4), as leaf‐flushing of tropical
evergreen forests in Africa has been reported to be synchronous with radiation by Guan et al. (2013). Here, we
assumed that fleaf is related to the light transmission of old leaves, being an exponentially decreasing function of
the LAI of the oldest class (− 0.5* LAI4) (He et al., 2017). The fraction of NPP allocated to new leaves is given by:

f newleaf = min[0.99, (SWdweek × e− 0.5LAI4/C1)
C2
× f leaf] (1)

where f newleaf and fleaf are the new and standard allocation fractions of NPP to new leaves (carbohydrates entering
age class 1), respectively; SWdweek is the running weekly mean short‐wave incoming solar radiation (SWd), LAI4
is the LAI of the oldest leaf age class 4, C1 and C2 are empirical coefficients set to 35.0 and 6.0 W m− 2 in
ORCHIDEE‐AFP. The constant 0.99 is the ORCHIDEE‐specific parameterization to prevent all of the NPP to be
used for new leaf construction.

2.3.3. New Leaf Shedding Scheme

The standard ORCHIDEE model (Krinner et al., 2005) assumes no seasonality in leaf phenology for tropical
evergreen forests and describes leaf shedding as a function of leaf age:

∆Bi = Bi ×min{0.99,min[0.99,
∆t
acrit

(
ai
acrit

)

4

]} (2)

where ∆Bi is the loss of biomass at each time step from age class i, Bi is the leaf biomass of age class i, ∆t
represents a timestep, ai is leaf age (unit: days) of class i, acrit is a critical leaf age (unit: days) that is the maximum
longevity of a leaf and is set to 730 days for tropical evergreen forests. The constant 0.99 is the ORCHIDEE‐
specific parameterization to make sure that the turnover rate is never null.

In Equation 2, young leaves hardly have any biomass loss, while older leaves are shed rapidly when they approach
the critical leaf age acrit. For leaf age classes 1 to 3, we kept the leaf shedding scheme of Equation 2. But, the leaf‐
shedding scheme was modified with accelerating the shedding rate of the oldest leaves (class 4) as follows:

∆Bm = Bm ×min{0.99,C3 × [exp(
SWdweek

C4
) − 1.0]

C5
×min[0.99,

∆t
acrit

(
am
acrit

)

4

]} (3)

where SWdweek is the running weekly mean SWd (unit: W m− 2). C3, C4, and C5 are empirical factors for
ORCHIDEE‐AFP set to 0.5, 90.0, and 3.0 W m− 2, respectively. Figure S5 in Supporting Information S1 shows
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the impact of SWd on the leaf shedding process, and the sensitivity of leaf
shedding to the parameter values. This sensitivity is expressed as the ratio of
∆Bm to Bm (

∆Bm
Bm
), computed for different values of C3, C4, and C5.

2.3.4. Adjusted Age‐Dependent Leaf Photosynthetic Efficiency

The maximum carboxylation rate of leaves at 25°C (Vc,max25) is scaled by a
relative leaf efficiency parameter (erel, unitless: 0–1) (Ishida and Toma, 1999)
which is a function of relative leaf age (arel, unitless: 0–1). The value of arel is
calculated as the ratio of the leaf age in a cohort to the critical leaf age
(acrit = leaf longevity). The leaf critical leaf age (acrit) is never reached due to
the formulation of the turnover functions. Younger leaves have a higher
photosynthetic capacity than older leaves and the timing of the peak of GPP is
thus controlled by the increasing fraction of young leaves (class 1) (Chen
et al., 2020; Wu et al., 2016). As both LAI and GPP peak twice a year
(Figure 1b), we assumed that, after flushing, a recently emerged leaf reaches
its maximum relative efficiency (erel), defined as the ratio of Vc,max25 divided
by its largest value, and maintains this maximum efficiency for a short period.
Subsequently, the leaf efficiency decreases, ultimately maintaining a very low
value until turnover. Previous studies suggested a minimum erel range from

0.05 to 0.20 for old leaves in evergreen forests (Misson et al., 2006; Niinemets et al., 2015). Accordingly, in this
study, we proposed a new leaf efficiency function for central tropical African rainforests, with four stages,
different from the standard version with three stages (Figure 2, gray solid line) (Krinner et al., 2005). For the first
stage, from leaf flushing (arel = 0) to a leaf relative age of 0.08 (arel = 0.08), the leaf efficiency increases linearly
from the minimum (erel= 0) to the maximum (erel= 1). In the second stage, it keeps the maximum value (erel= 1)
until arel = 0.2 (adrop), and during the third stage, it drops down linearly to 0.1 (erel = 0.1) when relative leaf age
reaches 0.5 (arel = 0.5, abottom). Finally, during the fourth stage, leaf efficiency stays constant at 0.1 (erel = 0.1)
(Figure 2, red dashed line). In both standard and AFP curve fits, Vc,max25 would reach values close to 0 at age older
than 730 days (arel = 1). In addition, the maximum electron transport capacity at 25°C (Jmax25) is also scaled as it
is proportional to Vc,max25 (Kattge & Knorr, 2007).

2.4. Simulation Setup

Both versions of the ORCHIDEE model (standard and AFP) were run over a rainforest‐dominated domain (7°S–
7°N by 3°E− 32°E) at a 0.5° spatial resolution. Both 6‐hourly CRUJRA climate data and hourly WFDE5 climate
data were used to drive the model. Analysis of the daily outputs was performed across the pixels with a fraction of
TropEBF >50% (Figure S1 in Supporting Information S1). A spin‐up run was performed by cycling on years
1990–1999 for 50 yrs, the model was then run for the 2000–2018 period. It is worth noting that a 1,000‐yr spin‐up
is needed to reach a steady‐state equilibrium for carbon reservoirs, but leaf biomass and GPP reach a steady‐state
much more quickly. Thus, a 50‐yr spin‐up is sufficient here as this study only focuses on leaf phenology (LAI) and
carbon uptake (GPP).

2.5. Model Evaluation

2.5.1. Long‐Term In Situ Leaf Phenology Observations

In situ leaf phenology observations are rare in tropical Africa, and acquiring long‐term in situ observations is
difficult because the countries in this region have low incomes and frequent armed conflicts (Couralet et al., 2013;
Malhi et al., 2013). We benefited from long‐term leaf phenology observations from two in situ sites, Yangambi
(0.77°N, 24.44°E) located in northeastern DR Congo and Kibale National Park (0.45°N, 30.43°E) located in
southwestern Uganda (Figure S1 in Supporting Information S1), acquired by the Congolese National Institute for
Agronomic Research (INERA) and Ghent University. At the Yangambi site, the weekly leaf turnover incidence
(unit: %) of broadleaved evergreen forests, which indicates the fraction of leaves that turned over from younger
cohort to older cohort, is available from 1939 to 1953, and we used it to evaluate the seasonal variations of
modeled leaf turnover. At the Kibale site, the monthly young leaves abundance (unit: unitless) of broadleaved
evergreen forests, which scored from 0 to 4 from no young leaves to young leaves reaching its maximum

Figure 2. Leaf relative efficiency (erel) as a function of relative leaf age (arel).
Standard (gray solid line) and AFP (red dashed line) indicate the leaf
efficiency formula in the standard version and the new version proposed in
this study for central tropical African rainforests, respectively. adrop
(arel = 0.2) and abottom (arel = 0.5) indicate the values of arel when erel starts
to drop down from its maximum (erel = 1) and when erel reaches the stable
value at 0.1 (erel = 0.1), respectively.
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proportion in the canopy throughout the year, was provided from June 1998 to December 2013. We used this in
situ observation as a proxy for the simulated young leaves LAI (LAIyoung, class 1). We aggregated all in situ time
at a monthly time step.

2.5.2. Gridded Validation Data Sets

All gridded data sets were aggregated at the same spatial and temporal resolutions, which are 0.5° and monthly.
For each evaluation product, model outputs were analyzed over the period covered by the data set. Former studies
observed that EVI is sensitive to leaf flushing, especially for young leaves aged 2–4 months (Galvão et al., 2011;
Gonçalves et al., 2020). Therefore, EVI derived fromMODIS (Huete et al., 2002; Xu et al., 2015) were compared
with seasonal patterns of simulated young leaves LAI (LAIyoung), that is the LAI of leaf class 1. Three GPP data‐
driven products, including FLUXCOM GPP (GPPFLUXCOM, Tramontana et al., 2016), FLUXSAT GPP
(GPPFLUXSAT, Joiner et al., 2018) and BESS GPP (GPPBESS, Jiang & Ryu, 2016a), and three satellite‐derived
GPP proxies, Solar‐Induced chlorophyll Fluorescence (SIF) from Global Ozone Monitoring Experiment‐2
(GOME2) (SIFGOME‐2, Joiner et al., 2016, 2013), Continuous SIF (CSIF) (Zhang et al., 2018), and the Near‐
infrared reflectance of terrestrial vegetation (NIRv) from MODIS (Badgley et al., 2017) were used to evaluate
the modeled GPP seasonality. More details about all of these seven gridded products are provided in Text S1 and
Table S1 of Supporting Information S1.

3. Results
3.1. Model Evaluation at the Site Scale

At both the Yangambi and Kibale sites, the seasonal cycle of MODIS EVI and GPP products/proxies peak twice
in the two wet seasons (Figure 3). Notably, the peaks at the Kibale site typically occur with a 1‐month lag
compared to those at the Yangambi site. Additionally, while the BESS GPP product (GPPBESS) shows bimodal
seasonal variation at both sites, it is out of phase when compared with other GPP evaluation products at the

Figure 3. Seasonality of (a–b) young leaf LAI (LAIyoung) and (c–f) GPP in comparison with observations‐based gridded products at two observation sites, (left column)
Yangambi, (right column) Kibale. The light gray vertical backgrounds indicate the dry seasons and the shaded areas with color represent the respective standard error of
the mean.
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Yangambi site (mean value of Pearson correlation coefficients (R) between GPPBESS and all of the other five GPP
products or proxies is − 0.19± 0.05 (Mean± Sem)) (Figures 3c and 3e). Regarding the simulation of the seasonal
cycle of young leaves LAI (Figures 3a and 3b), the standard model (LAIYoung, Standard, dashed lines) either exhibits
a constant value (Figure 3a) or shows an opposite seasonality compared to satellite EVI (Figure 3b). In contrast,
the AFP model demonstrates significant improvements, whether driven by the CRUJRA forcing (LAIYoung, AFP,
CRUJRA, black solid line) or driven by the WFDE5 forcing (LAIYoung, AFP, WFDE5, blue solid line). The LAIYoung
simulated by the AFP model exhibits two peaks, although the first peak is out of phase at both sites, especially at
the Yangambi site (Figure 3a). The improvements in the AFP model are also significant in simulating the seasonal
variation of GPP. At the Yangambi site (Figures 3c and 3e), the GPP simulated by the standard model
(GPPStandard, gray line) shows a near‐constant value throughout the year. At the Kibale site (Figures 3d and 3f), the
GPPStandard (gray dashed line) exhibits a two‐peak seasonality but is out of phase compared with evaluation
products. In contrast, the GPP simulated by the AFP model demonstrates the two‐peak seasonality, aligning more
coherently with evaluation products. This occurs whether driven by the CRUJRA forcing (GPPAFP, CRUJRA, black
solid line) or by the WFDE5 forcing (GPPAFP, WFDE5, blue solid line) (Figures 3c–3f).

We further evaluated the performance of the AFP model by using in situ young leaves/leaf turnover observations
(Figure 4). At the Yangambi (Figure 4a), the leaf turnover simulated by the AFP model is in phase with ob-
servations (brown line), with a better match to observations when derived from the WFDE5 forcing (blue solid
line, R = 0.57) compared with that derived from the CRUJRA forcing (dark solid line, R = 0.45). At the Kibale
(Figure 4b), both simulations with the CRUJRA (dark solid line, R = 0.74) and the WFDE5 (blue solid line,
R = 0.79) produce a young leaf LAI (LAIYoung) that matches in situ observed young leaves abundance (green
line). This site‐scale evaluation gives us confidence in the ability of the SWd‐triggered AFPmodel to simulate the
dynamics of leaf phenology in central tropical African rainforests.

3.2. Bimodal Leaf Phenology Across Tropical African Rainforests

At the regional scale, LAIYoung of the standard version (LAIYoung, Standard) keeps a constant value of about 2.4 with
the CRUJRA forcing and 2.3 with the WFDE5 forcing throughout the whole year (dashed lines in Figure 5a). The
AFP‐modeled LAIYoung, using both the CRUJRA (LAIYoung, AFP, CRUJRA) and theWFDE5 forcing (LAIYoung, AFP,
WFDE5), exhibit a two‐peak seasonality. However, the first modeled peak (February to March) precedes that of
satellite‐derived products (April to May). Additionally, during the second half of the year, the magnitude of
LAIYoung driven by the CRUJRA forcing (LAIYoung, AFP, CRUJRA) is larger than that driven by theWFDE5 forcing
(LAIYoung, AFP, WFDE5). For the whole study area at the grid cell scale, the Pearson correlation coefficients (R)
between AFP‐modeled LAIYoung with the CRUJRA forcing (LAIYoung, AFP, CRUJRA) and satellite‐derived prod-
ucts show improvement (Figures 5b and 5d). More than 27% of grid cells have significant positive correlations
(R > 0 and P‐value <0.05) between the modeled seasonal cycle of LAIYoung, AFP, CRUJRA and the seasonal cycle of
EVI, computed for a monthly time scale. This is in contrast to the performance of gridded LAIYoung, Standard, which

Figure 4. Comparison of simulated variables against in situ observations (a) Modeled leaf turnover (Standard: dashed lines, AFP: solid lines) against in situ observed
mean leaf turnover incidence (brown line) at Yangambi, (b) AFP version modeled LAIYoung (CRUJRA: black and WFDE5: blue solid lines) against in situ observed
mean young leaf abundance (green line) at the Kibale. The light gray vertical backgrounds indicate the dry seasons and the shaded areas with color represent the
respective standard error of the mean.
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has hardly any grid cells with a significant positive correlation with EVI (about 0.2%with R > 0 and P‐value<0.05
for the CRUJRA) (Table S2 in Supporting Information S1). The improvements of gridded LAIYoung, AFP with the
WFDE5 forcing (LAIYoung, AFP, WFDE5) are limited and mainly show a positive correlation with EVI over the
southern region (Figures 5c and 5e). Particularly, only about 9% of grid cells show a significant positive cor-
relation between LAIYoung, AFP, WFDE5 and EVI, although the proportion of positive correlation has increased from
about 38% for the standard model to about 47% for the AFP model. In general, gridded LAIYoung, AFP with the
CRUJRA forcing (median value of R at the grid cell scale (RMedian) is 0.31) performs better in comparison with
EVI than that of the WFDE5 forcing (RMedian = − 0.04) for the whole study area (Table S2 in Supporting In-
formation S1). This difference is attributed to the parameter calibration of the new model, which depends on the
CRUJRA forcing data. It is worth noticing that the performance of the AFP model increases from north to south,
quantified by the correlation coefficient between AFP modeled LAIYoung and EVI (Figures 5d and 5e). The
synchronicity between PRE and SWd also increases from north to south (Figure S6 in Supporting Informa-
tion S1). This suggests that the proposed SWd‐triggered phenology scheme is more robust in modeling leaf
phenology in regions where PRE and SWd are synchronous.

3.3. GPP Seasonality

The seasonality of modeled GPPs from the standard and AFP versions using the CRUJRA and WFDE5 climate
forcing data are compared with different evaluation products in Figure 6. In general, AFP‐modeled GPPs
(GPPAFP) with both the CRUJRA (GPPAFP, CRUJRA, black line) and WFDE5 (GPPAFP, WFDE5, blue line) forcings
exhibit a two‐peak seasonality, especially for GPPAFP, CRUJRA. Modeled GPP increases from the beginning of the
year and peaks in March, then drops until reaching a minimum in July, and after that, increases again and reaches

Figure 5. Comparison of modeled young leaf LAI (LAIyoung) and satellite observations across central tropical African
rainforests (a) Seasonality of simulated LAIYoung and MODIS EVI. The light gray backgrounds indicate the dry seasons and
the shading areas with color represent the respective standard error of the mean (SEM) (b–d) Pearson correlation coefficients
(R) between the seasonality of simulated LAIyoung and seasonality of MODIS EVI. Stippling indicate where the correlation is
significant (P‐value <0.05).
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its second peak in October. This is generally consistent with most GPP evaluation products, except for GPPBESS,
for which the second peak is much smaller than the first one (salmon line in Figure 6a) and seasonal variation
shows poor consistency with that of the other products (Figure S6 in Supporting Information S1). Across the
central tropical African rainforests, most GPP products and proxies usually reach their first peak during the period
from February to March (Figure S8 in Supporting Information S1), and the second peak during the period from
September to October (Figure S9 in Supporting Information S1). In comparison, simulated GPPAFP, driven by
both the CRUJRA forcing (GPPAFP, CRUJRA) and WFDE5 forcing (GPPAFP, WFDE5), usually reach a first peak
during the period from January to February, preceding evaluation products by about 1 month (Figure 6, Figure S8
in Supporting Information S1).

Considering the spatiotemporal heterogeneity of water supply and light availability in the study area, we split it
into four sub‐regions (Figure 7a and Figure S10 in Supporting Information S1) using a K‐means clustering
analysis (Text S2 in Supporting Information S1) based on the seasonality of precipitation (PRE) and SWd data
from the CRUJRA forcing. Interestingly, a clustering based on GPPAFP derived from the CRUJRA forcing would
show the same patterns as the classification based on PRE and SWd (Figure S10b in Supporting Information S1).
In general, GPP products in the four regions show a two‐peak seasonality at the regional scale but have different
amplitudes. The western regions in Gabon and Cameroon (NW and SW, Figures 7b and 7f) have a relatively
lower observed GPP than eastern regions (NE and SE, Figures 7d and 7h), especially for the SW region
(Figure 7d). This is because western regions are much darker (Figure S4 in Supporting Information S1) and the
significantly lower light availability (Figure 7d) hampers photosynthesis throughout the year (Philippon
et al., 2019). The correlations between GPPAFP with the CRUJRA forcing and GPP of the evaluation products of
the four sub‐regions (Table S3 in Supporting Information S1) show that GPPAFP performs well in the southern
sub‐regions (SW: R = 0.61 ± 0.086 (Mean ± Sem), SE: R = 0.75 ± 0.089). However, its performance is less
satisfactory in the NE (R = 0.53 ± 0.089) and NW (R = 0.34 ± 0.091) sub‐regions, especially during the period
from January to March in the NE (Figure 7c). During this period, the observations show lower photosynthetic
capacity which may have arisen from insufficient water supply due to low precipitation or large water demand
attributed to high VPD, despite favorable light conditions, while the AFP‐modeled GPP maintains a relatively

Figure 6. Seasonality of simulated GPP in comparison with GPP/GPP proxies across the central tropical African rainforests.
The light gray vertical backgrounds indicate the dry seasons and the shaded areas with color represent the respective standard
error of the mean.
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higher value during this period. Furthermore, the seasonal variation of VPD show divergent partten between south
(SW and SE) and north (NW and NE) regions. Particularly in the southeastern region (SE) where the seasonal
variation of VPD is minimal and exhibits a near‐linear decreasing trend (Figure 7i). Another simulation that uses
the VPD‐triggered leaf‐shedding scheme proposed by Chen et al. (2021) (Figure S11 in Supporting Informa-
tion S1) shows an unimodal seasonal cycle and fails to capture the second peak. This supports the assumption that
SWd is a more reliable leaf‐shedding trigger than VPD in tropical African rainforests.

Figure 7. Comparison of simulated GPPAFP with the CRUJRA forcing (GPPAFP, CRUJRA) and GPP products for 4 sub‐regions
classified by the K‐means clustering analysis. The 4 sub‐regions are the northwestern region (NW), northeastern region
(NE), southwestern region (SW), and southeastern region (SE). The light gray vertical backgrounds indicate the dry seasons
and the shaded areas with color represent the respective standard error of the mean (SEM). The same comparison but for 3
GPP proxies is shown in Figure S12 of Supporting Information S1.
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The power spectrum analysis (Bradley et al., 2011) is applied to GPP products and proxies (Figures 8a–8f) to
identify their dominant periodicity modes of the seasonal variability. The results show that a large fraction of grid
cells have a two‐peak seasonality across the central tropical African rainforests (golden grid cells in Figure 8),
especially along the equator. The GPPs simulated by the standard version (GPPStandard, Figures 8g and 8h) could
hardly reproduce this two‐peak seasonality. In general, GPPs simulated by the AFP version (GPPAFP) better
represent the spatial extent of the areas with a two‐peak seasonality (Figures 8i and 8j), even though they remain
relatively poor in the ever‐wet western coastal region when compared with most of the evaluation products (this
region is affected by extreme high cloudiness and remote sensing estimates are also more uncertain). The GPPAFP
based on the WFDE5 forcing (GPPAFP, WFDE5, Figure 8j) exhibits the degraded two‐peak seasonality from north
to south around the latitudes between 15°E and 30°E.

The Pearson correlation coefficients (R) between the seasonal variation of modeled GPP and that of evaluation
products at the grid cell level are shown in Figure 9. For the simulated GPP derived from the CRUJRA forcing,
compared with the three GPP products (Figures 9a, 9c, 9m and 9o, Figures S13a, S13c, S13g and S13i in
Supporting Information S1), the positive correlations between GPPAFP (GPPAFP, CRUJRA) and GPPFLUXCOM
(RMedian = 0.67), GPPFLUXSAT (RMedian = 0.47), GPPBESS (RMedian = 0.56) are much larger than that of
GPPStandard, CRUJRA (RMedian are 0.39, 0.12 and 0.29 for GPPFLUXCOM, GPPFLUXSAT and GPPBESS respectively).
Especially, the proportions of grid cells showing a significant positive correlation (R > 0 and P‐value <0.05) are
increased from about 27%, 10% and 18% in the standard version to about 65%, 30% and 48% for GPPFLUXCOM,
GPPFLUXSAT and GPPBESS, respectively (Table S4 in Supporting Information S1).We also find the improvements
when comparing GPPAFP, CRUJRA with satellite‐derived GPP proxies (Figures 9d, 9f, 9p and 9r, Figures S14a,
S14c, S14g and S14i in Supporting Information S1). The correlations between GPPAFP with the CRUJRA forcing

Figure 8. Period of the seasonal cycle of GPP and GPP proxies of central tropical African rainforests. The period is detected
using a power spectral analysis (Bradley et al., 2011). The golden grid cells indicate a two‐peak (6‐monthly) seasonality. The
classification of “other” represents the seasonal cycle of grid cells less than 6 months (6 m) or more than 1 yr (1 yr).
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and SIFGOME2 (RMedian = 0.65) and CSIF (RMedian = 0.60) have more than doubled when compared with that of
GPPStandard, CRUJRA. About 65% and 57% of the grid cells of GPPAFP, CRUJRA are significantly positively
correlated with SIFGOME2 and CSIF respectively. It is greatly improved compared with GPPStandard, CRUJRA (about
11% and 14% for SIFGOME2 and CSIF, respectively) (Table S4 in Supporting Information S1). The GPPAFP,
CRUJRA shows a better correlation with NIRv (RMedian = 0.47, about 26% of grid cells with R > 0 and P‐
value<0.05) than that of GPPStandard, CRUJRA (RMedian = 0.26, about 18% of grid cells with R > 0 and P‐
value<0.05), but the improvement is limited when compared with that estimated with SIFGOME2 and CSIF (Table
S4 in Supporting Information S1).

The AFP‐modeled GPP using the WFDE5 forcing exhibits similar improvements to those using the CRUJRA
forcing when compared to most of the evaluation products (Figures 9g, 9l, 9m and 9r). The improvement of AFP
model derived from the WFDE5 forcing (GPPAFP, WFDE5) is the most significant when using GPPBESS as
reference data (Figures 9i and 9u), in which the proportion of grid cells showing a significant positive correlation
and the RMedian are increased from about 21% to 0.3 to about 71% and 0.72%, respectively (Table S4 in Supporting
Information S1). This is followed by improvements when using GPPFLUXCOM (Figures 9g and 9s) and
GPPFLUXSAT (Figures 9h and 9t) as reference data. When comparing modeled GPP derived fromWFDE5 forcing
with satellite‐derived GPP proxies, the Rmedian estimated from SIFGOME2 (Figures 9j and 9v) and CSIF
(Figures 9k and 9w) are increased from 0.39 to 0.49 for standard model (GPPStandard, WFDE5) to 0.6 and 0.57 for

Figure 9. Maps of Pearson correlation coefficients (R) between the seasonal cycles of simulated GPP and GPP evaluation products and proxies. The first two columns are
for GPPStandard with the CRUJRA forcing (GPPStandard, CRUJRA) and the WFDE5 forcing (GPPStandard, WFDE5) respectively, the third and fourth columns are for GPPAFP
with the CRUJRA forcing (GPPAFP, CRUJRA) and the WFDE5 forcing (GPPAFP, WFDE5) respectively. The first to the last row represent GPPFLUXCOM, GPPFLUXSAT,
GPPBESS, SIFGOME2, CSIF and NIRv, respectively. Stippling indicate where the correlation is significant (P‐value <0.05).
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AFP model (Table S4 in Supporting Information S1), respectively. However, the AFP model (GPPAFP, WFDE5)
shows a poorer performance than the standard model (GPPStandard, WFDE5) when compared with NIRv (Figures 9l
and 9x), with the proportion of grid cells showing a significant positive correlation and RMedian decreasing from
39% to 0.48%–21% and 0.39%, respectively (Table S4 in Supporting Information S1). In general, the improve-
ment of the AFP model in simulating GPP is mainly in the southern region, which is attributed to the improved
performance in capturing leaf phenology of the AFP model (Figure 5).

Several products are employed to evaluate the performance of the AFP model in simulating GPP seasonality,
there are some differences among those products in spatial and temporal patterns, as well as in amplitude
(Figures 6–9). GPP from the BESS product shows a significantly different seasonal variation compared to other
products (Figures 6 and 8) related to a previously identified limitation for tropical evergreen forests (Jiang &
Ryu, 2016a). This discrepancy is likely attributed to the saturation effects of optical remote sensing. Total LAI, an
important input parameter in the BESS product algorithm (Ryu et al., 2011), relies on optical remote sensing
(MODIS LAI), which tends to saturate in dense canopies (Liu et al., 2022; Zeng et al., 2023), especially over
tropical rainforests where the total LAI usually shows little seasonal variability throughout the year (Wu
et al., 2016). This also explains why direct validation of model‐simulated total LAI with satellite LAI products is
unreliable. For the GPP proxies (i.e., NIRv and SIF), from a mechanistic perspective, the NIRv describes the
relationship between canopy light capture and GPP (Badgley et al., 2017), while SIF characterizes productivity by
measuring light emitted by chlorophyll (Joiner et al., 2016). Compared with the CSIF (Figure 8d), the results of
the power spectrum analysis of SIFGOME are noisier (Figure 8e), and the distribution of grid cells showing a
significant positive correlation (R > 0 and P‐value<0.05) between AFP modeled GPP and observed SIF is more
dispersed (Figures 9q and 9w). This may be attributed to the uncertainty of the SIFGOME2 due to sensor degra-
dation in GOME2 (Zhang et al., 2018). While there are some differences among GPP evaluation products, they
display the robustness of the double peak seasonality of tropical African rainforests. In addition, it is worth noting
that modeled GPPs with the CRUJRA forcing always have a better correlation with GPPFLUXCOM than that with
other GPP products (Figure 9, Table S4 in Supporting Information S1); it is likely because GPPFLUXCOM is
extrapolated using CRUJRA meteorological fields (Jung et al., 2020).

4. Discussion
The variation of GPP is influenced by the variations in leaf‐age‐dependent Vc, max, which reveal the photosyn-
thetic investment strategy of forests. To better understand this strategy in central African rainforests with our new
phenology scheme, we tested the impact of different threshold values of the relative leaf age (arel) when erel starts
to drop down from its maximum value (erel = 1) (hereafter adrop), and when erel reaches its minimum stable value
at 0.1 (erel= 0.1) (hereafter abottom) on GPP. We tested two values of adrop (0.2 and 0.3) and three values of abottom
(0.4, 0.5 and 0.6). Figure 10 displays four of those six combinations of adrop and abottom. The results show that the
GPP seasonal cycle simulated with those four pairs of adrop and abottom reproduce a double peak, while its mean
value and amplitude are sensitive to the assumed seasonal variations in leaf‐age‐dependent Vc, max25 related to
adrop and abottom.When adrop increases from 0.2 to 0.3 (dark and purple curves), the amplitude of the modeled GPP
cycle decreases from 1.50 to 0.75 gC m2 day− 1, and mean GPP increases from 8.18 to 8.96 gC m2 day− 1. As
abottom increased (blue, dark and cyan curves), the amplitude of the GPP seasonal cycle first increased from 1.
28 gC m2 day− 1 (abottom = 0.4) to 1.50 gC m

2 day− 1 (abottom = 0.5), and then drops down to 0.96 gC m
2 day− 1

(abottom = 0.6). The corresponding mean GPP are 7.92, 8.18 and 9.40 gC m
2 day− 1, respectively (Table S5 in

Supporting Information S1). The above‐mentioned tests with different parameterizations of adrop and abottom show
that the empirical values (adrop = 0.2, abottom = 0.5) are likely the optimal choice for simulating the GPP sea-
sonality of tropical African rainforests, although other values also produce a double peak seasonality.

The leaf longevity of tropical forests varies widely, ranging from about 6 months to over 2 yrs, depending on the
species (Menezes et al., 2022; Santiago &Wright, 2007). Notably, approximately 2.2% of species comprise 50%
of tropical trees in tropical Africa (Cooper et al., 2024). Tropical African trees may have short leaf longevity due
to a higher levels of herbivory (Coley & Barone, 1996; Winbourne & McCulloch, 2022), as a result of their high
foliar Nitrogen content (Vallicrosa et al., 2021). Indeed, according to the leaf economic spectrum (Osnas
et al., 2013; Shipley et al., 2006; Wright et al., 2004), there is a trade‐off between leaf longevity (acrit) and
maximum photosynthetic capacity (Am) in different species, a relationship that can be expressed by equating Am to
acrit raised to the power of α (α is a constant) (Osnas et al., 2013; Wright et al., 2004). Am can be further interpreted
as the integral of relative leaf efficiency (Aintegral), and according to Figure 2, this integral (Aintegral) can be further
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simplified by our formula with adrop and abottom (Equation 4). Therefore, the triad of parameters acrit, adrop and
abottom can be viewed as representing a typical “group of species” (Equations 4 and 5).

Aintegral = [adrop + (abottom − adrop) × 0.5 + (1 − abottom) ∗ 0.1] (4)

Aintegral = acritα (5)

where Aintegral is the integral computed from the relative leaf efficiency, equivalent to a mean value of Vc,max25

over the leaf age, α is a constant, adrop is the threshold of the relative leaf age (arel) when the relative leaf efficiency
(erel) starts to drop down from the maximum value (erel = 1), abottom is the threshold of arel when erel reaches the
stable value after the drop down; acrit is the leaf longevity or leaf critical age.

Given the parameters of our leaf‐efficiency function (Figure 2 red dashed line, adrop = 0.2, abottom = 0.5) as a
suitable choice with leaf longevity equal to 2 yrs (acrit= 730 days, that is 24 months) to represent the forests in our
study area, following Equations 4 and 5, the values of adrop and abottom for other potential “group of species” with
different acrit can be calculated by using Equation 6.

α = logacrit[adrop + (abottom − adrop) × 0.5 + (1 − abottom) ∗ 0.1] (6)

Following Equation 6, Figure 10 shows how acrit, adrop and abottom ought to be coordinated to explain the bimodal
phenology within the framework of the leaf economic spectrum. A larger difference between adrop and abottom is
observed with shorter leaf longevity (acrit), interpreted by the increased slope of curves (Figures 11b and 11c).
This implies that “species” with shorter leaf longevity usually should have higher Aintegral and vice versa
(Equation 4). Further tests with different acrit (18, 12 and 6 months) but fixed adrop (0.2) and abottom (0.5) show
that, except for the simulation with acrit = 6 months which cannot reproduce the two‐peak seasonal variation of
GPP, all simulations have good performances in reproducing the two peaks of the GPP seasonality (Figure S15 in
Supporting Information S1). However, the modeled GPPs with these simulations have smaller amplitudes (1.38
and 1.31 gC m2 day− 1 for 18 and 12 months, respectively) and larger magnitudes (mean GPP are 8.49 and
8.42 gC m2 day− 1 for 18 and 12 months, respectively) (Tables S4 in Supporting Information S1). Although there
is a lack of field observations of age‐dependent leaf efficiency in central tropical African rainforests, our theo-
retical analysis suggests that the faster decrease of leaf efficiency is a potential photosynthetic investment strategy
in central African rainforests, given its unique bimodal phenology. Furthermore, parameterization of acrit, adrop
and abottom has a littile impact on the double‐peak seasonality of modeled GPP (Figure 10 and Figure S15 in
Supporting Information S1). This implies that, from the perspective of improving model performance, another
potential solution is to regulate the fraction of each leaf age cohort by adjusting leaf ontogeny, thus affecting the

Figure 10. GPP seasonality for different adrop (blue, dark and cyan: 0.2, purple: 0.3) when erel starts to drop down from
maximum value, and for different abottom (blue: 0.4, dark and purple: 0.5, cyan: abottom = 0.6) when erel reaches the stable
value at 0.1 (a) erel as a function of arel, (b) Simulated GPP seasonality of the whole study area. The light gray vertical
backgrounds indicate the dry seasons and the shaded areas with color represent the respective standard error of the mean.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004014

LIU ET AL. 15 of 21

 19422466, 2024, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004014 by C
ochrane France, W

iley O
nline L

ibrary on [22/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



amplitude and magnitude of GPP. For example, introducing the climate‐related parameter that increases the
turnover of younger leaves while delaying the shedding of older leaves during the dry season could produce an
older canopy with lower photosynthetic capacity.

The AFP model has poorer performances in the forests north of the equator (Figures 5 and 9) and exhibits
improved performance as the synchronous between PRE and SWd increased. The distinct climate‐phenology
regimes in tropical African rainforests, identified by Yang et al. (2021), can explain this limitation. For the
tropical forests situated in regions where PRE and SWd are synchronous, which mainly exit in Southeast Asia and
tropical Africa (Wu et al., 2021; Yang et al., 2021), forests appear to prioritize light acquisition to maximize
photosynthesis. In that case, old leaves are shed while new and more efficient leaves are produced as PRE and
SWd increase in the early wet seasons (Descheemaeker et al., 2006). Conversely, in regions where PRE is
asynchronous with SWd, forests experience a dry sunny season. Water stress resulting from soil water deficit and
high VPD in the dry season can promote leaf abscission to reduce maintenance respiration costs, and insufficient
rainfall predominantly constrains productivity until the wet season returns (Rowland et al., 2015; Xu et al., 2016).
The AFP model overestimates LAIYoung (Figure 5) and GPP (Figure 6) from January to February when radiation
is strong, especially in the NE and NW regions, where PRE and SWd are asynchronous during the first half of the
year (Figure 7). This overestimation is also exhibited in another simulation that uses the VPD‐triggered leaf‐
shedding scheme proposed by Chen et al. (2021) (Figure S11 in Supporting Information S1). During the
period from January to February, high SWd or high VPD promote leaf shedding, while SWd‐triggered leaf
flushing scheme would produce more new leaves at the same time (Equation 1). However, simultaneously,
insufficient rainfall would constraint productivity that inhibits the new leaf construction, which has been
underestimated in the model. Therefore, our modeling framework has limited performance in modeling the
phenology of tropical African forests where rainfall and radiation are asynchronous. In the future, adopting a more
sophisticated phenology scheme considering the compound impacts of both water constrain and radiation on leaf
phenology, such as the constraints of VPD on new leaf flushing, in the central tropical African rainforests could
further improve the model performance. In addition, we suggest defining the vegetation map of African forests in
the model by combining floristic information (Réjou‐Méchain et al., 2021) and climate synchronicity regimes.
Such a new PFT map would have different phenological parameterizations consistent with traits and climate.

Central tropical rainforests in Africa show very different behavior from the Amazon. There is a large‐scale area
with a unique bimodal phenology and photosynthesis, which is not observed in the Amazon. We argue that it is
mainly because of different climate seasonality patterns. Central Africa has two wet‐ and dry‐seasons and this
unique climate seasonality pattern has given rise to this particular leaf phenology and photosynthesis of rain-
forests. It is more important that the coherence between SWd and PRE is opposite between central Africa and
Amazon. The Amazon is dominated by asynchronous dynamics between SWd and PRE (Yang et al., 2021). And
the drivers of photosynthesis show the transition from predominantly water‐adapted in the southwest to light‐
adapted in the northeast (Liu et al., 2021; Xu et al., 2015). In central tropical African rainforests, however,

Figure 11. Illustration of the trade‐off between leaf longevity (acrit) and the integral of relative leaf efficiency (Aintegral) which can be expressed as a function of adrop, and
abottom when assuming Equation 4a Relationship between adrop and abottom with different acrit, (b) Relationship between acrit and abottom with different adrop,
(c) Relationship between acrit and adrop with different abottom. Colored solid curves indicate abottom ≥ adrop, while gray solid curves indicate invalid values where
abottom < adrop.
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PRE and SWd mainly show synchronous dynamics (Figure 1a). Although the previous study with an SWd‐
triggered leaf phenology scheme (Chen et al., 2021) showed improvements over Amazon rainforests, it is
necessary to develop a specific parameterization of this model for central tropical African rainforests, given the
above differences between tropical Africa and Amazon in both climate and photosynthesis patterns. Our results
also highlight that we need to split the presently unique ORCHIDEE PFT representing all tropical evergreen
forests, into at least two to separately characterize the phenologies of tropical African rainforests and tropical
Amazonian rainforests.

5. Conclusions
The central tropical African evergreen broadleaved forests exhibit a bimodal phenology, whose underlying
mechanisms are poorly understood. This study using the ORCHIDEE LSM with new leaf shedding and leaf
flushing schemes, both triggered by solar radiation (SWd), and a new leaf‐age‐dependent leaf efficiency strategy
with four stages, has successfully modeled a two‐peak seasonality of both LAI and GPP across central tropical
African rainforests at both site and regional scales. The analysis of leaf ontogeny based on the leaf economics
spectrum explores potential photosynthetic investment strategies in tropical African forests under the pheno-
logical scheme presented in this paper. This work is an important step toward the simulation of more realistic
impacts of climate change over the tropics. Although in situ observations, satellite and model‐based data sets have
been used in this study, our ability to robustly evaluate the new phenology scheme is limited by the scarcity of in
situ measurements, uncertainties in the remote‐sensed and statistical data sets, as well as a lack of ecological
knowledge about the processes that underpin this bimodal phenology of central tropical African forests. In the
future, more in situ observed leaf phenology and photosynthesis data will be needed to bring potential im-
provements to the model. Further, we recommend extending current models, both AP for Amazon and APF for
Africa in this work, to tropical evergreen forests in Southeast Asia to improve the photosynthesis and possibly
transpiration modeling across the pan‐tropics.

Data Availability Statement
All data used in this study are publicly available. The CRUJRA forcing data (Harris, 2019) is available at the
website: https://catalogue.ceda.ac.uk/uuid/7f785c0e80aa4df2b39d068ce7351bbb. The MODIS Enhanced
Vegetation Index (EVI) data (Didan, 2015) is available at the website: https://lpdaac.usgs.gov/products/
mod13c2v006. The FLUXCOM GPP (GPPFLUXCOM) data (Jung, 2021) is available at the website: https://www.
fluxcom.org/CF‐Download/. The FLUXNET GPP (GPPFLUXSAT) data (Joiner & Yoshida, 2021) is available at
the website: https://daac.ornl.gov/cgi‐bin/dsviewer.pl?ds_id=1835. The BESS GPP (GPPBESS) data (Jiang &
Ryu, 2016b) is available at the website: https://www.environment.snu.ac.kr/bess‐flux. The GOME‐2 Solar‐
Induced Chlorophyll Fluorescence (SIFGOME‐2) data (Joiner et al., 2023) is available at the website: https://daac.
ornl.gov/cgi‐bin/dsviewer.pl?ds_id=2083. The CSIF data (Zhang, 2022) is available at the website: https://osf.io/
8xqy6/. The model outputs and field data (Liu et al., 2024) used in this study are available at: https://doi.org/10.
5281/zenodo.10683987. The ORCHIDEE‐AFP model (Liu, 2024) code used in this study is open‐source and
distributed under the CeCILL (CEA CNRS INRIA Logiciel Libre) license. It is deposited at https://forge.ipsl.
jussieu.fr/orchidee/wiki/GroupActivities/CodeAvalaibilityPublication/ORCHIDEE‐AFP.
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