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A B S T R A C T

Present in Eurasia since 350 ka BP, Neanderthals show several adaptive strategies to long-term climate change.
Their disappearance from the archaeological and fossil record around 40 ka BP, during a period of climate
instability, raises the question of the role of climate variability on their resilience, and potentially on their
extinction. In this research, we built habitat suitability models for Neanderthal populations in Europe under
stadial and interstadial conditions of Marine Isotope Stage 3 (MIS 3). To do so, we apply species distribution
modelling using Random Forest to test a wide range of predictors linked to topography, climate change and
climate variability, at high spatial (15 km × 15 km) and temporal (annual, seasonal) resolution. This approach
allows us to compare the variables influencing habitat suitability during stadial and interstadial phases and
discuss the implications of millennial-scale climate change on the spatial distribution of Neanderthal populations
in Europe during MIS 3. We identify key environmental stressors and investigate the role of ecological risk in
shaping the spatial distribution of Neanderthals and finally, discuss their resilience and the factors leading to
their eventual extinction.

1. Introduction

The archaeological and paleoanthropological records testify to the
fact that Neanderthals (Homo neanderthalensis) were present across
Eurasia, from Western Europe to Siberia (Serangeli and Bolus, 2008),
from 350 thousand years Before Present (ka BP) (Hublin, 2009) to 40 ka
BP (Higham et al., 2014). The archaeological record also shows that
Neanderthals were a highly adaptive species (Roebroeks and Soressi,
2016) with advanced technological (e.g., Delagnes et al., 2007) and
subsistence skills (e.g., Burke, 2000; Patou-Mathis, 2000; Fiorenza et al.,
2015) in addition to symbolic behavior (e.g., d’Errico et al., 1998;
Soressi and d’Errico, 2007; Rendu et al., 2014).

Neanderthal populations disappear from the fossil record during MIS
3 (Higham et al., 2014; Devièse et al., 2021; Heydari-Guran et al., 2021).
This period was marked by a global cooling trend, punctuated by a series
of abrupt climatic changes (Sánchez Goñi and Harrison, 2010). In
Europe, it also coincides with the arrival of anatomical modern humans,
Homo sapiens, from the Near East (Hublin, 2015) possibly as early as 54

ka BP (Slimak et al., 2022). These climatic and demographic factors
could have had important consequences for Neanderthal populations
(Hublin, 2009; Albouy et al., 2023), possibly leading to their extinction
(d’Errico and Sánchez Goñi, 2003; van Andel and Davies, 2003; Banks
et al., 2008a; Melchionna, 2018; Melchionna et al., 2018).

In this research, we assess the resilience of Neanderthal populations
and the influence of millennial-scale climate variability on their spatial
distribution. To do so, we rely on archaeological data, climate simula-
tions and the construction of habitat suitability models.

1.1. MIS 3 and millennial climate variability

MIS 3 extends from 59,4 ka to 27,8 ka BP (Svensson et al., 2006,
2008; Sánchez Goñi and Harrison, 2010, p. 2825). It is a period marked
by a strong, millennial-scale climatic instability (Wolff et al., 2010). This
instability was the consequence of two types of climate event that
affected the Northern Hemisphere, particularly during the Last Ice Age:
Dansgaard-Oeschger cycles (D-O) (Dansgaard et al., 1984) and Heinrich
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events (Heinrich, 1988).
D-O cycles identified in the Greenland ice cores (NGRIP, GISP2,

GRIP) are characterized by abrupt warming followed by a cooling period
(Dansgaard et al., 1993). The warming phases last around 60 years while
cooling phases can last more than 2 ka, including an initial slow cooling,
a more abrupt cooling and a slower final cooling (Sánchez Goñi and
Harrison, 2010). Nineteen stadial (GS)/interstadial (GI) cycles have
been identified during MIS 3 (Rasmussen et al., 2014), sometimes
associated with Heinrich events (Heinrich, 1988), short-term climate
events associated with lower sea-surface temperatures and a cooler
continental climate, called Heinrich stadials (Sánchez Goñi and Harri-
son, 2010). Readers may refer to Albouy et al. (2023) - Supplement
material 4 for an overview of the chronological relationship between
Heinrich stadials and GSs/GIs during MIS 3.

1.2. Neanderthal and climate fluctuations

Climate fluctuations, both long term (climate change) or short term
(climate variability) have impacted the dispersal of hominins and the
(internal) dynamics of hominin groups and may have affected the long-
term viability of Neanderthal populations in Europe.

Neanderthals show several adaptive strategies to long-term climatic
change. These include demographic shifts, e.g., retreats to more
temperate zones during glacial periods (Serangeli and Bolus, 2008;
Hublin and Roebroeks, 2009), such as the Mediterranean coasts of
Europe (see Benito et al., 2017 for MIS 5e). They also developed specific
local cultural adaptations that enabled them to persist under less

favorable conditions (see Banks et al., 2021 for MIS 5e and MIS 4).
They also show several adaptative responses to short-term climate

fluctuations, particularly during MIS 3, such as seasonal mobility (e.g.,
Delagnes and Rendu, 2011; Riel-Salvatore et al., 2013), the seasonal
management of resources (e.g., Rendu, 2007; Fernândez-Laso et al.,
2010; Conard et al., 2012; Daujeard et al., 2012; Rendu et al., 2012), and
resource substitutions (e.g., Martínez et al., 2005; Vallverdú et al.,
2005). These observations lead us to consider that climate variability
could have had a decisive influence on their spatial behavior. Climate
variability may have led to changes in habitat use which would have
directly impacted demographics, information flow, and cultural trans-
mission as observed in hunter-gatherers ethnographic record (Ember
and Ember, 1992; Winterhalder et al., 1999; Collard et al., 2011; Kelly,
2013). The combination of all these factors could have tested their
resilience and ultimately led to their decline or even extinction.

This research is designed to study Neanderthal spatial behavior at
both scales, taking into account climate change and climate variability.
The models use the appropriate forcings for stadial and interstadial
conditions during MIS 3 and the resulting simulations capture the
essential difference between these two climate states.

1.3. New tools, new scales

Thanks to recent advances in paleoclimatic modeling (see Burke and
Riede, 2023 for a general review) it is now possible to simulate
long-term trends (climate change), and short-term climate fluctuations
(climate variability) and examine their impact on hominin populations.

Fig. 1. Distribution of presences used for modeling process. ESRI’s World Imagery Map was used as the base map for this figure. The extent of the glaciers is
based on Ehlers et al.’s (2011) reconstruction. This reconstruction represents the Late Glacial Maximum, but it has been utilized as a proxy for the maximum extent of
the ice sheet during stadial periods of the MIS 3 (Paquin et al., 2024). The extent of the MIS 3 coastline is based on a reconstruction suggested in prior research
(Albouy et al., 2023).

B. Albouy et al.



Quaternary Science Reviews 338 (2024) 108812

3

These new data and tools allow us to consider past environments at
smaller, and therefore more human, scales, both temporally (yearly or
seasonally) and spatially (i.e., 15 km by 15 km; a typical human foraging
radius) (Vita-Finzi et al., 1970).

Species distribution models (SDMs) are increasingly used in
archaeology to study the impact of climatic fluctuations on Pleistocene
human populations, particularly in Europe (van Andel and Davies, 2003;
Banks et al., 2006, 2008a, 2008b, 2011, 2013, 2021; Grove, 2011;
Bradtmöller et al., 2012; Burjachs et al., 2012; Schmidt et al., 2012;
Burke et al., 2014, 2017; Tallavaara et al., 2015; Banks, 2017; Ludwig
et al., 2018; Melchionna, 2018; Melchionna et al., 2018; Sepulchre et al.,
2007; Franklin et al., 2015; Timmermann and Friedrich, 2016; Benito
et al., 2017; Timmermann, 2020; Ordonez and Riede, 2022; Klein et al.,
2023; Yaworsky et al., 2024). Much of this research has focussed on the
impact of climate change on Neanderthal populations (Benito et al.,
2017; Banks et al., 2021; Yaworsky et al., 2024) but several papers have
studied the impact of small-scale climate fluctuations, specifically dur-
ing MIS 3 (Sepulchre et al., 2007; Banks et al., 2008a; Melchionna, 2018;
Melchionna et al., 2018; Timmermann, 2020).

In this research, we employ the SDM with Random Forest (RF)
methodology, following the protocol established by the Hominin
Dispersal Research Group (Burke et al., 2017; Paquin et al., 2024), to
construct habitat suitability for Neanderthals during GSs and GIs.

The “niche” concept is a subject of debate in ecology. Here, we use
the term “habitat”, adopting the definition given by Kearney (2006, p.
187): “Habitat is a description of a physical place, at a particular scale of
space and time, where an organism either actually or potentially lives”.
According to this definition, habitat takes into account abiotic factors
and mobility in the absence of information on biotic interactions, as
opposed to the ecological niche that includes these factors.

In our research, we address two pivotal research questions: 1) what is
the impact of large-scale climate change (i.e., GS and GI) on the distri-
bution of suitable habitat? and 2) what is the impact of climate vari-
ability within each of these two climate phases?

The results presented here allow us to discuss the various hypotheses
proposed in the literature regarding the resilience of Neanderthal pop-
ulations and the climatic factors that may have ultimately caused their
extinction, including: the contraction (Serangeli and Bolus, 2008;
Hublin, 2009; Albouy et al., 2023) and fragmentation (Melchionna,
2018; Melchionna et al., 2018; Albouy et al., 2023) of suitable habitat.

2. Material and methods

2.1. Archaeological data

The spatial location of archaeological sites is a proxy for the distri-
bution of human populations. For this research we use an updated
database of Neanderthal paleogeography during MIS 3 described in
detail in a previous paper (Albouy et al., 2023) and summarized below.
The geographical domain includes Europe, from 32.7 decimal degree
(DD) South to 60.0 DD North and 12.6 DD West to 35.0 DD East, as
illustrated in Fig. 1. The temporal boundaries of the dataset are between
GI-17.2 (59,44 b2k), i.e., the beginning of MIS 3 (Rasmussen et al.,
2014), and the end of GS-9 (38,221 b2k) (Rasmussen et al., 2014), when
Neanderthals are considered to have become extinct (Higham et al.,
2014). We retained all archaeological sites containing Mousterian in-
dustries and/or Neanderthal remains, eliminating sites with transitional
industries that fall within our time frame because there are too many
uncertainties regarding their chronology, the homogeneity and tapho-
nomic integrity of the assemblages, and their association with a specific
human taxon (see Albouy et al., 2023 for a detailed discussion of these
points).

The data compilation consisted in four steps.

(1) the identification and collection of archaeological data from
existing databases, including S2AGES (Pettitt et al., 2003);

PACEA geo-referenced radiocarbon database (d’Errico et al., 2011)
and the Palaeolithic Europe Database v20 (Vermeersch, 2019) and
the collection of additional data from recent publications [up to
December 2021];

(2) integration of these data into a new database, homogenization of
the data and the addition of complementary paleoenvironmental
information.

(3) verification of the reliability of the reported dates and;
(4) verification of the site coordinates.

Then, we proceeded to select reliably dated archaeological sites from
the database following three steps.

(1) the preselection of the dates following a taphonomic analysis, to
evaluate the homogeneity and the reliability of each date;

(2) the chronological Bayesian modeling of the retained dates, taking
into account the different dating methods used; we modeled the
probability that an individual archaeological layer falls within a
cold (stadial) or a warm (interstadial) climatic interval as defined
by Rasmussen et al. (2014) using a script built by our research
team (Albouy et al., 2023; Paquin et al., 2023). In the event that a
layer was dated within more than one temporal interval, the in-
terval with the maximum probability mass was retained (for more
details on our methodology, see Albouy et al., 2023);

(3) calculation of an uncertainty estimate for each site, taking into
account the number of dates used for each chronological model,
the associated paleoenvironmental data, and the stratigraphic
coherence of the different layers, in case of multilayered sites.

Following this methodology, we obtained two datasets containing
dated, archaeological layers that could be associated with a GS or a GI,
and their uncertainty scores (see Albouy et al., 2023). The sites with the
highest scores (scores 2 and 3) were used as presences in the habitat
suitability models. We were thus able to identify a total of 35 unique
presences for GSs and 72 unique presences for GIs for use in the
modeling process (Fig. 1 and SI 1).

2.2. Candidate predictors

2.2.1. Simulated climate variables
Traditional climate proxies, i.e., paleoenvironmental data such as

pollen or charcoal, are subject to biases due to their differential distri-
bution and poor chronological control. Therefore, and in collaboration
with the Laboratoire des Sciences du Climat et de l’Environement (UMR
8212), we used climate simulations to provide climate predictors. Two
global climate simulations for MIS 3 GS and GI were created using a
global Atmosphere-Ocean General Circulation Model (IPSL-CM5A-LR)
(Dufresne et al., 2013) following the PMIP3 protocol (Braconnot et al.,
2012; Kageyama et al., 2013). The simulation’s outputs were used to
extract a 50-year time series of monthly averages for the following
variables: air temperature at 2 m above sea level, sea-level pressure,
surface wind, relative humidity, and cloud cover fraction. Non-linear
statistical downscaling was applied to these data using a Generalized
Additive Model (GAM) to achieve a spatial scale of ~15 × 15 km (Vrac
et al., 2007; Latombe et al., 2018). Readers interested in further details
on this methodology and its theoretical and technical aspects are
referred to Paquin et al. (2024).

2.2.2. Predictive variables
We derived three types of predictive variable under GS and GI con-

ditions: 1) geographical variables, 2) climate variables, and 3) climate
variability indices following the protocol established in Burke et al.
(2017) and Paquin et al. (2024).

1) Geographical variables, such as elevation and slope were obtained
from the SRTM 90-m digital elevation model (DEM) resampled at a 1

B. Albouy et al.
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Table 1
List of candidate predictors (N = 40). This table includes the type of predictor
(topographical, climatological and climate variability), the data source, and a
brief description adapted from Burke et al. (2017). X = selected by autocorre-
lation. (+)/(− ) = manual adjustments (see Paquin et al., 2024; SI 3 for details).

Predictor Type Derivation Description Selection

GS GI

elev Topographic DEMa elevation (m asl) X X
slope Topographic DEMa slope (reclassified)

(degree)
X X

p_avg_aut Climatology Climate
simulation

Seasonal
precipitation
average, autumn
(mm)

p_avg_spr Climatology Climate
simulation

Seasonal
precipitation
average, spring
(mm)

p_avg_sum Climatology Climate
simulation

Seasonal
precipitation
average, summer
(mm)

X

p_avg_win Climatology Climate
simulation

Seasonal
precipitation
average, winter
(mm)

p_avg_y Climatology Climate
simulation

Annual precipitation
average (mm)

X X

p_max_aut Climatology Climate
simulation

Seasonal
precipitation
maximum, autumn
(mm)

X X

p_max_spr Climatology Climate
simulation

Seasonal
precipitation
maximum, spring
(mm)

X X

p_max_sum Climatology Climate
simulation

Seasonal
precipitation
maximum, summer
(mm)

X X

p_max_win Climatology Climate
simulation

Seasonal
precipitation
maximum, winter
(mm)

X X

p_min_aut Climatology Climate
simulation

Seasonal
precipitation
minimum, autumn
(mm)

X X

p_min_spr Climatology Climate
simulation

Seasonal
precipitation
minimum, spring
(mm)

X X

p_min_sum Climatology Climate
simulation

Seasonal
precipitation
minimum, summer
(mm)

X X

p_min_win Climatology Climate
simulation

Seasonal
precipitation
minimum, winter
(mm)

X X

p_var_aut Climate
variability

Climate
simulation

Seasonal
precipitation, coeff.
var., autumn

X X

p_var_spr Climate
variability

Climate
simulation

Seasonal
precipitation, coeff.
var., spring

X X

p_var_sum Climate
variability

Climate
simulation

Seasonal
precipitation, coeff.
var., summer

X X

p_var_win Climate
variability

Climate
simulation

Seasonal
precipitation, coeff.
var., winter

X X

p_var_y Climate
variability

Climate
simulation

Seasonal
precipitation, coeff.
var., yearly

X

Table 1 (continued )

Predictor Type Derivation Description Selection

GS GI

spi_normb Climate
variability

Climate
simulation

N months within
normal (predicted)
range

X X

sti_normc Climate
variability

Climate
simulation

N months within
normal (predicted)
range

X X

t_avg_aut Climatology Climate
simulation

Seasonal
temperature
average, autumn
(◦C/10)

(+) (+)

t_avg_spr Climatology Climate
simulation

Seasonal
temperature
average, spring (◦C/
10)

t_avg_sum Climatology Climate
simulation

Seasonal
temperature
average, summer
(◦C/10)

t_avg_win Climatology Climate
simulation

Seasonal
temperature
average, winter (◦C/
10)

t_avg_y Climatology Climate
simulation

Yearly temperature
average (◦C/10)

t_max_aut Climatology Climate
simulation

Seasonal
temperature
maximum, autumn
(◦C/10)

t_max_spr Climatology Climate
simulation

Seasonal
temperature
maximum, spring
(◦C/10)

X

t_max_sum Climatology Climate
simulation

Seasonal
temperature
maximum, summer
(◦C/10)

t_max_win Climatology Climate
simulation

Seasonal
temperature
maximum, winter
(◦C/10)

(− )

t_min_aut Climatology Climate
simulation

Seasonal
temperature
minimum, winter
(◦C/10)

t_min_spr Climatology Climate
simulation

Seasonal
temperature
minimum, spring
(◦C/10)

t_min_sum Climatology Climate
simulation

Seasonal
temperature
minimum, summer
(◦C/10)

X X

t_min_win Climatology Climate
simulation

Seasonal
temperature
minimum, winter
(◦C/10)

t_sd_aut Climate
variability

Climate
simulation

Standard deviation,
seasonal
temperature,
autumn

(+) (+)

t_sd_spr Climate
variability

Climate
simulation

Standard deviation,
seasonal
temperature, spring

t_sd_sum Climate
variability

Climate
simulation

Standard deviation,
seasonal
temperature,
summer

X X

t_sd_win Climate
variability

Climate
simulation

Standard deviation,
seasonal
temperature, winter

X X

t_sd_y Climate
variability

Climate
simulation

Standard deviation,
temperature, yearly

a DEM = Digital Elevation Model.
b SPI = Standardized Precipitation Index.

B. Albouy et al.
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× 1 km scale using ArcMap (v. 10.8.1). In the absence of palae-
otopographic reconstructions at an appropriate scale, we elected to
use modern topographic data.

2) Climate variables: annual, seasonal and monthly averages, minima
and maxima were calculated from 50-year runs of simulated climate
variables for temperature and precipitation.

3) Climate variability: we also used the simulated climate variables to
calculate several indices of climate variability including: the stan-
dard deviation (temperature), the coefficient of variability (precipi-
tation), the Standard Precipitation Index (SPI), and the Standardized
Temperature Index (STI). The Standardized Precipitation Index (SPI)
(McKee et al., 1993; Guttman, 1999; Hayes, 2000) was calculated
using the SPEI package in R (Vicente-Serrano et al., 2010) while the
Standardized Temperature Index (STI) was calculated using the STI
package in R (Fasel, 2015).

The initial candidate predictors (N = 40) are listed in Table 1.

2.2.3. Preparation of datasets
The climate predictors were interpolated using the Natural Neighbor

tool and resampled in ArcMap to create a raster with a resolution of 1 km
per 1 km. The resulting rasters were clipped using a Holocene coastal
mask reflecting the lack of archaeological surveys on currently sub-
merged Pleistocene land masses, and a mask representing the ice sheets
during their maximum extension, i.e., MIS 3 GSs, from Ehlers et al.
(2011) (Fig. 1).

A 1 km scale point feature class was created in ArcMap and the
georeferenced archaeological sites (presences) were loaded into this
point feature class. In order to prevent the occurrence of multiple ob-
servations, we have retained only one presence when several layers
documented the same climate phase. Furthermore, sites within 2 km of
each other were considered as a single presence. As a result, 35 pres-
ences were retained for GSs and 67 presences for GIs. Archaeological
sites are discrete locations, but hunter-gatherers exploit daily catchment
areas that have a roughly 10 km radius. We therefore apply a 10-km
buffer around the sites in order to capture each catchment only once.
Predictor values were extracted to the resulting point feature class for
use in the modeling process.

To remove highly correlated variables, we conducted an autocorre-
lation test using the findCorrelation function in the caret R package
(version 6.0.96) developed by Kuhn et al. (2022). Correlated predictors
with a correlation coefficient greater than 0.8 were manually removed
(see Paquin et al., 2024; SI 3 for details). After this procedure, 23 pre-
dictors were tested for GSs and 25 predictors were tested for GIs.
Table 1, column Selection, indicates the list of final candidate pre-
dictors chosen for the GS and GI models.

2.3. Modeling method

2.3.1. Random forest
To build predictive models of habitat suitability, we employ RF using

regression trees. RF is a nonparametric tool developed by Breiman
(2001) that can be utilized for variable selection. This method is a
popular alternative to linear regression models and allows us to consider
a large number of predictors, relatively few observations and non-linear
relationships (Grömping, 2009; Genuer et al., 2010). RF involves
building multiple classification trees where each tree is a random subset
of the observations, and each split within each tree is a random subset of
a prescribed number of randomly selected candidate variables
(Grömping, 2009). The final model for each run averages the results
obtained for each tree within the final forest. Compared to other
modeling methods currently in use, RF provides good average prediction
performance (Couronné et al., 2018).

The RF analysis was conducted using the randomForest package
(Cutler and Wiener, 2022) and run on R software version 4.3.3 (R Core
Team, 2024) implemented in R-Studio version 2023.12.1 (RStudio
Team, 2023) (see SI 2). Default values were used for several model
parameters, including the number of trees grown (n-tree = 500) and a
10-fold cross-validation. The number of randomly selected
pseudo-absences was set equal to the number of presences, following
Barbet-Massin et al. (2012). To enhance the sensitivity of our models, we
increased the m. try value, which is the number of input variables
randomly selected at each split, as suggested by Genuer et al. (2010)
setting mtry = p from the first runs (23var model for GSs and 25var
model for GIs). We executed RF 100 times per run and computed the
average results to generate the final model.

Outputs include two standard metrics: accuracy (a performance
metric based on a confusion matrix) and the out-of-the-bag error rate
(OOB) which is calculated internally in RF (Liaw and Wiener, 2002).
When building a RF model, a portion of the data (30% in our case) is not
included in the bootstrap sample used to form an individual tree, this is
the out-of-bag (OOB) sample. Model predictions based on the bootstrap
sample are compared with the OOB data for each tree to compute the
OOB metric. Both accuracy and OOB are commonly used to evaluate
model performance in RF (e.g., Liaw and Wiener, 2002; Elith and
Leathwick, 2009; Fox et al., 2017). The model also calculates the Vari-
able Importance (VI) index which is used in the variable selection pro-
cess. Density plots for the selected variables are included.

2.3.2. Model iteration and selection
A nested series of RF runs was performed to identify the model with

the best performance and most parsimonious list of predictors (ff. Día-
z-Uriarte and Alvarez de Andrés, 2006; Genuer et al., 2010). After each
run, candidate predictors were ranked based on their average VI scores
(AVI). The bottom 20% was removed in the following run, and the
process was repeated until only two predictors remained. The best
model was selected based on overall performance (OOB and accuracy)
and the number of predictors tested (see SI 3 for the detailed results).

2.4. Analyzing and mapping the results

After selecting the final models, we created habitat suitability maps
in ArcMap. These maps show the mean model predictions for each cell in
the spatial extent. To create them, we interpolated the model output
point features using the Natural Neighbor tool in Spatial Analyst. We
produced two habitat suitability maps, one for GS and one for GI.
Finally, we applied the ice sheet and coastal masks.

As recommended by Klein et al. (2023) and Paquin et al. (2024), we
conducted a Generalized Linear Model (GLM) using the predictors
retained for GSs and GIs final models to test for collinearity. To do this,
we utilized the GLM function from the caret package in R (Kuhn et al.,
2022). The number of pseudo-absences was set to be 10 times greater
than the number of presences, as recommended by Wisz and Guisan
(2009). The model was run 100 times, and the Variation Inflation Factor
(VIF) was calculated for the retained variables. VIF values < 5 indicate
that collinearity is negligible. Further detailed information on GLM tests
can be found in SI 3.

Finally, we mapped the predictors that were retained in the final RF
models. This allows for a visual comparison of the distribution of pre-
dictors between GSs and GIs (see SI 4). Bar plots were created using the
ggplot2 package in R (Wickham, 2016) to compare the distribution of
habitat suitability in Europe between GSs and GIs. Density plots were
created using the same package to compare the distribution of predictors
associated with presences and pseudo-absences.

c STI = Standardized Temperature Index.
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3. Results

3.1. GSs models

Two models have the best combination of low OOB and high

Accuracy values (Fig. 2): 7var and 4var. We select the more parsimo-
nious model, 4var, as the final model for habitat suitability during GSs
(Fig. 3). The VIF values indicate that the predictors retained exhibit a
negligible degree of collinearity, with a value < 5 for each predictor.

The predictors included in the selected model are, in order of

Fig. 2. Model performance indices for GSs models. OOB and accuracy values were extracted and averaged for each model run. The dark green line indicates the
lowest OOB value (MIN = 0,3130), while the light green lines indicate one standard error from this value (SE = 0,0023). The results are rounded to the nearest 10e-4.

Fig. 3. Habitat suitability model for GSs. The habitat suitability model generated by the 4var model and retained as the final model for GSs is displayed with the
sites utilized as presences.

B. Albouy et al.



Quaternary Science Reviews 338 (2024) 108812

7

importance (Table 2): 1) minimum precipitations during autumn
(p_min_aut); 2) number of months within a normal range in temperatures
(sti_norm); 3) variation in monthly temperatures during summer
(t_sd_sum); and 4) slope (see SI 4. for detailed maps of these predictors).

3.2. GIs models

Based on model performance, we select 8var as the final model for
habitat suitability during GIs (Figs. 4 and 5). The VIF values indicate that
the predictors retained exhibit a negligible degree of collinearity, with a
value < 5 for each predictor.

The predictors included in the selected model are, in order of
importance (Table 3): 1) variation in monthly temperatures in autumn
(t_sd_aut); 2) maximum precipitations during winter (p_max_win); 3)
slope; 4) maximum precipitations during spring (p_max_spr); 5) number
of months within a normal range in temperatures (sti_norm); 6) seasonal
variation in precipitations during spring (p_var_spr); 7) variation in
monthly temperatures during winter (t_sd_win); and 8) variation in
precipitation during winter (p_var_win) (see SI 4. for detailed maps of
these predictors).

4. Discussion

4.1. Neanderthal habitat suitability in europe during MIS 3

RF relates the distribution of known occurrences (e.g., archaeolog-
ical sites) with the environmental/spatial characteristics at those loca-
tions, producing a multi dimensional model that defines a set of suitable
conditions for a given species. The model can be projected into
geographical space and used to provide a better understanding of the
environmental conditions a species prefers and/or to predict its poten-
tial geographic distribution., i.e., habitat suitability (Guisan and Zim-
mermann, 2000; Elith and Leathwick, 2009; Franklin et al., 2015). In
general, habitat suitability produced values between 0 and 1: values
tending towards 0 indicate a low potential habitat, values tending to-
wards 1 indicate a high potential habitat (Kellner et al., 1992).

This research produced two habitat suitability maps for Neanderthal,
considering GS and GI conditions in Europe during MIS 3 (Figs. 3 and 5).
In addition to these two maps, we have also used a bar plot to compare
the distribution of habitat suitability values in Europe for these two
climatic phases (Fig. 6).

During GSs, habitat suitability values for much of Europe are low
(0.3–0.4) and a relatively small proportion of the spatial domain has
high habitat suitability values (>0.6) (Fig. 6). High values of habitat
suitability are associated with six geographical areas: the Franco-
Cantabrian region, southern Iberia, the east of the Paris basin, the
Ardennes, the Rhone valley, and the Balkans (Fig. 3). These regions are
separated from each other by what we can consider as paleoenvir-
onmental boundaries, which can be identified in the center of Iberia, in
the south of the Loire Valley, and in the south of the Alps. The territories
in the north and northeast of the European area appear to be areas of low
habitat suitability, most likely due to their proximity to the Scandina-
vian ice sheet and the continental Eurasian climate.

During GIs, in contrast, a proportionally larger territory has rela-
tively high habitat suitability values (>0.6) and these are more evenly
distributed across the territory, encompassing the geographical areas
described for the GSs (Fig. 5). Medium to high values are also observed
throughout the Paris Basin and are relatively more prevalent in Central
and Eastern Europe. Northern Europe still has relatively low habitat
suitability, likely related to the proximity of the Scandinavian ice cap
and the continental Eurasian climate, which may have acted as paleo-
environmental and dispersal barriers from 55◦N during the Pleistocene
(Nielsen et al., 2017).
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4.2. Significant predictors

The modeling methodology presented in this paper has allowed us to
test two scales of climatic fluctuations that may have influenced the
habitat suitability of Neanderthals in Europe during MIS 3: climate

change and climate variability. Climate change refers to long-term,
millennial fluctuations in global climate conditions that have affected
the long-term evolutionary processes of our lineage (Potts, 1998; Grove,
2011) and influenced hominin dispersal (van Andel and Davies, 2003;
Hublin and Roebroeks, 2009; Cupillard et al., 2013; Timmermann and

Fig. 4. Model performance indices for GIs models. OOB and accuracy values were extracted and averaged for each model run. The dark green line indicates the
lowest OOB value (MIN = 0,2916), while the light green lines indicate one standard error from this value (SE = 0,0059). The results are rounded to the nearest 10e-4.

Fig. 5. Habitat suitability model for GIs. The habitat suitability model generated by the 8var model and retained as the final model for GSs is displayed with the
sites utilized as presences.

B. Albouy et al.
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Friedrich, 2016; Timmermann et al., 2022). Climate variability refers to
changes in climate conditions on smaller time scales compared to the
mean climate trend and is also thought to have affected hominin evo-
lution (Grove, 2011; Potts, 2013) and influenced human spatial
behavior (Burke et al., 2017). Climate variability creates ecological
risks, such as the periodic failure of key resources making foraging
behavior uncertain (e.g., Winterhalder, 1986; Winterhalder et al., 1999;
Kaplan, 2000).

The hypothesis that climate variability represents a form of risk that
anatomically modern human (AMH) hunter-gatherers avoided was
tested using RF in an earlier publication (Burke et al., 2017). Here, we
test whether this hypothesis holds for Neanderthal populations using the
same stepwise procedure and a set of candidate predictors designed to
test whether or not climate variability is a key factor driving habitat
suitability (for similar uses of RF, see: Genuer et al., 2010; Fox et al.,
2017). The relative strength of the variables is quantified at each step
and final model selection results in the identification of the best set of
predictors. Several predictors associated with climate variability are
selected for in our final models (Tables 2 and 3; Figs. 7 and 8), allowing
us to conclude that Neanderthals, like AMHs (Paquin et al., 2024), avoid
regions where climate variability is high. Our results also confirm the
existence of shifts in the spatial behavior of Neanderthals under strongly
contrasting stadial/interstadial climate regimes.

Relative to background values the response curves for the GS model
(Fig. 7) indicate more predictable monthly temperatures (sti_norm)
despite higher temperature variance in summer (t_sd_sum), higher pre-
cipitation minima in autumn (p_min_aut) and slightly higher slope
values. This behavior suggests that Neanderthals avoided areas
impacted by late drought, which may have resulted in a reduction of
biomass richness and available resources prior to winter.

More predictable monthly temperatures are also indicated for GIs
(Fig. 8) in addition to lower temperature variance in autumn and winter
(t_sd_aut, t_sd_win), less variability in precipitation in spring and winter
(p_var_spr, p_var_win), somewhat rainier than average conditions in
winter (p_max_win) as opposed to spring (p_max_spr), and slightly higher
slope values. These data suggest that less predictable environments were
generally less suitable. We can conclude that Neanderthal groups tended
to avoid regions where their ability to predict resource availability was
limited. Slope values could reflect a preference for slightly more
elevated positions above valley bottoms. Temperature maxima and
minima did not emerge as significant predictors, indicating a tolerance
for a range of temperature values while precipitation rates clearly more
important determinants of habitat suitability.

4.3. Characterizing neanderthal resilience

Comparing the two habitat suitability models from a spatial and a
chronological perspective helps evaluate preliminary hypotheses
derived from our previous work (Albouy et al., 2023) about Neanderthal
spatial behavior and resilience.

The temporal window between the GI-14 and GI-10, which encom-
passes the majority of documented sites, enables a more precise analysis
of the demographic and population dynamics of Neanderthals between
the GS and GI stages. Fig. 9 shows decreases and increases in the number
of sites correlated with GS/GI cycles until GI-10, when the expected re-
expansion of the Neanderthal population after GS-11 does not occur.
The decreases in site numbers observed during GSs could be explained
either by a population contraction, or the concentration of groups
around fewer sites. Conversely, an increase in the number of sites during
the GIs could indicate an increase in population size or a more dispersed
territory exploitation strategy (see Albouy et al., 2023 for a discussion
about GS/GI potential land use strategies). This pattern, sometimes
described as “sinks and sources”, “ebb and flow” or “niche tracking” (see
Hublin and Roebroeks, 2009; Dennell et al., 2011; Burke et al., 2017), is
an indication of the resilience of Neanderthal populations during the
Pleistocene as they recovered from climate downturns.Ta
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Finally, it appears that GI-10, which coincided with Heinrich stadial
4 (HS-4) (Sánchez Goñi and Harrison, 2010), was a crucial period in
Neanderthal population dynamics, marked by a failure to rebound after
GS-11 and a significant decrease in recorded presences. The most recent
sites recorded, i.e., Bajondillo for GS-10 and Cova Gran with Cueva del
Boquete for GS-9, indicate the final retreat of the Neanderthal pop-
ulations to what our model identifies as one of the “core” habitats, as
suggested by previous studies (d’Errico and Sánchez Goñi, 2003; Fin-
layson, 2008; Jennings et al., 2011). This final contraction in the Iberian
Peninsula may have been caused by the arrival of anatomically modern
humans in Europe. Excluding potential early incursions, such as the
Neronian (Slimak et al., 2022), the Aurignacian lithic techno-complex
represents the first wave of permanent migration of Homo sapiens into
Western Europe (Sawyer et al., 2015). Indeed, GI-10 marks a phase of
significant population increase for this species in Europe (Paquin et al.,
2023). It has been suggested that anatomically modern humans had
greater tolerance for GS conditions (Staubwasser et al., 2018), facili-
tating their expansion through Europe (Vidal-Cordasco et al., 2022) at a
time when Neanderthal populations contracted. This population shift
may have resulted in the competitive exclusion of Neanderthals from
favorable habitat at a time when they were undergoing climate-induced
stress (Banks et al., 2008a; Melchionna, 2018; Melchionna et al., 2018;
Timmermann, 2020; Klein et al., 2023).

4.4. Comparison with other published models

From a spatial perspective, when comparing the two habitat suit-
ability models constructed in this work, we observe that during in-
terstadials, the relative proportion of suitable territory was greater. The
GIs, i.e., warm periods, were therefore more favorable for Neanderthals,
providing room and resources for population expansion. Several authors
have interpreted this as evidence for a Neanderthal preference for
warmer conditions (Stewart, 2007; Serangeli and Bolus, 2008; Hublin
and Roebroeks, 2009; Benito et al., 2017; Yaworsky et al., 2024).
However, our results indicate that climate variability is more important
than temperature in shaping Neanderthal habitat suitability. Regions
that provide suitable habitat during both GSs and GIs could be

considered core habitat. Our results confirm that southwestern Europe
was a core habitat for Neanderthals during MIS 3 (van Andel and Davies,
2003; Serangeli and Bolus, 2008). As we suggested in a preliminary
study (Albouy et al., 2023), it appears that the eastern portion of the
Paris basin, the Ardennes and the Rhone Valley formed part of this core
habitat. These areas of persistent settlement and retreat during the GSs
can be considered as refuge areas (Bennett and Provan, 2008). Our
models also identify three other, smaller core areas mentioned in the
literature, including coastal areas (Finlayson, 2008): the Liguria
(Finlayson, 2008; Riel-Salvatore et al., 2022), the Balkans and the
Peloponnese (Finlayson, 2008). Finally, we confirm that the southern
Iberian Peninsula represents the final retreat of Neanderthal populations
prior to their extinction (d’Errico and Sánchez Goñi, 2003; Finlayson,
2008; Jennings et al., 2011).

The expansion of suitable habitat during the GIs implies a greater
connectivity between populations occupying European space.
Conversely, during the GS phases the fragmentation of habitable terri-
tory likely forced some Neanderthal groups to adapt quickly to unfa-
vorable conditions (Bradtmöller et al., 2012) and eventually, abandon
territory.

Previous research has also modeled the impact of MIS 3 climate
fluctuations on the habitat of European Neanderthals (e.g., Banks et al.,
2008a; Melchionna, 2018; Melchionna et al., 2018; Timmermann, 2020;
Klein et al., 2023; Yaworsky et al., 2024). Although these studies differ
from one another and from this research in terms of the presence data,
climate simulations, candidate predictors, and modeling techniques, the
resulting models are similar to ours.

In their pioneering work, Banks et al. (2008a) evaluated the extent of
suitable habitat for Neanderthals during three MIS 3 phases: pre–HS–4
(GI-11 to GI-9), HS-4 and post–HS–4 (GI-8). Although their results
cannot be directly compared to ours due to differences in chronology,
their third model suggests a retreat of Neanderthals to southern Europe
and the Iberian Peninsula, after HS-4.

More recently, Melchionna et al. (2018) used species distribution
modeling to investigate the potential geographic ranges of Neanderthals
at 48 ka BP, 44 ka BP, and 40 ka BP. The authors used presence data and
four climatic predictors, including temperature and seasonal

Fig. 6. Comparison of habitat suitability values representation in Europe between GSs and GIs. The bar plots illustrate the percentage of values within the
European domain for each 0.1 habitat suitability interval. The blue bars represent values for the GIs model, while the red bars represent values for the GSs model.
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precipitation (winter and summer). They did not publish maps from
their analyses. However, they identified a progressive reduction and
fragmentation of the Neanderthal habitat during MIS 3, which is
consistent with our observations.

Timmermann (2020) tests several hypotheses regarding the disap-
pearance of the Neanderthals, including climate change (GS/GI) and the
impact of interactions withHomo sapiens (interbreeding and competitive
exclusion). Their results point out that climate fluctuations appear to
have had only a minor impact on the Neanderthal extinction, with only
regional effects. This suggests that the arrival of Homo sapiens in Europe
may have disrupted Neanderthals’ millennial repopulation strategies
from their refuge areas, which is not incompatible with our results.

Klein et al. (2023) use logistic regression to model habitat suitability
(Human Existence Potential) in the Iberian Peninsula for two climate
phases: a warm phase (GI-11 to GI-10) and a cold phase (GS-10 to
GS-9/HS-4). Their results indicate a high habitat potential in the coastal
zones, as well as in the north and south of the peninsula, and a low
habitat potential in the central region. They also observed a reduction
and partitioning of suitable habitat during the cold phase. Our results
show similar observations, but with less dispersion and heterogeneity of
values. These differences can be partly explained by the fact that our
research was conducted over a larger geographical area with a more
limited choice of sites.

Another recent study, by Yaworsky et al. (2024), uses Maximum
Entropy (MaxEnt) to explore Neanderthal niche space between 145 and

30 ka BP. Their results suggest a Neanderthal preference for warm cli-
mates. Therefore, the potential Neanderthal habitat in Europe would
have been at its maximum during MIS 5e (121 ka BP). During MIS 3,
their potential habitat expanded for the last time around 53 ka BP before
finally shrinking until the species’ extinction. Their models are consis-
tent with ours and show an expansion of Neanderthals in MIS 3,
concomitant to GI-14. In our results, however, it is only from GI-10
onwards that there appears to be a net population decline. It is
possible that this difference can be partly explained by the fact that we
use respectively different chronoclimatic scales. In any case, the
observed population decline also seems to be linked to the arrival of
Homo sapiens.

Our results are consistent with the main findings of previous studies
and suggest that: 1) Neanderthal spatial behavior was affected by
climate fluctuations during MIS 3; 2) habitat range expansions would
have occurred during interstadial periods and contractions during sta-
dial periods; and 3) the last Neanderthal populations are to be found in
core habitat in the Iberian Peninsula, where they may have been rela-
tively less exposed to competition with Homo sapiens dispersing from the
East (Paquin et al., 2024). The differences observed between these
studies and our research are partly explained by different modeling
protocols. On the one hand, one of our explicit goals was to study the
impact of climate change by contrasting habitat suitability models for
GS and GIs. The classification of sites into GS and GI occupations also led
us to be stricter in the number of sites selected (Albouy et al., 2023). We

Fig. 7. Comparison of the predictors value density between presences and pseudoabsences used in GSs model. The density plots permit the comparison of the
presence and pseudo-absence density for the predictor values included in the 4varmodel. The predictors are presented in order of their averaged variable importance.
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Fig. 8. Comparison of the predictors value density between presences and pseudoabsences used in GIs model. The density plots permit the comparison of the
presence and pseudo-absence density for the predictor values included in the 8varmodel. The predictors are presented in order of their averaged variable importance.
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also explicitly chose to test predictors linked to climate variability, in
addition to more conventional predictors such as temperature and pre-
cipitation averages and topographic variables.

5. Conclusion

The results of this research confirm that climate fluctuations affected
the availability and distribution of suitable habitat for Neanderthal
populations living in Europe during MIS 3. Furthermore, our findings
indicate that southwest Europe constituted a core habitat for the species,
in addition to several other smaller areas of persistent settlement which
we refer to as refuge areas. These include the Liguria, the Balkans, the
Peloponnese, and the Rhone valley. From a chronological perspective,
we observed the reduction and fragmentation of suitable habitat during
GSs and a re-expansion during GIs accompanied by decreases and in-
creases in the number of sites that could indicate shifts in population
size. Several of the climate predictors retained in our final models are
associated with climate variability, suggesting that ecological risk
management influenced Neanderthal spatial behavior during successive
stadial/interstadial cycles of MIS 3. Re-expansions during GI events we
interpret as evidence of climate resilience, until GI-10 which is marked
by a significant decrease in recorded presences and a final population
contraction in the Iberian Peninsula. This could be explained by the
arrival of Homo sapiens in Europe, further taxing Neanderthal resilience
and hampering their recovery.
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Paléolithique supérieur ancien (Isturitz) (phdthesis). Université Bordeaux 1.
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Staubwasser, M., Drăgușin, V., Onac, B.P., Assonov, S., Ersek, V., Hoffmann, D.L.,
Veres, D., 2018. Impact of climate change on the transition of Neanderthals to
modern humans in Europe. Proc. Natl. Acad. Sci. USA 115, 9116–9121. https://doi.
org/10.1073/pnas.1808647115.

Stewart, J.R., 2007. Neanderthal extinction as part of the faunal change in Europe during
oxygen Isotope stage 3. Acta Zool. Cracoviensia - Ser. A Vertebr. 50, 93–124. https://
doi.org/10.3409/000000007783995372.

Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M.,
Johnsen, S.J., Muscheler, R., Parrenin, F., Rasmussen, S.O., Röthlisberger, R.,
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