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Abstract—In blockchain networks, the probability of forks,
where the chain splits due to simultaneous block discoveries, is a
critical factor affecting both performance and security. This pa-
per investigates how the probability distribution of block mining
times influences the likelihood of fork occurrences. We develop
a formal model to examine the impact of the number of miners,
the distribution of their hashing power, and the probabilistic
characteristics of block mining times on the fork probability. Our
analysis reveals that the block mining time (BMT) distribution,
which follows a geometric distribution in Bitcoin, can significantly
affect fork rates. We propose an optimization approach to identify
BMT distributions that minimize the probability of forks in
various network configurations. Our findings suggest that tailored
BMT distributions could enhance blockchain protocol design by
reducing fork frequency, thus improving consensus reliability
and overall network performance. This theoretical study provides
insights into the potential customization of block mining processes
to achieve more robust and efficient blockchain systems.

Index Terms—blockchain, forks, mining distribution, dis-
tributed ledger technologies

I. INTRODUCTION

Blockchain technology underpins the functionality of de-
centralized cryptocurrencies, providing a secure and trans-
parent ledger through distributed consensus mechanisms. In
blockchain systems like Bitcoin, the current state of the
blockchain is represented by a single, linear chain of blocks,
where each block contains a record of transactions. The
integrity and reliability of this chain are crucial, as they ensure
the immutability and consistency of the transactional history.

A critical aspect of blockchain network performance and
security is the occurrence of forks, where the blockchain
temporarily splits into separate chains. Forks primarily result
from the near-simultaneous discovery of blocks by different
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miners, leading to a state of temporary inconsistency until one
chain becomes the longest and is accepted as the canonical
chain by the network.

While numerous studies have explored the multifaceted
factors contributing to fork events—including network prop-
agation delays, node connectivity, block size, and more—this
paper aims to narrow the focus to a more specific inquiry. We
investigate the probability of fork occurrences that are the re-
sults of the near-simultaneous discovery of blocks by different
miners. In particular, we study the impact of the number of
miners in the network, the hashing power distribution among
them, and, more surprisingly, the probability distribution of the
time it takes for a miner to find a block. This theoretical study
may impact future blockchain design, especially when this
distribution could be customized in the protocol to minimize
the probability of forks. This distribution cannot be changed in
PoW blockchain like Bitcoin, but may be changed in specific
protocols such as Proof-of-Interactions [1].

a) Related work: Blockchain technology, introduced
through Bitcoin by Nakamoto [6], has seen extensive research
into its underlying mechanisms and various applications. A
significant concern in blockchain networks is the occurrence
of forks, which can disrupt the consensus process and lead to
inefficiencies and security vulnerabilities.

Previous research has widely examined the relationship be-
tween network characteristics and fork probabilities. Croman
et al. [2] analyzed Bitcoin’s scalability and identified that
network propagation delays are a critical factor in increasing
fork rates. Similarly, Decker and Wattenhofer [4] provided
an empirical analysis showing that faster block propagation
decreases the likelihood of forks, emphasizing the importance
of network infrastructure in maintaining blockchain integrity.

Research has also explored how the distribution of hashing
power among miners impacts fork occurrences. Eyal and
Sirer [5] demonstrated that the presence of mining pools
with significant hashing power can lead to strategic behaviors
like selfish mining, which exacerbates fork occurrences by
intentionally delaying block propagation. On a similar topic,
Zhang and Preneel [9] analyzed the impact of adjusting the
branch selection algorithm to reduce the risk of selfish-mining.
These papers differ from our work as we study the impact of
the mining time distribution on legitimate forks, even when
all nodes are honest.



A significant theoretical framework for analyzing fork prob-
ability in blockchain networks was presented by Yahya et
al. [8]. They developed a mathematical model to predict the
likelihood of forks by considering the interplay between block
propagation delays and miner competition. Their model treats
block arrivals as a Poisson process and uses stochastic methods
to estimate the fork probability based on network latency and
the rate of block discovery. However, this work does not study
how variations in block mining time distributions affect the
probability of concurrent block discoveries.

Further expanding on practical implications, Nourmoham-
madi and Zhang [7] explored the specific impacts of Ethereum
Improvement Proposal (EIP) 1559 on fork occurrences within
the Ethereum network. Their study focused on how the in-
troduction of EIP-1559, which revised the fee structure and
block size management, influenced the dynamics of block
propagation and miner incentives.

b) Contributions: This paper makes three key contribu-
tions: (1) We present a formal model to analyze how block
mining time (BMT) distributions affect fork probabilities.
(2) We develop an optimization approach to identify BMT
distributions that minimize fork occurrences. (3) We provide
insights that could inform the design of blockchain protocols
to enhance consensus reliability and network performance

II. MODEL

a) The block mining time distribution: We consider a
set of n fully connected nodes, u1, u2, . . . , un, simultaneously
searching for the next block of a blockchain. The time it
takes for node ui to find a block is a positive random
variable Xi that follows a distribution Di. All the random
variables are independent. The distribution Di depends on the
blockchain protocol. For instance, in Bitcoin, the distribution
Di is a geometric distribution whose parameter depends on the
hashing power of node ui. In a Proof-of-Stack blockchain, Di

may depend on the stake of node ui.
In the remaining, unless explicitly stated, we assume that the

distributions are all identical, called the Block Mining Time
(BMT) distribution and denoted D. This may represent the
base distribution of a simple node running the protocol and
our analysis can be generalized by removing this assumption
as discussed in Section V.

b) The ordering of BMT and the inter-block time: In
many blockchains, such as Bitcoin, the protocol is such that
the expected time between two blocks is fixed (10 minutes
in Bitcoin). This means that the expectation of the minimum
BMT among the nodes is a given value m. Formally, let X(i)

be the time of creation of the i-th block among the n nodes, in
particular X(1) = mini∈[1,n] Xi. Then, by assumption, X(1) =
m.

c) The probability of fork: In this paper, we focus on
the forks that occur when two (or more) nodes find a block
in a small interval of time, that is, the probability that a fork
occurs is inversely proportional to the time difference between
the creation of the first and the second block. Since we want
to minimize the probability of fork, we are looking for a

distribution D that maximizes the mean time between the first
and the second mined block, called the first range.

d) formalization: We have the following property [3].

Proposition 1 (Distribution of an order Statistic). Let
X1, . . . , Xn a sequence of independent and identically dis-
tributed random variables on the (Ω,A,P) probability space
and let X(1) ≤ ... ≤ X(n) be an order statistic of
(Xi)i∈{1,...,n}.

∀r ∈ {1, . . . , n}, FX(r)
=

n∑
k=r

(
n

k

)
F k
X(1− FX)n−k

Definition 1. The first range is the difference X(2)−X(1) and
is denoted Y in the remaining of this paper.

Our goal is to find the probability distribution D that
maximizes the expectation of Y .

We restrain ourselves to the cases where X is a discrete
random variable such that X(Ω) ⊆ {0, . . . , T} and ∀i ∈
X(Ω), P(X = i) = pi.

As X is a positive random variable, so is
(
X(i)

)
i∈{1,n}.

And using the formula of the expectancy for a positive random
variable we have

E(Y ) = E(X(2))− E(X(1))

=

T−1∑
k=0

(
n∑

i=1

(
n

i

)
F i
X(k)(1− FX(k))n−i

−
n∑

i=2

(
n

i

)
F i
X(k)(1− FX(k))n−i

)

=

T−1∑
k=0

nFX(k)(1− FX(k))n−1

=

T−1∑
k=0

n

(
k∑

i=0

pi

)(
1−

k∑
i=0

pi

)n−1

We should remark that if, for a given k ∈ X(Ω), X = k
almost surely, then E(Y ) = 0, which minimizes E(Y ). Hence,
we consider p = (p0, . . . , pT ) to be in [0, 1[T+1.

We define the function J : RT+1 → R,

J(p) = n

T−1∑
k=0

Sk(p)(1− Sk(p))
n−1

with Sk(p) : RT+1 → R, k = 0, . . . , T , Sk(p) =
∑k

i=0 pi.

III. OPTIMIZATION PROBLEM

Formally, the problem (P) can be expressed as follows

argmaxp∈[0,1]T+1 J(p) (1)

s.t
T∑

i=0

pi = 1 (2)

E(X(1)) =

T−1∑
k=0

(
1−

k∑
i=0

pi

)n

= m (3)



Recall that (3) represents the requirement on the expected
time between two created blocks (i.e., the time it takes in
average for the first node to find a block).

Let the set of constraints S be

S =
{
p ∈ [0, 1]T+1 | h1(p) = 0 and h2(p) = 0

}
with h1(p) = ST (p)− 1

h2(p) =

T−1∑
k=0

(1− Sk(p))
n −m

Then (P) is argmaxp∈SJ(p).
a) Existence: The functions Sk, k = 0, . . . , T are

polynomial functions, then J, h1 and h2 are also polynomial
functions and S0, . . . , ST , J, h1, h2 are, therefore, smooth on
RT+1.

Because, [0, 1]T+1, h−1
1 , h−1

2 are closed, so is S =
[0, 1]T+1 ∩ h−1

1 ∩ h−1
2 . Moreover, S ⊂ [0, 1]T+1 is bounded.

Then, since J is continuous on the compact set S, there exists
a least one solution to the problem (P).

b) A simple solution to (P): For k ∈ {0, . . . , T} and
p ∈ S,

0 ≤ Sk(p) ≤ 1.

Also, observe that f : [0, 1] → R, f(x) = x(1−x)n−1, has
on unique maximum in [0, 1], obtained when x = 1

n . So each
term of the sum in J(p) is smaller than 1

n

(
1− 1

n

)n−1
so that

∀p ∈ S, J(p) ≤ T

(
1− 1

n

)n−1

By taking p̄ =
(
1
n , 0, . . . , 0, 1−

1
n

)
we obtain Sk(p̄) =

1
n ,

∀k ∈ {0, T − 1}, and J(p̄) = T
(
1− 1

n

)n−1
is maximum.

It remains to see when p̄ in S. Clearly c1(p̄) = 0 and

c2(p̄) = 0 ⇔
T−1∑
k=0

(1− Sk(p̄))
n
= m

⇔ T =

(
1− 1

n

)−n

m

(4)

Problem (P) has a unique solution p̄ when T =
(
1− 1

n

)−n
m.

IV. OPTIMAL SCALED BERNOULLI DISTRIBUTION

In this section, we only consider a scaled Bernoulli dis-
tribution. Thanks to the previous section, we know such a
distribution is a global optimal when it verifies equation (4),
and we now show that it has interesting properties in general.

Consider that each Xi follows a Bernoulli distribution
scaled by T , that is P (Xi = 0) = 1− p and P (Xi = T ) = p,
with T a positive integer representing the maximum duration
for finding a block. In this case, the goal is to find the value
p such that the first constraint is satisfied: E(X(1)) = m.

One can easily see that P (X(1) = T ) = pn so that

E(X(1)) = Tpn

which gives p =
(
m
T

)1/n
. In this case, we can easily compute

the first range by observing that the range is null except if
there is exactly a single node i such that Xi = 0. Hence

E(Y ) = T P

 n⋃
i=1

[Xi = 0]
⋂

j∈{1,...,n}
j ̸=i

[Xj = 1]


 = Tn(1 − p)p

n−1

Interestingly, when n tends to infinity, E(Y ) tends to
m log(T/m). So it is possible to obtain an arbitrarily large
expected first range by choosing T large enough.

V. NON-IDENTICAL DISTRIBUTIONS

We now consider a more general scenario where the dis-
tribution of the participants may be different. In this context,
we consider that each participant has an associated weight
in the system, and this weight remains constant even if the
participant creates multiple virtual identities, provided that
the sum of their weights remains the same. This principle
is evident in Bitcoin, where distributing computational power
across several identities neither increases nor decreases the
expected time to discover the next block. Specifically, it does
not alter the time distribution for finding the next block. We
contend that maintaining this property is crucial for preventing
Sybil attacks.

We consider that node i has a weight Wi ∈ N\{0}. One can
see that the previous property can be obtained by considering
that the node i simulates Wi trials following a base distribution
D (with corresponds to the distribution a node with weight 1
would follow), and takes the minimum among the obtained
values. More formally, the BMT distribution of node i is

Xi = min
(
(Xj)j∈[1,Wi]

)
(5)

where (Xj)j∈[1,Wi] are Wi i.i.d. random variables that follow
distribution D. One can easily see that by splitting its weight
into several new participants. The chances of seeing one of the
new participants obtaining the minimal BMT are exactly the
same as when a single participant has the combined weight.
In this context, the distribution of each participant differs from
the base distribution D. For instance, when D is our Bernoulli
distribution scaled by T with parameter p, the distribution of
node i is also a Bernoulli distribution scaled by T but with
parameter pWi . This implies that we have the same property
as in the previous simple case: by choosing T large enough,
we can obtain an expected first range arbitrarily large.

VI. COMPARISON WITH BITCOIN

In this section, we compare the expected first range obtained
with our scaled Bernoulli distribution and with the geometric
distribution used by Bitcoin. We consider m = 10 (so 1 unit
of time represents 1 minute).

a) The case of Bitcoin: The BMT distribution for a
participant follows a geometric distribution, parameterized by
the difficulty and scaled by the node’s weight Wi, where
the weight represents the hashing power. The speedup is
linearly proportional to the hashing power. This scenario can
be equivalently described as the BMT being the minimum



0 2 4 6 8 10
Zipf alpha parameter

20

40

60

80

100
Fi

rs
t R

an
ge

type
zipf
real

Fig. 1. First range average (Y ) depending on the parameter of the Zipf
distribution describing how the hashing power is distributed among the
network of 100 nodes. The greater the parameter, the greater the centralization
(almost all the weight is given to a single node). The point corresponds to
the value obtained using the real hashing power distribution.

of Wi independent geometric distributions, each with a given
parameter. Indeed, it is equivalent to consider that the partic-
ipant performs each hash at the same speed but just performs
Wi hashes in parallel. In this case, the difficulty is defined
so that the minimum among all the W =

∑n−1
i=0 Wi random

variables, each following the base geometric distribution, is
exactly a geometric distribution with parameter 1

m .
So in the case of Bitcoin, the base distribution D is

geometric with parameter p:

p = 1−
(
m− 1

m

)1/W

.

By a simple calculation, the expected value of W i.i.d.
variables following D is exactly m.

Then, thanks to our definition in equation (5), the random
variable Xi of node i having hashing power Wi follows a
geometric distribution of parameter 1− (1− p)Wi

The way the hashing power is distributed among the nodes
in the network has no impact on the base distribution we
use. However, it has a big impact on the first range and the
probability of fork. Clearly, the more important the spread, the
greater the probability of forks.

We can see this in Fig. 1 where we consider that the
hashing power is distributed among the network following a
Zipf distribution. We run 10000 simulations in a network of
100 nodes, where the hashing power is distributed among the
nodes following a Zipf distribution with a parameter ranging
from 0.01 to 10. The figure shows the average first range
and the 95% confidence interval. When the Zipf parameter
is very low, the hashing power is uniformly spread among the
network, which is the worst case, as any node has the same
BMT distribution. In this case, the first range is less than 10 on
average. However, when a minority of the nodes holds almost
all the hashing power (the Zipf parameter is high) the first
range reaches a value close to 100.

We also consider the real-world scenario for the Bitcoin
network using the real weight distribution of the 13 most
important Bitcoin pools1 (representing almost 95% of the
estimated hashing power) and considering the unknown miners
as the 14th one (with 5% of the hashing power). In this real-
world scenario, a numerical computation of the expected value
of the first range gives E(Y ) ≈ 11.7954. This corresponds to
the theoretical value with a Zipf parameter of 1.4.

b) Using a scaled Bernoulli distribution: When using
the scaled Bernoulli distribution defined in Section IV, we
can easily tune the maximum value T to obtain the desired
expected first range. As in the case with geometric distribu-
tions, the constraint on the expected value of the minimum
E(X(1)) = m gives the value p of the probability of obtaining
T in the base distribution D.

We require

E(X(1)) = TpW = m ⇒ p =
(m
T

)1/W
As in the previous case, the expected first range depends

on the weight distribution in the network. However, using our
custom distribution, even in the worst weight distribution, i.e.,
when there are W nodes with weight 1, we can choose T so
that the expected value of the first range is fixed.

VII. CONCLUSION AND DISCUSSION

In this paper, we examined how the block mining time
(BMT) distribution impacts the probability of forks in
blockchain networks. Our analysis, using a formal model,
revealed that tailored BMT distributions can significantly
minimize fork occurrences by increasing the time difference
between the first and second block discoveries. This suggests
that optimizing BMT distributions could enhance blockchain
consensus mechanisms, leading to improved network perfor-
mance and security. Future research could explore practical
implementations of these findings as BMT usually cannot be
customized, except in very specific protocols, such as Proof-
of-Interactions [1].
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