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Theoretical and experimental studies suggest that both Hermitian and non-Hermitian quasicrys-
tals show localization due to the fractal spectrum and to the transition to diffusive bands via
exceptional points, respectively. Here, we present an experimental study of a dodecagonal photonic
quasicrystal based on electromagnetically-induced transparency in a Rb vapor cell. First, we observe
the suppression of the wavepacket expansion in the Hermitian case. We then discover a new regime,
where increasing the non-Hermiticity leads to delocalization, demonstrating that the behavior in
non-Hermitian quasicrystal is richer than previously thought.

Quasicrystals are characterized by long-range order
without translational symmetry [1]. In mathematics,
they correspond to infinite non-periodic tilings. They
can possess rotational symmetries incompatible with the
translational one, such as the famous pentagonal sym-
metry of the Penrose tiling [2]. Another interesting
and important case is the dodecagonal symmetry [3–5],
which can be obtained from a superposition of two hon-
eycomb lattices [6–9] rotated by 30◦. This configura-
tion is particularly timely, because of the extreme popu-
larity of moiré honeycomb lattices, such as magic-angle
twisted bilayer graphene [10], obtained for angles of ro-
tation smaller than 30◦. Moiré lattices and quasicrystals
share many common properties, such as the presence of
flat bands [11–13] in their spectrum. Dodecagonal qua-
sicrystals are studied in many fields: chemistry [14–17],
material science [4, 18, 19], electronics [8], topological
physics [20–22], and photonics [7, 23–31].

For 1D quasicrystals or quasiperiodic lattices, many
important analytical results were obtained using the
Aubry-André model [32]: instead of considering a struc-
ture without translational symmetry in the positions
of individual sites, one considers a periodic lattice
with an incommensurate on-site potential of a variable
strength [33–36]. It is now theoretically established and
experimentally demonstrated that the dispersion of such
a 1D quasicrystal contains an infinite number of gaps
which obey the gap labeling theorem [37–40]. Each
single band is infinitely narrow (flat), and the mobil-
ity of the particles filling the bands is strongly sup-
pressed [33, 41]. This model allows studying the tran-
sition towards the fractal energy spectrum and the asso-
ciated localization [42], driven by the variable strength

of the on-site potential.
2D quasicrystals have also been studied theoretically

using the Aubry-André approach [13], namely consider-
ing a superposition of two lattices: one lattice is fixed,
while the strength of the second lattice is varied, allow-
ing to observe the modification of the transport. An-
other theoretical approach was to start directly with a
quasicrystal potential and vary its strength relative to
the recoil energy [43–46], allowing to see the localiza-
tion of some of the eigenstates described by their inverse
participation ratio. The bands tend to a Cantor set ana-
logue [47], as in 1D [48]. In experiments with Hermi-
tian 2D quasicrystals, phononic [49] and photonic [50]
bandgaps were explicitly observed, in particular in do-
decagonal structures [25]. Localization in photonic qua-
sicrystals of different symmetries has been demonstrated
very recently [51], and also the enhancement of the trans-
port by disorder [52].

The potential can also be imaginary, making pos-
sible non-Hermitian phenomena analogous to the PT-
symmetry-breaking transition, well-known in modern
photonics [53]. Such transition has recently been pre-
dicted [36] and observed experimentally [54] in a 1D
quasicrystal: increasing the non-Hermiticity induces a
phase transition, which ultimately suppresses the mobil-
ity edge. All states become localized, and the mecha-
nism is not due anymore to the quasi-crystal flat bands,
but to the emergence of diffusive non-Hermitian bands
(Fermi arcs limited by exceptional points). The Aubry-
André approach has often been used for non-Hermitian
systems [55–57]. Theoretical analyses of 2D systems have
also been performed, based on a specific complex poten-
tial case [58], as the one considered in the 80s [59], with
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results similar to 1D.
In this work, we take advantage of a recon-

figurable photonic platform, atomic vapors under
electromagnetically-induced transparency (EIT) [60] in
a three-level atomic configuration [61–63], to perform an
experimental study of a 2D Hermitian and non-Hermitian
dodecagonal quasicrystals with a tunable ratio of intensi-
ties between the two honeycomb lattices forming the qua-
sicrystal and a separately controllable non-Hermiticity.
We demonstrate the localization transition with the in-
crease of the intensity ratio of two lattices in the Hermi-
tian case. On the contrary, in the non-Hermitian case the
initial localization is followed by a delocalization. The
latter is caused by the wavepacket redistribution due to
the lifetime difference, occurring without crossing excep-
tional points.

The experimental scheme is shown in Fig. 1a. Two
honeycomb photonic lattices are optically induced inside
a Rb vapor cell by two hexagonal coupling beams EC1

(frequency ωc1) and EC2 (ωc2) with the same period of
200 µm, injected into the vapor cell along the z direction
(Fig. 1a is just a sketch, the experimental lattices are
much larger). There exists a rotation angle (in the x− y
plane) of 30◦ between the two hexagonal patterns. A
weak Gaussian probe beam Ep (ωp) from a continuous-
wave tunable laser co-propagates with coupling beams
to excite a three-level atomic configuration (Fig. S1 in
Supplementary [64]), where the well-known EIT effect
can occur at appropriate detunings satisfying the two-
photon resonance [60] δp − δc1(δc2) = 0. The frequency
detunings δi (i = p, c1 and c2) are defined as the differ-
ence between the levels driven by laser field E i and its
frequency (see [64]). Under the EIT condition, the sus-
ceptibility χ experienced by Ep is inversely related to the
intensity of the coupling beams [65, 66]. The superposi-
tion intensity of two coupling beams is shown in Fig. 1b.
Each coupling beam forms a single honeycomb photonic
lattice (dark sites of the hexagonal pattern). The prop-
agation of a probe beam through the vapor cell with an
EIT-induced susceptibility distribution is described by
the paraxial equation:

i
∂E

∂z
= − 1

2k0
∆E − k0χ

2
E, (1)

where k0 is the probe wave vector. This is equivalent to
a 2D time-dependent Schrödinger equation with z ∼ t
(time), k0 ∼ m (particle mass), and χ ∼ −U (external
potential). Susceptibility maxima (dark sites in Fig. 1b)
thus correspond to potential minima.

The transmitted probe beam is received by a charge-
coupled device camera (placed behind the output plane
of the cell) through an imaging lens. During the experi-
ment, the detuning of the probe beam is set as δp = −260
MHz, while δc1 and δc2 are manipulated [around positive
two-photon detuning δp−δc1(δc2)] to control the degree of
non-Hermiticity of the induced photonic lattice (detun-

FIG. 1: a) Experimental scheme. b) The experimentally gen-
erated dodecagonal quasicrystal lattice formed by two hexag-
onal patterns rotated by 30◦. c) Reciprocal-space image of the
experimental quasicrystal lattice exhibiting a 12-fold symme-
try in 3 orders of diffraction.

ings are in [64]). The 12-fold symmetry of the resulting
lattice is underlined in Fig. 1b by the white dodecagon.
Figure 1c shows the reciprocal-space image also exhibit-
ing a 12-fold pattern with the first three diffraction or-
ders clearly visible, which confirms the formation of a
quasicrystal [8].

We study the evolution of the probe beam in the qua-
sicrystal potential created by the coupling beams (un-
der the limitations of the experimental method, see sec-
tion I.C in [64]). The probe beam represents a narrow
wavepacket (comparable to a single lattice site), its ap-
proximate injection point is shown by a yellow arrow in
Fig. 1a. The duration of the time evolution in the 2D
Schrödinger equation is fixed by the length of the vapor
cell in the z direction. It is sufficient for the wavepacket
to expand over several unit cells in a honeycomb lattice
(its maximum is not necessarily at the injection point),
whereas in the quasicrystal configuration the expansion
is expected to be suppressed.

Figure 2 presents the results obtained in the fully Her-
mitian case. We keep one honeycomb lattice turned on
with a constant intensity I1, while varying the intensity
I2 of the second lattice. The top panels Fig. 2a-c show
the spatial distribution of the output probe patterns for
three ratios of I2/I1 (0, 0.4, 1, respectively). The cells of
the two lattices are indicated in Fig. 2a,b with white and
green dashed hexagons. Magenta dashed ellipses indicate
the wavepacket width defined as the standard deviation,
which is a square root of the second moment of the dis-
tribution (the variance). A clear narrowing of the output
wavepacket can be observed. We note that it is perfectly
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normal that the standard deviation of a multimodal dis-
tribution with different peak heights is smaller than the
distance between these peaks [64, 67]. We have system-
atically studied the width of the output wavepacket as
a function of the ratio I2/I1. The results are shown in
Fig. 2d with black dots with error bars corresponding to
the uncertainty of the extraction. For a full set of images
see [64] or an online movie.

The output width of the wavepacket exhibits a continu-
ous decrease (apart from a special localization point [68])
until it drops to its minimal size, approximately corre-
sponding to the size of a single lattice site ws that we take
as a reference for this plot. To explain this behavior and
to determine the transition point, we have performed nu-
merical simulations based on Eq. (1) (see [64] for details).
An example of the dispersion of a single honeycomb lat-
tice is shown in Fig. 2e. It is plotted along the ΓKMK ′Γ
high-symmetry points. As expected [47, 48], the increase
of I2/I1 up to 1 opens a set of gaps in the dispersion,
making the band similar to a Cantor set. An example of
the dispersion for I2/I1 = 1 is shown in Fig. 2f. It ex-
hibits a lot of gaps separating narrowing bands. The den-
sity of states (DoS) allows us to detect and analyze full
gaps. Figure 2g shows the DoS for the two cases shown in
panels e and f: honeycomb lattice and dodecagonal qua-
sicrystal. The Dirac point is visible for the honeycomb
lattice (black) as a zero-DOS point with linear behavior
in its vicinity. In the quasicrystal case (red), multiple
large gaps accompanied by narrower secondary gaps are
visible. The edges of each gap demonstrate van Hove
singularities (DoS peaks).

The wavepacket expansion is determined by the group
velocity of its components. If the wavepacket is nar-
row in real space, it covers the whole Brillouin zone and
thus allows probing the maximal group velocity available.
Our simulations show that the first (and largest) gap is
opened precisely at the point of highest group velocity,
because here the wavefunction is the most sensitive to
the perturbing potential. It corresponds to the ΓK direc-
tion, where the dispersion of a single honeycomb lattice is
given by E(k) = ±J(1 + 2 cos ka/2) in the tight-binding
limit, and the group velocity is vg(k) = ±ℏ−1Ja sin ka/2,
with the maximal vg point kmax = π/a. The gap size
∆ is linearly proportional to the strength of the incom-
mensurate potential λ = I2/I1 for small perturbations:
∆ ∼ λ. This allows estimating the wavepacket expansion
via the group velocity [64] as a function of the perturba-
tion strength λ:

w(I2/I1)

ws
= 1 +A

√
1−B

(
I2
I1

)2

, (2)

where A links the group velocity and the wavepacket
width (including the effective propagation time), while
B links the gap size ∆ and the perturbation λ. The
red curve in Fig. 2d fits the experimental data with
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FIG. 2: Wavepacket expansion and the localization transi-
tion with the increase of the second lattice strength. a)-c)
Spatial images of the wavepacket after its evolution in the
Hermitian lattice (lattice intensity ratio I2/I1 = 0, 0.4, 1,
respectively), magenta line marks the wavepacket size. d)
Wavepacket width w normalized by the lattice site width
ws. Red arrows mark the correspondence with panels a)-
c). e) The dispersion of a single honeycomb lattice through
ΓKMK′Γ′ points. f) The dispersion of a quasicrystal showing
multiple gaps. g) The comparison of the DOS for a periodic
honeycomb lattice and a quasicrystal. The gaps appear as
zeroes of the DOS.

Eq. (2), giving the fitting parameters A ≈ 1.35 ± 0.09
and B ≈ 2.81 ± 0.12. The value of A is directly deter-
mined by the wavepacket size at I2 = 0 in Fig. 2d. The
value of B allows determining the localization transition
point (I2/I1)loc =

√
1/B ≈ 0.597 ± 0.013, of the same

order of magnitude as in other quasicrystals [13]. We
conclude that we have observed a localization transition
for a Hermitian 2D dodecagonal quasicrystal and found
its approximate position. The transition point depends
on the particular periodic potential.

We now turn to the non-Hermitian case by changing
the probe detuning. Indeed, the EIT configuration al-
lows varying both real and imaginary parts of the effec-
tive potential via the complex susceptibility, potentially
providing an important non-Hermiticity to the poten-
tial. It ultimately allows observing a transition similar
to the PT-symmetry-breaking one [63], but we remain
below this transition, defined by (χ′′/χ′)crit ≈ 0.4. Here,
(χ′′/χ′) ≈ 0.2. We fix the intensity I1 of the first honey-
comb lattice and vary the other intensity I2, with both
lattices being non-Hermitian. We note that the real part
of the potential is different from that of Fig. 2a-d.

Figure 3a-c shows the spatial images of the output

https://www.youtube.com/watch?v=xERIOxb7muE


4

0 2-2
x/a

0

2

-2

y/
a

a) b) c)

d) e)

f) g)

0 2-2
x/a

0 2-2
x/a

FIG. 3: Localization-delocalization transition in a 2D
non-Hermitian quasicrystal. a)-c) Spatial images of the
wavepacket after its evolution in the non-Hermitian lattice
(lattice intensity ratio I2/I1 = 0.1, 0.4, 1, respectively). Ma-
genta line marks the wavepacket size. d) Wavepacket width
w normalized by the reference width w0 (corresponding to
I2/I1 = 0). Points with error bars (instrumental uncertainty)
– experiment, dash-dotted line – theory. e) Real (black) and
imaginary (red) parts of the eigenenergies of the weak complex
potential model. f) Fourier-transform of the angular pattern
of the panel c (I2/I1 = 1) exhibiting a maximum correspond-
ing to dodecagonal symmetry C12. g) Intensity of the C12

maximum of the Fourier transform as a function of I2/I1: the
symmetry of the wavepacket inherits that of the lattice.

beam for three values of I2/I1 (0.1, 0.4, and 1, respec-
tively). Interestingly, after the onset of localization, the
wavepacket expansion is recovered almost completely,
and the symmetry of the final wavepacket changes. Fig-
ure 3d shows the wavepacket size w (black dots) nor-
malized by the size w0 observed for a single honeycomb
lattice I2/I1 = 0 (for a full set of images see [64] or an
online movie). The measurements demonstrate first a
rapid decrease and then an increase of the width, with a
minimum around I2/I1 ≈ 0.4.

To understand this behavior, we use the weak potential
approximation and work with an effective Hamiltonian
(see [64]). This allows us to obtain the asymptote shown
in Fig. 3d with a black dash-dotted line. It describes the
wavepacket broadening due to the non-Hermitian mech-
anism described by the following Hamiltonian:

H = α(k − k0)σz + U ′σx + iU ′′σx. (3)

This Hamiltonian exhibits exceptional points if U ′ = 0,
that is, if the potential is purely imaginary. The posi-
tion of exceptional points is determined by (k∗ − k0) =
±U ′′/α. In our case, they are not accessible, since

U ′ ̸= 0. Nevertheless, the non-Hermitian nature of the
Hamiltonian leads to important consequences: the de-
cay rate of the states starts to depend on their wave
vector. The eigenvalues are given by E(k − k0) =
±
√
U ′2(1− iλ)2 + α2(k − k0)2. Figure 3e shows the cor-

responding correction to the overall decay rate. The re-
sulting decay rate profile leads to the concentration of
the wavepacket at longest-living states in the reciprocal
space at the edge of the largest gap. Because of this,
the wavepacket width in real space grows as a function
of the ratio of the two lattices for fixed evolution time t,
according to the following law [64]:

∆r =
C√

1−D
(

I2
I1

)2
. (4)

Figure 3d shows a fitting with C ≈ 0.46 ± 0.02 (consis-
tent with Fig. 2: the wavepacket expansion gives a factor
C−1 ≈ 2 with respect to a single site) and D ≈ 0.79±0.02
(meaning that the characteristic decay length due to the
non-Hermiticity is shorter than the vapor cell length [64],
in agreement with the experiment). The theoretical curve
presents a good agreement with the experimental data.
We therefore conclude that while in periodic systems
the non-Hermiticity can lead to localization via the PT-
symmetry-breaking transition, in our quasicrystal we ob-
serve that the non-Hermiticity leads to delocalization in
wavepacket expansion. We note that delocalization has
been observed in pentagonal quasicrystals [52], but there
it was induced by disorder and not by non-Hermiticity.

Contrary to the Hermitian case, where the wavepacket
localization width is comparable to the size of a sin-
gle lattice site ws, the non-Hermitian case, thanks to
the suppression of the localization, allows observing the
wavepacket distribution over several neighboring sites for
I2/I1 = 1 (exact quasicrystal limit). We analyze the
angular distribution of this wavepacket (the probability
density averaged over the radial coordinate r) by per-
forming its Fourier transform (Fig. 3f). A clear max-
imum corresponding to the dodecagonal (C12) symme-
try is observed. The corresponding dodecagon is marked
in Fig. 3c with white dashed lines. This confirms that
the wavepacket inherits the symmetry of the quasicrys-
tal lattice. We also study the behavior of the C12 maxi-
mum of the angular Fourier transform with the intensity
of the second lattice I2/I1 in Fig. 3g (normalized to its
"background" value at I2/I1 = 0) and observe a strong
growth of this component above I2/I1 ≈ 0.6, when the
wavepacket delocalization takes place. This confirms that
for small intensity of the second lattice its effect can be
seen as an incommensurate (effectively random) on-site
potential for the initial (honeycomb) lattice, whereas for
large intensities the superposition of two lattices must
be indeed considered as a dodecagonal quasicrystal with
associated properties.

https://www.youtube.com/watch?v=IcpEFPxiMB0
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To conclude, we have studied the beam evolution in
a reconfigurable photonic platform, allowing us to con-
tinuously analyze the transition between a crystal and a
quasicrystal both in Hermitian and non-Hermitial cases.
We have observed an efficient localization of the beam in
Hermitian quasicrystals. We have also shown that the
combination of two localizing contributions (incommen-
surate potential and non-Hermiticity) can actually lead
to delocalization, allowing us to recover almost the same
transport properties as for a single periodic honeycomb
Hermitian lattice, but with the wavepacket symmetry be-
coming dodecagonal. A similar non-Hermitian delocal-
ization effect could also take place in moiré lattices. Our
work can find direct applications for on-demand beam
tailoring [69–71]. Generally speaking, the applications of
quasicrystals in photonics go beyond the localization [50],
waveguiding [72] and beam focusing [73]: in particular,
they were also shown to exhibit negative refraction [26].
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