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I. INTRODUCTION

Deep Learning (DL) [1] is currently one of the most in-
tensively and widely used predictive models in the field of
machine learning. DL has proven to give very good results for
many complex tasks and applications, such as object recog-
nition in images/videos, natural language processing, robotics,
aerospace, smart healthcare, and autonomous driving. Nowa-
days, there is intense activity in designing custom Artificial
Intelligence (AI) hardware accelerators to support the energy-
hungry data movement, speed of computation, and memory
resources that DL requires to realize its full potential [2].
Furthermore, there is an incentive to migrate AI from cloud to
edge devices, i.e., Internet-of-Things devices, to address data
confidentiality issues and bandwidth limitations, and also to
alleviate the communication latency, especially for real-time
safety-critical decisions, e.g., in autonomous driving.

The High-Level Expert Group on AI set up by the Eu-
ropean Commission published in 2020 ethics guidelines for
trustworthy use of AI systems [3]. The second requirement
concerns the technical robustness and safety. We can directly
cite from the guidelines the following: “A crucial requirement
for achieving trustworthy AI systems is their dependability
(the ability to deliver services that can justifiably be trusted)
and resilience (robustness when facing changes). Technical
robustness requires that AI systems are developed with a
preventative approach to risks and that they behave reliably
and as intended while minimising unintentional and unexpected
harm as well as preventing it where possible”.

Hardware-Accelerated Artificial Intelligence (HW-AI), simi-
lar to traditional computing hardware, is subject to hardware
faults (HW faults) that can have several sources: variations
in fabrication process parameters, fabrication process defects,
latent defects, i.e., defects undetectable at time-zero post-
fabrication testing that manifest themselves later in the field of
application, silicon ageing, and Single Event Upsets stemming
from ionization. All these HW faults can cause operational fail-
ures, potentially leading to important consequences, especially
for safety-critical systems.

While HW-AI exhibits a certain resilience to HW faults,
akin to the robustness found in biological neural networks,
the effects of faults may be catastrophic and need be in-
vestigated and managed. The statistical behavior of neural

network architectures, coupled with their abundant redundancy
and overprovisioning, naturally endows them with a built-in
tolerance for HW faults. During the learning process, HW-
AI can circumvent to a large extent HW faults, however, this
does not cover also all HW faults that occur after training,
when the system is running. This vulnerability has the potential
to affect inference, significantly impacting DL predictions and
jeopardizing the functionality of the application. As a result, en-
suring the reliability of HW-AI platforms becomes paramount,
especially in safety-critical and mission-critical domains like
robotics, aerospace, smart healthcare, and autonomous driving.

The realm of knowledge on this subject is notably broad,
despite its relatively recent emergence, as evidenced by recent
surveys ( [4]–[8]). This panel seeks to bring together the diverse
contributors from the scientific community working in this
field. The primary goal is to engage them and the audience
in discussions about the significant achievements to date and
chart the course for future developments, presenting them as
open challenges to be tackled.
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