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Abstract—Computing response times for resources shared by
periodic workloads (tasks or data flows) can be very time
consuming as it depends on the least common multiple of the
periods. In a previous study, a quadratic algorithm was provided
to upper bound the response time of a set a periodic tasks with
fixed-priority scheduling. This paper generalises this result by
giving not only a response time but a residual curve, that can
be used in other contexts. It also provides a formal proof in the
Coq language.

I. INTRODUCTION

Network calculus is a theory designed to compute upper
bounds on delays and memory usage in distributed real-time
systems. Given such a system, the network calculus offers
different ways to model it and different algorithms, producing
different bounds at different computation costs.

Even if network calculus is able to analyse realistic in-
dustrial configurations in a few seconds [1], some operations
have an exponential worst case complexity, related to the least
common multiple (lcm) of the periods of the involved flows.

Currently, when modelling periodic or sporadic flows, one
often use either an affine (i.e. fluid) model, with linear com-
plexity, or a staircase model, with exponential complexity.
This paper presents a quadratic solution for a very common
operation, involved in the computation of a residual service
for common scheduling policies.

This paper is inspired by [2], that gave a quadratic algorithm
for the response time of a set of periodic real-time tasks on a
CPU with fixed-priority scheduling. Since network calculus
also offers methods to compute upper bounds on the response
time of such systems, we had a look on the proof itself, and we
found that it relies on the computation of the CPU capacity that
is left to some task by the higher priority flows. This notion
also exists in network calculus, where it is called “residual
service” or “left-over capacity”. This paper adapts the result
in [2] to the network calculus framework and generalises it.

Since the proof is quite long, a formal proof, checked by
the Coq proof assistant [3], is also provided.

After a presentation of a relevant subset of network calculus
in Section II, and an overview of related work in Section III,
the result itself is presented in Section IV, and evaluated on
benchmarks in Section V.
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Fig. 1: Non-negative non-decreasing closure

II. NETWORK CALCULUS

This section provides a recall of network calculus formalism
in Section II-A, with a focus on sporadic workload and rate-
latency servers in Section II-B.

Notations: Let R denote the set of real numbers, R+ the
subset of non-negative real numbers, Z the set of integers,
for any i, j ∈ Z, Ji, jK = {i, i+ 1, . . . , j}, d·e : R → Z the
ceiling function (d1.2e = 2, d4e = 4, d−1.2e = −1). For any
set X , |X| denotes its cardinal. For any number x ∈ R, [x]

+
=

max(x, 0). For any function f : R+ → R, its non-decreasing
non-negative closure (illustrated in Figure 1) is defined by

[f ]
+
↑ (t) = max

0≤s≤t
[f(s)]

+
.

A. Generic results

Network calculus is a theory for deriving deterministic up-
per bounds in networks. Network calculus mainly manipulates
non decreasing functions to model flows, workload and server
capacity. This section provides a short introduction. A more
thorough treatment can be found in [4], [5], [6].

In network calculus, input and output flows of data are
modelled by cumulative functions which represent the amount
of data produced by the flow up to time t. Servers are just
relations between input and output flows: a server S receives
an arrival/input flow, A(t), and delivers the data after some
delay, as a departure/output flow, D(t). We always have the
relation D ≤ A, meaning that data can only go out after
its arrival. However, the exact input/output data flows are in
general unknown at design time, or too complex, and the
calculus of these cumulative functions cannot be obtained.
Nevertheless, the evolution of input/output data flows can be
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bounded considering contracts on the traffic and the services
in the network. For this purpose, network calculus provides the
concepts of arrival curve (illustrated in Figure 2) and service
curve.

Definition 1 (Arrival curve). Let A be a flow, and α a function.
Then, α is said to be an arrival curve for flow A, iff

∀(t, d) ∈ R+ × R+, A(t+ d)−A(t) ≤ α(d). (1)

Definition 2 (Minimal service). A server S offers a strict
minimal service curve β iff for all input/output A,D and for
any backlogged period (s, t] (i.e. such that ∀x ∈ (s, t] : A(t) >
D(t))

D(t)−D(s) ≥ β(t− s). (2)

Let us now present the main network calculus result which
allows, considering contracts, to compute bounds on delay.

Theorem 1 (Delay bound). Let S be a server transforming
an arrival A into a departure D. If the order of data within
the flow is preserved, the delay at time t is defined as
hDev(A,D, t), and the worst delay is hDev(A,D), with

hDev(A,D, t)
def
= inf

{
d ∈ R+ A(t) ≤ D(t+ d)

}
, (3)

hDev(A,D)
def
= sup

t∈R+

hDev(A,D, t) (4)

(see Figure 3 for an illustration).

A key point in network calculus is that arrival and service
curves do not have to be tight. Mathematically they only
have to be, respectively, upper and lower bounds (cf. eq. (1),
eq. (2)). From a modelling point of view, they are not the
exact behaviour, but only contracts. It has two complementary
consequences. On one hand, if the contract is too far away
from the real behaviour, the computed bounds will be large
w.r.t. the real worst case. On the other hand, a complex contract
can be approximated by a simpler one and all results still hold.
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Fig. 4: Common arrival and service curves

B. Sporadic workload, rate-latency servers and NP-SP policy

This paper focuses on periodic or sporadic flows and rate-
latency servers.

Given a flow sending frames of maximal size S ∈ R+ with
a period or minimal inter-arrival time P ∈ R+ and a jitter
J ∈ R+, it admits the arrival curve νT,S,J : R+ → R+,
t 7→ S

⌈
t+J
P

⌉
but also γr,b : R+ → R+, t 7→ rt + b (1), with

r = S
P and b = r(J + P ), as illustrated in Figure 4. Using

νP,S,J is called “staircase modelling” while using γr,b is called
“fluid modelling”.

Servers often offer a rate-latency service, i.e. a constant rate
R (a data link bandwidth for example) after some latency T
(some switching delay for example), modelled by a function
βR,T : t 7→ R [t− T ]

+.
When several flows share a server, its capacity β is shared

between the flows, and to compute an upper bound on the
delay for a flow of interest, network calculus offers to compute
a residual service (aka. left-over service). The expression
depends on the scheduling policy.

Theorem 2 (NP-SP residual service). Let S be a server shared
by n flows. If S offers a strict minimal service curve βR,0, and
each flow i has arrival curve αi and a maximal frame size Si,
then each flow j receives a residual service

βj =

βR,Smax
j /R −

∑
k∈hp(j)

αk

+

↑

(5)

with Smax
j = max

k∈lp(j)
Sk, and hp(j) (resp. lp(j)) the set of flows

with higher (resp. lower) priority than j.

The same kind of result holds, with some variations, with
other type of service curves, or preemptive static priority
server, FIFO or even EDF [6]2.

C. Illustrative example

Consider a bus with a bandwidth of 125kb/s, a non-
preemptive static priority arbitration rule, and a latency of

1Readers with some background in network calculus may notice that in our
definition, γr,b(0) = b whereas the common practice is to set γr,b(0) = 0.
But the results are simpler to prove with this definition, and can be easily
extended to the case where the function is null at origin.

2Readers with a background in network calculus may have noticed only
strict minimal service is presented, whereas applications of these results also
involve min-plus minimal service. Since the contribution of this paper is
independent of the service type, only one notion has been presented.
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i Pi Si ri bi
1 2.5 ms 125 b 50 kb/s 125 b
2 3.5 ms 125 b 35.72kb/s 125 b
3 3 ms 100 b 33.33 kb/s 125 b

TABLE I: Flow parameters of illustrative example

0.83ms. Three periodic flows, with period and packets sizes
given in Table I are sharing this bus. Flow 3 has the lowest
priority, then hp(3) = {1, 2}.

To compute the delay of this flow 3, one may choose to
apply eq. (5). One may then either set αi = νPi,Si,Ji (staircase
modelling) or αi = γri,bi (fluid modelling). In the top plot of
Figure 5 are plotted the two staircase arrival curves, ν1, ν2 and
the corresponding fluid arrival curves γ1, γ2. Eq. (5) involves
the sum α1+α2, being either ν1+ν2 or γ1+γ2 (both are in the
second plot of Figure 5), and the two residual services βstc

3 =
[β − ν1 − ν2]

+
↑ , βfluid

3 = [β − γ1 − γ2]
+
↑ are also plotted (given

in the third and fourth plots of Figure 5). The latency is then
bounded either by hDev(α3, β

stc
3 ) = h1 or hDev(α3, β

fluid
3 ) =

h1 + h2 + h3.
As expected, the staircase modelling, that captures in a more

accurate way the behaviour of the flows, gives a smaller bound
than the fluid modelling.

D. Problem statement

Whereas the staircase modelling computes better bounds, it
has several drawbacks.

One problem is the cost of the addition: whereas the addition
with a fluid model is easy to compute (there is a closed-form
formula,

∑
i∈I γri,bi = γ∑

i ri,
∑
i bi

, whose cost is linear w.r.t.
|I|), on the contrary, the addition with a staircase model is
hard: there exists no closed-form formula, only algorithms [7],
and the computation requires to unroll the function up to the
least common multiple of the periods3, leading to exponential
complexity.

Another problem is the absence of a closed-form formula.
Closed formulae, and especially those involving linear terms,
allow to perform explicit and efficient optimisations.

A last problem is related to the implementation: not all
tools are able to handle staircase functions, and several only
consider linear arrival curves, as presented in next section.

The contribution of this paper is to give a rate-latency
residual service that lies between the staircase and the fluid
residual service curves, denoted βR′,C/R′ in Figure 5.

III. RELATED WORK

A. Implementation of algebraic operators for network calculus

Practical application of network calculus requires an imple-
mentation of algebraic operations on functions.

For years, work has concentrated exclusively on linear
functions, using closed-form formulae [5], and some tools
were even only using affine arrival curves and rate-latency
service curves [8].

3In practice, periods are often integers or rational numbers that can be
mapped to integers once a common denominator is found.

The subclass of concave or convex piecewise linear func-
tions has also received some attention [9], [10] and is the class
currently used in the DISCO tool [11], [12].

A big step was the development of the (min,plus) library for
the RTC toolbox [13], representing piecewise linear functions
(called VCCs) as a collection of segments [14, Sec. 7].

A major breakthrough has been achieved with the definition
of the class of ultimately pseudo periodic functions, general-
ising VCCs, and the development of the algorithms allowing
effective computation [7].

The problem of computation time has not yet received a lot
of attention in academia.

In [15], the idea is to maintain a staircase arrival curve
per flow, but to approximate it by a concave piecewise linear
function of two segments before doing the sum, to keep linear
complexity.

The notion of a “container” is developed in [16], with
O(n log n) complexity on operations.

Another line of work is based on the fact that the compu-
tation of the bounds (the horizontal deviation, hDev) is based
only on the prefix of the involved functions, and that one can
maintain only a prefix and approximate the remainder of the
function by an affine segment [17], [18], [19].

Lastly, another way to reduce the computation time (and to
get larger upper bounds) is to replace some periods Ti by a
smaller value T ′i but such that the lcm of the T ′i is smaller
than the lcm of the Ti [20], [21].

B. Coq for real-time systems

Coq is a proof assistant [3], i.e., a tool offering a language
to state theorems and describe their proofs as well as a
software4 verifying the proofs. It can also be used to develop
software whose execution is proved to be conform to their
(formal) specification such as the CompCert C compiler [22]
or the CertiKOS operating system [23]. When used as a proof
checker, Coq will complain when attempting to use a lemma
without providing a proof for one of its hypotheses or if the
proved hypotheses do not match the expected ones.

Proving that a systems guarantees some real-time property
is often a complex task, requiring long and complex proofs.
One way to build correct analyses is to use a proof assistant,
like Coq [24] or Isabelle/HOL.

IV. CONTRIBUTION

This section details the main contribution of the paper: given
a rate-latency curve βR,T and a set of staircase functions
νTi,Ci,Ji , there exists a rate-latency function βR′,C/R′ which
is a lower bound, as shown in eq. (6), that can be used to
compute residual service.

Theorem 3 (Quadratic rate-latency bound). Let
R, T,C1, . . . , Cn, T1, . . . , Tn (resp. J1, . . . , Jn) be a set

4Think of it as a compiler (in practice it is indeed a compiler for a very
strongly typed language).
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of positive real (resp. non negative real) values such that∑n
i=1

Ci
Ti
< R. Then[

βR,T −
n∑
i=1

νTi,Ci,Ji

]+

↑

≥ βR′,C/R′ (6)

with

R′ = R−
n∑
i=1

Ci
Ti
, C = RT +W − max {L,Q}

R
,

W =

n∑
i=1

(
Ti + Ji −

Ci
R

)
Ci
Ti
,

L = min
k∈J1,nK

Ck

(
n∑
i=1

Ci
Ti
− max
i∈J1,nK

Ci
Ti

)
,

Q =

n∑
i=1

i−1∑
j=1

min {Ti, Tj}
CiCj
TiTj

.

The expression of the function βR′,C/R′ involves only
simple sums (sub-terms R′, W and L) and one double sum
(sub-term Q) leading to quadratic complexity O(n2). To obtain
a linear complexity, one may omit the term Q, leading to a
smaller curve (i.e. a worst service) but in a shorter time.

Two proofs are given. In appendix A is given a “pen and
paper” proof. This proof being non trivial, we chose to get a
high level of confidence in its soundness. We formalized and
verified it with Coq. A feedback of this use is given at the
end of the current section and an overview of the Coq proof
is given in appendix B.

The next theorem states that the previous result is an
enhancement w.r.t. a fluid modelling.

Theorem 4. Let R, T,C1, . . . , Cn, T1, . . . , Tn, J1, . . . , Jn, R
′, C

be as in Theorem 3. Then

βR′,C/R′ >

[
βR,T −

n∑
i=1

γri,bi

]+

↑

(7)

with ri = Ci
Ti

, bi = ri(Ji + Ti).

Proof. The first step consists in an expression of linear resid-
ual service. First,

∑n
i=1 γri,bi = γ∑n

i=1 ri,
∑n
i=1 bi

, then for any
t ∈ R+ : [

βR,T (t)−
n∑
i=1

γri,bi(t)

]+

(8)

=

[
[R(t− T )]

+ −

(
n∑
i=1

ri

)
t−

n∑
i=1

bi

]+

(9)

=

[(
R−

n∑
i=1

ri

)
t−

(
RT +

n∑
i=1

bi

)]+

(10)

= βR′,C′/R′ (11)

with C ′ = RT + (
∑n
i=1 bi) = RT +

∑n
i=1(Ji + Ti)

Ci
Ti

. Just
looking at this expression, C ′ > C so βR′,C/R′ > βR′,C′/R′ .

Figure 5 illustrates the differences between the functions
and highlights the influence of the non-decreasing closure. As
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expected, since fluid modelling gives a larger arrival curve than
staircase modelling (γi ≥ νi), then the fluid residual curve is
less than or equal to the staircase one: β −

∑
i γi ≤ β −∑

i νi. As stated by the Theorem, βR′,C/R′ ≤ [β −
∑
i γi]

+
↑

but βR′,C/R′ is not smaller than β −
∑
i γi.

Comparison with [2]: This result is of course closely
related to the one in [2], and once the equation is given,
the amount of generalisation can be detailed. Using network
calculus, the response time of a task of execution time C0 and
period T0 on a CPU with speed one (R = 1) and no latency
(T = 0) can be bounded by hDev(γC0/T0,C0

, βR′,C/R′) =

C/R′ + C0/R
′ = C0+W−max{L,Q}

R′ whereas the expression
in [2, Thm. 1] is C0+W−Q

R′ . The contribution of this paper is
then: the modelling of the speed R and the latency T of a
server, the introduction of the linear term L and the extraction
of the residual curve, that can be used in more contexts that
the fixed priority scheduling.

Feedback on the use of Coq: The use of Coq gave us
the opportunity to fix a few small mistakes in a preliminary
version of the proof of Theorem 3 and one of its hypotheses.

One of the last steps of the proof consists is showing that
a value s is non-negative (step 11 in Appendix A). It was
claimed as an evidence, even with negative values Ji of the
jitters. While trying to encode this “evidence” is Coq, we
had to assume that the Ji values must be non-negative, and
the hypotheses have been updated. We do not know currently
whether the property holds with negative Ji values.

One step of the proof (an index permutation, step 9.c in
Appendix A) was using a wrong argument, doing a confusion
between values and indexes. The proof has been corrected.

Regarding the cost of the development, it can be considered
reasonable as only 1400 lines of Coq code were needed5,
requiring about two man×weeks of development6, (including
above mentioned proof fixes). This was made possible thanks
to the availability of a formalization of the real numbers
in Coq’s standard library as well as the nice Mathematical
Components library [25] and particularly its big operators [26]
to conveniently manipulate the Σ notation for sums.

V. EVALUATION

This section evaluates the quality of the approximation
provided in this paper, in terms of accuracy of the result and
computational cost.

To do so, we test the expression on a large set of con-
figurations. Each configuration represents a non-static priority
server, with a constant rate of 1Mb/s, no latency, and a set of
randomly generated sporadic flows. Let ci be a configuration,
each flow fi,j has priority j, a fixed packet size Ci,j chosen
uniformly between 8 and 16 bytes, a period Ti,j also randomly
chosen in a subset of values, and a jitter Ji,j also randomly
chosen. New flows are added up to reaching a global load of
90%, and ni denotes the number of flows.

One hundred configurations are generated picking periods
values from S1 of Table II and with no jitter, another hundred

5214 lines for statements, 989 lines for proofs and 49 lines of comment
(the remaining being blank lines).

6For a developper with a few years of experience with the tool.

TABLE II: Periods of flows (in ms)

Set name S1 S2 S3
Period values 2,5,10,20,25,40,50 2,3,4,5,6,7,8,9,10 2,3,5,7,11,13
lcm 200 2520 30030

using set S2 and also with no jitter, and another hundred using
set S3 of the same table and also no jitter. Three others sets
are generated in a similar way, but with a jitter uniformly
distributed between 0 and the flow period (excluded).

For each configuration ci, let fi,1, . . . , fi,ni be the set of
flows. For each flow fi,j , four bounds on the delay bound are
computed using different methods. The two first have been
used in the illustrative example in Section II-C.

1) dfluid
i,j = hDev(αi, β

fluid
i,j ), where βfluid

i,j is computed using
eq. (5) with αk = γCk/Tk,Ck(1+Jk/Tk). It is called the
fluid modelling.

2) dstc
i,j = hDev(αi, β

stc
i,j), where βstc

i,j is computed using
eq. (5) with αk = νTk,Ck,Jk . It is called the staircase
modelling.

3) dlin
i,j = hDev(αi, β

lin
i,j) where βlin

i,j is computed using
Theorem 3 but only with the linear term L (i.e. setting
Q = 0). It is called the linear modelling.

4) dquad
i,j = hDev(αi, β

quad
i,j ) where βquad

i,j is computed using
Theorem 3 but only with the quadratic term Q (i.e.
setting L = 0). It is called the quadratic modelling.

Experiments have run on a laptop with 4GB of memory and
a 2.7GHz Intel Core i5.

Figure 6a plots, for a given configuration ck with periods
chosen in S1 (harmonic periods) and no jitter, the bounds
dfluid
k,j , dstc

k,j , d
quad
k,j dlin

k,j computed by the four methods for
each flow. Since flows are sorted by priority, the plots are
non decreasing. As expected, the fluid modelling gives the
larger, i.e. worse, bounds, whereas the linear approximation
is smaller, the quadratic approximation even smaller, and
staircase modelling leads to the smallest bounds. Only one
configuration is plotted, but they all have the same shape.

Now considering the fluid modelling as the reference value,
Figure 6c plots, for each configuration with harmonic periods,
the sum of all bounds computed by a method divided by the
sum of all bounds computed by fluid modelling:

∑ni
j=0 d

X
i,j∑ni

j=0 d
fluid
i,j

with

X ∈ {fluid, stc, lin, quad}. Figure 6e plots the computation
time required to analyse each configuration, depending on the
modelling, with a log-scale on time axis.

In the same figure group are also plotted the same graphs
but considering the jitter of each flow picked up between 0
and the flow period. As expected, the jitter increases the delay
of the affine models, but has no influence on the staircase
one (cf. Figure 6b). Then, the gain obtained by the staircase
model w.r.t. the fluid model increases, whereas the gain of the
quadratic model is less (12% instead of 16%).

The Table III summarises, for each set of hundred configu-
rations, the mean bound on delays for all flows, and the mean
computing time for a single configuration. For the staircase
modelling is added this computation time divided by the lcm
of the periods, showing that this computation time is almost
linear w.r.t. this lcm.
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(a) Per flow delay bound, for one configuration, null jitter.
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(b) Per flow delay bound, for one configuration, random jitter.
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(c) Per configuration mean delay w.r.t. to fluid modelling, null jitter.
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(d) Per configuration mean delay w.r.t. to fluid modelling, random
jitter.
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(e) Per configuration computing time, null jitter.
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(f) Per configuration computing time, random jitter .

Fig. 6: Plots related to configurations with periods in S1 set, null w.r.t. random jitters

The same kind of information is plotted in the group of
Figures 6 when the periods are taken from the set S3. The
relations between the methods in terms of accuracy of results
are in the same order of magnitude (from 16% to 22% without
jitter, from 11% to 17% with jitter), but the computation time
of the staircase methods is three orders of magnitude larger
(50s vs. 21ms).

The results for the set S2 are not plotted but are summarised
in Table III.

VI. CONCLUSION

In network calculus, the computation of residual services
with staircase arrival curves has exponential complexity,
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TABLE III: Mean computed bounds and computing time

Configuration Method
Periods Jitters Fluid Linear Quadratic Staircase
Mean computed bounds, per flow, in ms, and gain w.r.t. fluid modelling
S1 Null 12.3 12.0 (-2%) 10.3 (-16%) 6.1 (-50%)
S1 Rand. 17.6 17.2 (-2%) 15.5 (-11%) 6.1 (-65%)
S2 Null 7.7 7.4 (-3%) 5.7 (-25%) 3.4 (-56%)
S2 Rand. 10.6 10.2 (-3%) 8.6 (-19%) 3.4 (-68%)
S3 Null 7.2 6.9 (-3%) 5.6 (-22%) 3.3 (-54%)
S3 Rand. 9.9 9.5 (-3%) 8.2 (-17%) 3.3 (-66%)

Mean computing time, per configuration, in ms
(and ratio w.r.t. lcm for staircase)

S1 Null 9 15 96 567 (2.8)
S1 Rand. 10 18 101 597 (3.0)
S2 Null 6 7 26 5239 (2.1)
S2 Rand. 6 7 24 4935 (2.0)
S3 Null 6 6 21 51657 (1.7)
S3 Rand. 6 6 21 50226 (1.7)
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(a) Per flow delay bound, for one
configuration, null jitter.
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(b) Per flow delay bound, for one
configuration, random jitter.
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(c) Per configuration mean delay
w.r.t. to fluid modelling, null jitter.
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(d) Per configuration mean delay
w.r.t. to fluid modelling, random
jitter.
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(e) Per configuration computing
time, null jitter.

1 11 21 31 41 51 61 71 81 91
configuration id

101

102

103

104

105

Co
m

pu
tin

g 
tim

e 
(m

s)

fluid stair quadratic linear

(f) Per configuration computing
time, random jitter .

Fig. 7: Plots related to configurations with periods in S3 set,
null w.r.t. random jitters

whereas fluid arrival curves offer a linear complexity but give
larger, i.e. worse, upper bounds.

This paper generalises a result from [2], and develops a
residual service curve with either linear or quadratic computa-
tional complexity. The correctness of the result is enforced by
providing a formal Coq proof. The different approaches are
evaluated on 600 systems with sporadic workload and non-
preemptive static priority scheduling.

Whereas the staircase model computes bounds that are half

of those of the fluid model7, at the expense of a computation
time from 102 to 104 times larger, the quadratic approach
already enhances the results by about 20% while being only
10 times slower. The linear model offers a limited enhance-
ment (2%-5%). Having accurate results in short computation
times helps real-time system designers when exploring several
configurations.

Moreover, the analytic formula of the residual service curves
opens some opportunities. First, having a residual curve allows
to use the Pay Burst Only Once principle, to compute an
end-to-end network delay smaller than the sum of per switch
delays. Second, a closed form formula gives opportunities
for optimisation. Third, getting rid of least common multiple
allows the use of directed rounding floating-point arithmetic
that could lower the computation cost by one or two additional
orders of magnitude.
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APPENDIX A
PROOF OF THEOREM 3

Regarding only correctness issues, we may have omitted this
section since the Coq proof already provides a formal correct-
ness insurance. Nevertheless, this section can be considered as
the documentation of the Coq proof. But the main justification
of this section relies in the opportunity to adapt or generalise
the results. The same way as we have converted and extended
the result on response time presented in [2] by a study of its
proof, we provide a human-oriented proof, as a complement
of the formal Coq proof.

The proof presentation is inspired by [28]. Each sub-step
of the proof will start with some ordering value, followed by
the statement of the sub-step, using bold font. Thereafter will
come the proof of the sub-step itself.

For the proof, let V
def
=

∑n
i=1 νTi,Ci,Ji i.e. V (t) =∑n

i=1 Ci

⌈
t+Ji
Ti

⌉
, and ρ =

∑n
i=1

Ci
Ti

the long term rate of V ,
and recall that ρ < R.

1) Definitions of sM and first properties: For any M ∈ R,
let

sM
def
= min {t ∈ R V (t) +M = R(t− T )} . (12)

This sM is the minimal solution to V (t)+M = R(t−T ).
The first step consists in showing that sM exists (there
are solutions, and there exists a minimal one), and the
second on their relative positions (cf. Figure 8).

a) The minimum exists: By definition of the ceiling
function, x ≤ dxe < x+ 1. Then, for any i, tCiTi +

Ji
Ci
Ti
≤ Ci

⌈
t+Ji
Ti

⌉
< tCiTi +Ji

Ci
Ti

+Ci. Making the
sum for all i ∈ [1, n] leads to

∀t ∈ R : ρt+ b ≤ V (t) < ρt+ b′, (13)

with b =
∑n
i=1 Ji

Ci
Ti

, b′ = b+
∑n
i=1 Ci.

These are affine functions, and since R > ρ, there
exists x < x′ such that ρx + b = R(x − T ) −M
and ρx′ + b′ = R(x′ − T )−M (cf. Figure 8). Set
y = ρx+ b, y′ = ρx′ + b′.
From eq. 13, for any t ∈ [x, x′] : y ≤ V (t) ≤ y′.
Set Y = {V (t) t ∈ [x, x′]} the set of values
of V on [x, x′]. This set is non-empty and fi-
nite. If (vi)i∈N is the ordered set of values of
the function V , there exists k ≤ k′ such that
Y = {vk, vk+1, . . . , vk′} (Y = {v3, v4} on the
example in Figure 8), and to each one corre-
sponds one sMk such that vk = R(sMk − T ) −M .
Then the set {t ∈ R V (t) +M = R(t− T )} ={
sMk , . . . , s

M
k′

}
is non empty and finite, and its

minimum, sM exists.
b) Before sM , R(t− T )−M is below V (t) i.e.

∀t < sM : R(t− T )−M < V (t): (14)

By contradiction, assume there exists t < sM such
that R(t− T )−M ≥ V (t). The case R(t− T )−
M = V (t) leads to t ≥ sM by definition of sM . In
case of R(t−T )−M > V (t), then R(t−T )−M >
ρt, so t > x.

t

v0

v1

v2

v3

v4

v5

v6

T + M
R

R(t− T )−M

V (t)

ρt+ b′

ρt+ b

sM
x x′

Fig. 8: Illustration of sM definition, with n = 2, C1 = C2 =
1
2 , T1 = 2, T2 = 3, J1 = J2 = 0

https://doi.org/10.1145/1538788.1538814
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
http://dx.doi.org/10.1109/ECRTS.2016.28
http://hal.inria.fr/inria-00258384
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c) A lower bound on sM : In step 1a, x has been
defined such that sM ∈ [x, x′], with ρx + b =
R(x− T )−M , then

sM ≥ x =
M +RT +

∑n
i=1 Ji

Ci
Ti

R′
. (15)

This relation will be used in one of the last step of
the proof.

2) Definitions of qMi , rMi and first properties: Let intro-
duce for any i ∈ J1, nK,

qMi
def
=

⌈
sM + Ji
Ti

⌉
rMi

def
= Tiq

M
i − (sM + Ji) (16)

keep in mind that qMi =
sM+Ji+r

M
i

Ti
and that Ti > rMi ≥

0 (from x
T ≤

⌈
x
T

⌉
< x

T + 1 comes 0 ≤ T
⌈
x
T

⌉
−x < T ,

and setting x = sM + Ji).
3) Expression of sM in terms of rMi : Since sM is a

minimum, it satisfies R(sM − T ) = V (sM ) +M i.e.

R(sM − T ) =

n∑
i=1

Ci

⌈
sM + Ji
Ti

⌉
+M =

n∑
i=1

Ciq
M
i +M

(17)

=

n∑
i=1

Ci
Ti

(sM + Ji + rMi ) +M (18)

⇐⇒ sM (R−
n∑
i=1

Ci
Ti

) = M +RT +

n∑
i=1

Ci
Ti

(Ji + rMi )

(19)

⇐⇒ R′sM = M +RT +

n∑
i=1

Ci
Ti
Ji +

n∑
i=1

Ci
Ti
rMi

(20)

4) Two definitions for a reordering lMi and σ:

∀i ∈ J1, nK : lMi
def
= (qMi − 1)Ti − Ji. (21)

Remark that sM > lMi (from 0 ≤ rMi < Ti comes
0 ≤ TiqMi −(sM+Ji) < Ti and Ti(qMi −1)−Ji < sM ).
Now, let σ : J1, nK→ J1, nK be a permutation such that
the sequence lMσ(i) is non-increasing, i.e. sM > lMσ(1) ≥
lMσ(2) ≥ · · · ≥ l

M
σ(n).

5) Forall k ∈ J1, nK it holds

Ck

⌈
sM + Jk
Tk

⌉
= Ck

⌈
lMk + Jk
Tk

⌉
+ Ck (22)

By definition qMk is an integer, so qMk − 1 also is and
qMk =

⌈
qMk − 1

⌉
+ 1. By definition of lMk , we then get

qMk =
⌈
lMk +Jk
Tk

⌉
+ 1 hence the result by definition of

qMk .
6) Forall i ∈ J1, nK : sM ≥ lMσ(i) +

∑i
k=1

Cσ(k)
R :

Let i ∈ J1, nK, Si = {σ(1), . . . , σ(i)} and S̄i =
J1, nK \Si.
From previous relation, for any k in Si, Ck

⌈
sM+Jk
Tk

⌉
≥

Ck

⌈
lMk +Jk
Tk

⌉
+Ck. But by definition, (lMσ(m))m∈J1,nK is

non-increasing sequence, so for all k ∈ Si, lMk ≥ lMσ(i),

which yields Ck
⌈
lMk +Jk
Tk

⌉
+Ck ≥ Ck

⌈
lMσ(i)+Jk

Tk

⌉
+Ck.

To conclude

∀k ∈ Si : Ck

⌈
sM + Jk
Tk

⌉
≥ Ck

⌈
lMσ(i) + Jk

Tk

⌉
+ Ck

(23)
Now, consider k ∈ S̄i. By the definition of lMj (cf. proof
step 4), ∀j ∈ J1, nK : sM > lMj , and in particular, for
j = σ(i). Then, it holds

∀k ∈ S̄i : Ck

⌈
sM + Jk
Tk

⌉
≥ Ck

⌈
lMσ(i) + Jk

Tk

⌉
(24)

Summing over eq. (23) and eq. (24), it comes

∑
k∈Si∪S̄i

Ck

⌈
sM + Jk
Tk

⌉
≥

∑
k∈Si∪S̄i

Ck

⌈
lMσ(i) + Jk

Tk

⌉
+
∑
k∈Si

Ck

i.e. V (sM ) ≥ V (lMσ(i)) +

i∑
j=1

Cσ(j)

By the definition of sM , one has V (sM ) = R(sM −
T ) −M . Conversely, since sM ≥ lMσ(i), from eq. 14, it
comes V (lMσ(i)) ≥ R(lMσ(i) − T )−M , so

R(sM − T )−M ≥ R(lMσ(i) − T )−M +

i∑
j=1

Cσ(j)

(25)

⇐⇒ sM ≥ lMσ(i) +

i∑
j=1

Cσ(j)

R
(26)

7) Forall i ∈ J1, nK : rMσ(i) ≤ Tσ(i) −
∑i
j=1

Cσ(j)
R : This

is a direct consequence of definition of lMi , qMi and
previous relation.

sM ≥ lMσ(i) +

i∑
j=1

Cσ(j)

R
(27)

⇐⇒ sM ≥ (qMσ(i) − 1)Tσ(i) − Jσ(i) +

i∑
j=1

Cσ(j)

R

(28)

⇐⇒ sM + Jσ(i) − Tσ(i)q
M
σ(i) ≥ −Tσ(i) +

i∑
j=1

Cσ(j)

R

(29)

⇐⇒ rMσ(i) ≤ Tσ(i) −
i∑

j=1

Cσ(j)

R
(30)

8)
n∑
i=1

rMi
Ci
Ti

≤
n∑
i=1

(
Ti −

Ci
R

)
Ci
Ti

−
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1

R

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)
:

n∑
i=1

rMi
Ci
Ti

=

n∑
i=1

rMσ(i)

Cσ(i)

Tσ(i)
since σ is a permutation

(31)

≤
n∑
i=1

Tσ(i) −
i∑

j=1

Cσ(j)

R

 Cσ(i)

Tσ(i)
(32)

=

n∑
i=1

Tσ(i) −
Cσ(i)

R
−

i−1∑
j=1

Cσ(j)

R

 Cσ(i)

Tσ(i)
(33)

=

n∑
i=1

(
Tσ(i) −

Cσ(i)

R

)
Cσ(i)

Tσ(i)
− 1

R

n∑
i=1

i−1∑
j=1

Cσ(j)Cσ(i)

Tσ(i)

(34)

=

n∑
i=1

(
Ti −

Ci
R

)
Ci
Ti
− 1

R

n∑
i=1

i−1∑
j=1

Cσ(j)Cσ(i)

Tσ(i)
(35)

The next step consists in having a lower bound on∑n
i=1

∑i−1
j=1

Cσ(j)Cσ(i)
Tσ(i)

.

9)
∑n
i=1

∑i−1
j=1

Cσ(j)Cσ(i)
Tσ(i)

≥ max {Q,L} The goal in this
step is to get rid of the σ permutation, since it
depends on M . :

a)
∑n
i=1

∑i−1
j=1

Cσ(j)Cσ(i)
Tσ(i)

≥ L :

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)
≥

n∑
i=1

i−1∑
j=1

Cσ(i) mink∈J1,nK Ck

Tσ(i)

= min
k∈J1,nK

Ck

n∑
i=1

Cσ(i)

Tσ(i)
× (i− 1)

≥ min
k∈J1,nK

Ck

n∑
i=1

Cσ(i)

Tσ(i)
×min(i− 1, 1)

and since one does not know the value of σ(1) (i.e.
when i− 1 = 0)

≥ min
k∈J1,nK

Ck

(
n∑
i=1

Ci
Ti
− max
i∈J1,nK

Ci
Ti

)
= L

b)
∑n
i=1

∑i−1
j=1

Cσ(i)Cσ(j)
Tσ(i)

≥∑n
i=1

∑i−1
j=1

Cσ(i)Cσ(j)
Tσ(i)Tσ(j)

min
{
Tσ(i), Tσ(j)

}
:

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)
=

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)Tσ(j)
Tσ(j)

≥
n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)Tσ(j)
min

{
Tσ(i), Tσ(j)

}

c)
∑n
i=1

∑i−1
j=1

Cσ(i)Cσ(j)
Tσ(i)Tσ(j)

min
{
Tσ(i), Tσ(j)

}
=∑n

p=1

∑p−1
q=1

CpCq
TpTq

min {Tp, Tq} = Q:

Let xi,j
def
=

CiCj
TiTj

min {Ti, Ti}, and X
def
={

(i, j) ∈ J1, nK2
i > j

}
, and also

h : J1, nK2→ J1, nK2

(i, j) 7→
{
(σ(i), σ(j)) when (i > j) = (σ(i) > σ(j))
(σ(j), σ(i)) otherwise.

Note that for all i, j, we have (i, j) ∈ X if and
only if h(i, j) ∈ X and xσ(i),σ(j) = xh(i,j) since
x is symmetric. We thus have

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)Tσ(j)
min

{
Tσ(i), Tσ(j)

}
=

∑
(i,j)∈X

x(σ(i),σ(j))

=
∑

h(i,j)∈X

xh(i,j)

One can then prove that h is injective, meaning it is
bijective, which enables the following reindexing∑

h(i,j)∈X

xh(i,j) =
∑

(i,j)∈X

x(i,j) = Q

10) sM ≤ M+C
R′ : This is just, going from equations (20),

application of steps 8 and 9.

R′sM = M +RT +

n∑
i=1

Ci
Ti
Ji +

n∑
i=1

Ci
Ti
rMi

≤M +RT +

n∑
i=1

Ci
Ti
Ji +

n∑
i=1

(
Ti −

Ci
R

)
Ci
Ti

− 1

R

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)

≤M +RT +

n∑
i=1

(
Ji + Ti −

Ci
R

)
Ci
Ti
− max {Q,L}

R

=⇒ sM ≤ M + C

R′

11) Here comes the M elimination: Let t ∈ R+.
If t ≤ C

R′ , βR′, C
R′

(t) = 0, so βR′, C
R′

(t) ≤
[βR,T − V ]

+
↑ (t) trivially holds.

If t ≥ C
R′ . By definition of sM , for any M ∈ R,

M = R(sM − T )− V (sM ) (36)
so, for any IM such that sM ∈ IM

M ≤ sup
u∈I
{R(u− T )− V (u)} . (37)

Set M = R′t − C (this can be done safely since there
is no hidden M in R,R′, T, V (·)). From step 10, sM ≤
M+C
R′ = t, so

R′t− C ≤ sup
sM≤u≤t

{R(u− T )− V (u)} . (38)

But from t ≥ C
R′ and M = R′t−C comes M ≥ 0, and

introducing it in eq. 15 yields sM ≥ 0, so

R′t− C ≤ sup
0≤u≤t

{R(u− T )− V (u)} , (39)
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and by doing the maximum with 0

R′
[
t− C

R′

]+

≤ sup
0≤u≤t

[R(u− T )− V (u)]
+ (40)

⇐⇒ βR′, C
R′

(t) ≤ [βR,T − V ]
+
↑ (t) (41)

APPENDIX B
COQ STATEMENT OF THEOREM 3

While the Coq compiler checks that a theorem is well
formed and that its proof is correct, it can not check that the
theorem is conform to the author or reader intuition. We will
then describe the formal statement of Theorem 3 in Coq’s
language.

The full proof is available, along with instructions to
automatically recheck it with Coq, at http://doi.org/10.5281/
zenodo.3881823 .

First comes the loading of the libraries.

Require Import mathcomp.(*...*).
Require Import Reals (*...*).

and Coq is instructed to interpret all standard notations, such
as +,−,≤, as real number ones

Local Open Scope R_scope.

We then give the hypotheses of the theorem

Section Theorem3.

Variable n’ : nat.
Notation n := n’.+1.
(* Be sure that n is non zero *)

Variable R T : R+∗.
Variable tC tT : R+∗ ˆ n.
Variable tJ : R+ ˆ n.

For convenience, the i-th element (tC i) of the n-tuple tC
will then be denoted C‘_i

Notation "’C‘_’ i" := (tC i).
Notation "’T‘_’ i" := (tT i).
Notation "’J‘_’ i" := (tJ i).

Hypothesis R_large_enough :
\sum_i C‘_i / T‘_i < R.

And we define the various constants and functions

Definition R’ := R − \sum_i C‘_i / T‘_i.
Definition W :=
\sum_i (T‘_i + J‘_i − C‘_i / R) ∗ (C‘_i / T‘_i).

Definition L := (\min_k C‘_k)
∗ ((\sum_i C‘_i / T‘_i) − \max_i (C‘_i / T‘_i)).

Definition Q :=
\sum_(i < n) \sum_(j < n | j < i)
Rmin T‘_i T‘_j ∗ (C‘_i ∗ C‘_j) / (T‘_i ∗ T‘_j).

Definition C := R ∗ T + W − Rmax L Q / R.
Definition V t := \sum_i
C‘_i ∗ IZR (Zceil ((t + J‘_i) / T‘_i)).

Definition beta R T :=
fun t : R+ ⇒ R ∗ ’[ t − T ]+.

Before finally stating the theorem itself

Theorem theorem3 : forall t,
(beta R’ (C / R’) t
≤ ’[fun t ⇒ beta R T t − V t]+ˆ t)%Rbar.

where %Rbar tells Coq that ≤ is the one on R = R ∪
{−∞,+∞} since the non decreasing closure contains a least
upper bound that could be infinite.

http://doi.org/10.5281/zenodo.3881823
http://doi.org/10.5281/zenodo.3881823

	Introduction
	Network calculus
	Generic results
	Sporadic workload, rate-latency servers and NP-SP policy
	Illustrative example
	Problem statement

	Related work
	Implementation of algebraic operators for network calculus
	Coq for real-time systems

	Contribution
	Evaluation
	Conclusion
	References
	Appendix A: Proof of Theorem 3
	Appendix B: Coq statement of Theorem 3

