N

N

Investigating the effect of approximate multipliers on
the resilience of a systolic array DNN accelerator
Salvatore Pappalardo, Ali Piri, Annachiara Ruospo, Ian O’Connor, Bastien

Deveautour, Ernesto Sanchez, Alberto Bosio

» To cite this version:

Salvatore Pappalardo, Ali Piri, Annachiara Ruospo, Ian O’Connor, Bastien Deveautour, et al.. Investi-
gating the effect of approximate multipliers on the resilience of a systolic array DNN accelerator. 36th
IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT 2023), Oct 2023, Juan-Les-Pins, France. 10.1109/DFT59622.2023.10313535 . hal-04674779

HAL Id: hal-04674779
https://hal.science/hal-04674779v1

Submitted on 21 Aug 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04674779v1
https://hal.archives-ouvertes.fr

Investigating the effect of approximate multipliers
on the resilience of a systolic array DNN accelerator

Salvatore Pappalardol, Ali Piri', Annachiara RuospoQ, Tan O’Connor-,

1

Bastien Deveautour?, Ernesto Sanchez?, Alberto Bosio! '3 Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE
Lyon, INL, UMR5270, 69130 Ecully, France
2politecnico di Torino, Dip. di Automatica e Informatica, Torino, Italy
Email: !{name.surname} @ec-lyon.fr, 2{name.surname} @polito.it, 3{name.surname} @cpe.fr

Abstract—Deep Neural Networks (DNNs) are nowadays ex-
tremely popular in different fields of edge and mobile real-
time applications such as surveillance, autonomous systems, etc...
Energy efficiency and performance are crucial is such context
and, for this reason, several DNN hardware accelerators have
been designed using Approximate Computing (AxC) techniques.
However, other than efficiency, real-time applications used in
safety-critical systems (e.g., autonomous car) require a given
level of resilience to hardware faults. Indeed, in the literature,
many works discussed so far how to assess the resilience of
a given hardware accelerator and how to harden it through
the insertion of fault-tolerant mechanisms. Fault tolerance is
usually achieved by using redundancy that costs in terms of
area, power consumption and latency. For the case of DNNs, the
redundancy is selectively applied to reduce its cost and protect
only the “critical” components. This work aims at proposing a
novel approach entirely based on the use of AxC to increase
the resilience of DNNs without using redundancy and thus
avoiding extra costs. In particular, we studied the impact of AxC
multipliers on a systolic array architecture used to accelerate the
DNN execution. Preliminary results show that by using an AxC
multiplier, it is possible to improve the resilience of almost 10%
with better efficiency than the “precise” implementation.

Index Terms—reliability, neural networks, approximate com-
puting, hardware accelerator

I. INTRODUCTION

In the last decades, Deep Neural Networks (DNNs) have
revolutionized the field of artificial intelligence and machine
learning. They are very powerful, able to learn from a vast
amount of data and make complex predictions. In specific
tasks, such as image classification, they have demonstrated
to be able to surpass human performance [1]. Due to their
outstanding computational capabilities, they are employed in
many different fields, some of them are labeled as safety-
critical. For example, [2] used a neural network to determine
the flight regime of an aircraft using temporal segmentation,
achieving more than 90% accuracy. Another example can be
found in [3], in which the authors proposed a novel approach
for lane detection in the context of autonomous drive.

One of the challenges associated with DNNs is their high
energy consumption, as well as their high computational power
and high amounts of time to complete a single inference.
As an example, DNN models used for image processing are

979-8-3503-1500-4/23/$31.00 ©2023 IEEE

composed by many convolutional layers, and convolution is
a really expensive computation [4]. To address this issue,
recently, new types of hardware accelerators have been de-
veloped. One of the most popular options is given by systolic
arrays. They are composed by a grid of Processing Elements
(PEs). Each PE performs a Multiply and Accumulate (MAC)
operation, meanwhile forwarding the data to the neighbors.
This kind of structure is able to process a convolution with
O(n x m) time complexity (supposing a convolution between
two matrices with sizes n X n and m X m). Furthermore,
systolic arrays have a higher throughput than GPUs [5] (which
are generally used in modern applications) making them
more suitable for real-time applications. In addition to that,
they can be used in embedded systems since they are less
expensive in terms of energy consumption [6]. To further push
the energy and performance efficiency, AxC proved to be a
very promising approach [7]. The idea behind AxC is that
several applications do not really need to be executed on a
“precise” and thus “energy-expensive” hardware. AxC aims at
reducing the precision of the hardware in order to save energy
consumption. Interestingly, reduced precision leads to appli-
cations that produce less accurate but still sufficient results
while reducing the required energy by orders of magnitude.
Such applications are characterized as intrinsically resilient
to noise and errors that affect computation (i.e., due to less
precise hardware). Inherent resilience is closely related to the
application domain and clearly DNNs are perfect candidates
thanks to their inherent resilience to noise [8].

On the other hand, even if hardware accelerators for DNNs
come with such inherent resilience to noise, recent studies in
the literature have shown that hardware accelerators are not
always immune to hardware faults. Thus, inference can be
significantly affected, leading to DNN prediction failures that
are likely to lead to a detrimental effect on the application [9]-
[11]. Therefore, ensuring the resilience of hardware accelera-
tors is crucial, especially when they are deployed on real-time
safety-critical systems, i.e., systems in which any failure or
design error has the potential to lead to loss of life [12].

The classical technique used to improve the resilience is to
introduce fault tolerance mechanisms by adding redundancy
in the design [13]. The problem of using redundancy, even in
the case of selective fault tolerance [14], is the cost in terms
of area, power and latency that can be prohibitive, especially

for edge applications. There is a need to further reduce the
cost of fault tolerance for DNN hardware accelerators.

This research work proposes a novel approach entirely based
on the use of AxC to increase the resilience of DNNs without
using redundancy and thus avoiding extra costs. In particular,
we studied on a case study the impact of AxC multipliers on
the resilience of a systolic array architecture used to accelerate
the DNN execution. In our case study, a fault injection (FI)
campaign is conducted to understand the impact of single bit-
flips on the resilience of the network. Preliminary results have
shown that using an AxC multiplier, it is possible to improve
the resilience of almost 10% with better efficiency than the
accurate implementation.

The rest of this paper is structured as follows: in section II
a brief overview of existing works is given; then in section
III the experimental setup is explained in details; section IV
shows the gathered results; section V concludes the article
highlighting future directions.

II. RELATED WORKS

Assessing the resilience of DNNs is a deeply investi-
gated problem today. In [15], the authors presented the main
DNN reliability assessment methodologies, focusing mainly
on FI techniques used to evaluate DNN resilience that can
be summarized as simulation-based at the software or the
hardware level, platform-based, and radiation-based. Several
works have been published so far concerning the use of
AxC in the context of fault tolerance. This research area is
generally known as Approximate Triple Modular Redundancy
(ATMR) [16], applied at the circuit level. The ATMR approach
employs three Approximate Integrated Circuits (Ax-ICs) in-
stead of three fully-precise replicas. For a given input, only
one AXIC can provide an incorrect answer. However, ATMR
fault tolerance capability mainly depends on the voter that has
to be modified [17].

A different approach referred to as Quadruple Approxi-
mate Modular Redundancy (QAMR) was presented [18]. The
QAMR is based on the idea of selectively approximating a
subset of the circuit. The final goal is to have four approximate
replicas in such a way as to guarantee that, among the
four, at least three of them will provide precise results for
a given output. The benefit is that the voter does not have
to be modified. However, the design cost is higher since the
approximation must be carefully identified.

The described works target fault tolerance through masking.
Concerning fault detection only, in [19], the authors exploit
approximate computing for image processing applications
through duplication with comparison (DWC).

The above techniques summarize the use of AxC to reduce
the cost of testing and fault detection/tolerance. Another in-
teresting branch of research is investigating how AxC impacts
a system’s intrinsic reliability, and whether an approximate
application is more or less resilient to hardware faults than
the precise application. Indeed, AXC exploits the inherent
resilience of an application to noise and computing errors.
Therefore, an application executed on approximated hardware
is less resilient to hardware faults.

Fig. 1: Simple model of an output stationary systolic array.

In [20], the authors studied the impact of AXC on the
reliability of DNN application. As AxC technique, they used
the data type and bit-width reduction. In particular, they
compared 32-bit floating point versus 16-bit integer data for
storing synaptic weights. The DNN was an image classifier
based on LeNet-5 topology. The reliability assessment has
been done through radiation experiments: the system running
the DNN was exposed to neutron beam.

In this paper, we intend to explore the use of a different AxC
technique. Instead of weight compression as done in [20], we
leverage on approximate multipliers to be used in the hardware
accelerator.

III. CASE STUDY

1) Neural network: To validate the effectiveness of the
technique, the LeNet-5 CNN architecture, trained and tested on
MNIST dataset, has been exploited. It is composed of three
convolutional layers and four fully connected. The training
process was performed by using [21] without any approxima-
tion: learning rate started at 0.05, with the decay of 5 x 10~*
every 375(*128) iterations, the momentum was set to 0.9. The
final accuracy of the model was equal to 99.05%. We then
performed 8-bit quantization through following steps [21].

1) all weights are rescaled in the range [—1.0, 1.0] and acti-
vations at each layer are rescaled in the range [—1.0, 1.0]
for signed outputs and [0.0, 1.0] for unsigned outputs;
2) inputs, weights, biases and activations are quantized to
the desired 7,45 by converting [—1.0, 1.0] and [0.0, 1.0]
to [—2neits—L — 1 2mbies=1 _ 1] and [0, 2mvits =1 — 1]
2) The systolic array architecture: The implemented sys-
tolic array follows an output-stationary topology [6]. As illus-
trated in Fig. 1, data flow (blue and orange arrows) from top
(north) to bottom (south) and from left (west) to right (east).

Fig. 2 shows a functional diagram of a PE. As above-
mentioned, a PE performs a MAC operation; this means that
for each clock cycle:

e north and west inputs are multiplied together,
o the result is added to the partial sum register,
o the value of north is put on the south output,
o the value of west is put in the east output.

These operations accumulate a series of multiplications and
forward data to the neighbors. This method allows the systolic
array to perform a matrix multiplication with linear time-
complexity. In our implementation, weights are flowing from

NORTH SOUTH
RESULT
Partial
Sum
WEST EAST

Fig. 2: Functional diagram of a processing element.

north to south and the activations from west to east and are
accumulated in the PE itself (square boxes).

To be able to compute an entire convolution in one single
pass, the proposed systolic array has the same size of the
output of the first convolution in LeNet-5. Since the first layer
is composed by 6 convolutions whose output is 28 x 28 and a
single 2D output stationary systolic array can perform a single
convolution, our systolic array is a 3D systolic array with the
same dimensions of the first layer: 6 x 28 x 28 PEs.

3) Approximate multipliers: In this work, different exper-
iments have been conducted with different multipliers. To
quantify the effect of inaccuracy on reliability of our systolic
array, we replaced the accurate multipliers in each PE with
the approximate multipliers presented in EvoApproxLiteLITE!
[22].

The adopted CNN performs a multiplication between a
signed weight and an unsigned activation, thus we needed a
mixed-sign multiplier, which is not available in the aforemen-
tioned library. As a consequence, we set up the experiments
using a 12-bit signed multiplier and simply extending the
sign on the operands. Note that this method has the effect of
making the approximation even worse: since the multipliers
are designed to operate on 12-bits values, using only the
least significant 8 bits means reducing the performance of the
multipliers. To quantify this effect, we computed the Mean
Absolute Error (MAE) and the Worst Case Error (WCE) with
the mixed-sign range the networks actually uses. Table I shows
the original [22] metrics of the multiplier (columns MAE,
WCE) and the newly computed metrics that only use our 8bit
values ranges. (columns MAE-8, WCE-8).

A. Experimental setup

A high-level implementation made in C language was de-
rived using N2D2 [21]. The network was quantized in order
to use int8 values. Specifically, the weights are represented
as signed 8bit integers values, while the activations where
represented as unsigned 8bit integers.

Five different experiments exploiting the following approxi-
mate multipliers were performed: mull2s_2PT, mul12s_2QH,
mull2s_2R5, mull2s_34P, mull2s_2TE. The method used
for generating these multipliers is based on decomposing
the multiplication and processing each with a combination
of approximate circuits [22]. The introduced approximation
varies based on the combination used.

't is possible to find the wused multiplier at the link

https://ehw.fit.vutbr.cz/evoapproxlib/?folder=multiplers/12x12_signed

Fault
Weight f
Weights I yhpL /
hardware Mo
. mo deI I— N s QUTPUT
Stimulus rl‘ r

T s

C1: feature maps
6@28x28

| Full connect tion Gaussian connections
ns Subsampling Full connection

Convolutions

Fig. 3: Fault injection process

TABLE I: Characterization of the approximate multipliers.
Every value is a percentage.

Name MAE WCE MAE-8 | WCE-8
mull2s_2PT 0.000073 | 0.00029 | 0.019 0.0748
mull2s_2QH 0.0031 0.013 0.134 0.514
mull2s_2R5 0.0092 0.037 0.315 1.234
mull2s_34P 0.032 0.17 0.785 3.920
mull2s_2TE 0.19 0.77 6.080 24.417

According to [23], the most critical layer when neurons
inputs are faulty is the first one; so, in this work, the experi-
mental efforts were carried out in this layer, while the others
are executed in software using the high-level implementation
of the network. Differently, in this work, transient faults
affecting the registers have been used as fault model. More
in details, the performed experiments inject only the weight
register of the PEs (corresponding to the block weight in figure
2).

The space of possible faults is then 3-dimensional, and
its size depends on both the array size and the bit-width:
FaultSpace = 2 x K x M.

We have a total of M PEs. Each PE has K bits for the
input of the weights. Each fault corresponds to an alteration
of one bit, forcing its value to either 1 or 0. We call the forced
value polarity, and we have only two possible values (1 or 0).
A statistical FI was configured by assuming a 1% margin of
error, 50% probability of a fault resulting in a failure, a cut-off
point of 2.58 which corresponds to 99% confidence level.

Accordingly, a FI campaign was performed for every one
of the five approximated multipliers. For each campaign, we
injected a total of 15’000 single-bit faults, and each injected
fault was simulated on 100 different input stimuli (10 images
for each class).

The evaluation of the fault is the same as described in
[23]. For each input we have the fault-free output Y and
the faulty output a vector Y. The outputs are vectors of
10 components, each corresponding to the probability of
a class. The classification labels y and y are obtained as
§ = argmaxz(Y) and § = argmaz(Y). For the purpose of
the resilience classification, we compare the two vectors Y
and Y for each pair input-fault as follows:

« we call a fault masked when ¥ = }7,
d maa:(f’)

maz(Y) > 1,

e good when § = g an

TABLE II: Fault-free classification accuracy after the replace-
ment of the multiplier in the convolution. Bold text shows the
best performance.

Multiplier Accuracy (%)
accurate 99.05
mull2s_2PT 99.08
mull2s_2QH 99.10
mull2s_2R5 99.06
mull2s_34P 98.24
mull2s_2TE 9.80
« accept when § = ¢ and 0.95 < maz(V) g
’ ~mafc(f’) ’
. A~ max(Y)
o warning when ¢ = y and maz (%) < 0.95,

e critical when y # v.
Basically, we check whether the top-1 probability of the

injected network max(Y') is greater or smaller than the
golden top-1 probability maxz(Y) and and classify the fault
accordingly. Note that masked faults do not produce any
difference in the output, while only critical faults involve mis-
classification. Finally, we classify as benign the faults that
fall in the first two categories (masked and good), since not
only there is not mis-classification, but the confidence of the
prediction is equal or higher than the fault-free run. The other
three categories are defined as malignant.

In order to fairly evaluate the performances of the FI
campaigns, the accuracy of the Neural Network (NN) was
evaluated without injecting any fault, substituting the accurate
multipliers with the approximate ones. We evaluated the clas-
sification accuracy of the network on the entire validation set.
To speed up the FI process, i.e., without running architectural-
level simulations we used the C code of each multiplier,
available in [22].

IV. RESULTS
A. Intrinsic NN robustness

First, the C model of the network was evaluated on its own
(i.e., without injecting any fault) to understand the effect of the
approximate multipliers. The approximate multiplier replaced
the accurate logic, but this was done only for the convolutions,
the rest of the computations were accurate.

Table II shows the results in terms of classification accuracy.
The accuracy is computed using a validation set of 10’000
input images without injecting any fault. Interestingly, the
NN withstands the approximation with grace. Noteworthy, the
accuracy slightly increases when using approximated mul-
tipliers whose error is quite small. This result shows that
the introduced error, due to approximation, might even be
beneficial for the NN. Furthermore, this result is similar to
what shown in [24], in which the authors show that the
accuracy increases when using an approximate multiplier and
then performs some retraining steps. Interestingly, we find
an improvement (although minimal) without retraining the
network.

While the best case improvement is only 0.05%, it is
a non-negligible result. This is because it corresponds to
500 more input images correctly classified, when compared
with the accurate counter-part. Nevertheless, introducing major

TABLE III: Percentage of masked and benign faults per each
campaign. Bold text shows the best performance.

multiplier masked(%) | benign(%) | critical(%)
accurate 64.65 84.18 0.15
mull2s_2PT 63.90 84.20 0.15
mull2s_2QH 38.92 79.79 0.20
mull2s_2R5 26.96 76.31 0.30
mull2s_34P 74.16 88.08 0.37
mull2s_2TE 3.94 14.44 48.59

approximations produces nefarious effects. Expectedly, the
worst multiplier introduced an error so big that the accuracy
plummeted to less than 10%. The confusion matrix shows that
the NN classified every input as a 0.

B. Fault injection

1) General resilience: Figure 4 shows the general be-
haviour of the different configurations. Furthermore, Table
Il reports the percentage of masked, benign and critical
faults per each FI campaign. It is possible to notice that
the mull2s_2PT produces the same effect as the accurate
multiplier. Increasing the error, multipliers mul12s_2QH and
mull2s_2R5 have the effect of decreasing the resilience,
since the number of masked and benign faults decrease sig-
nificantly. On the other hand, mull2s_34P shows a com-
pletely different behaviour: the majority of injected faults are
masked. Compared to the accurate network, there is a 9.5%
increase in masked faults, even though the classification
accuracy dropped by about 1%. This outcome shows the
benefit obtained by using this multiplier in this NN. Finally,
multiplier mul12s_2TE is not reliable in any measure, “mis-
classifying” the majority of the inputs; actually, about 50%
of the inputs were correctly classified when compared with
the ground truth, but its performance is unacceptable anyway.
Similar results were found by the authors in [25], who show
that introducing approximation may decrease the general accu-
racy of the network but increase the resilience of the network
dramatically.

2) Correlation between injected bit and resilience: Figure
5 shows the number of malignant faults (normalized by the
number of injections) with respect to the injected bit. The
yellow bar represents the total number of FIs, while the blue
bar is only referred to 1-polarity injections. The superimposed
text indicates the percentage of 1-polarity faults. Bit 1 is
the most significant, while bit 8 is the least significant. The
weights are encoded as signed 8-bit integers.

The first four (from left to right) graphs show the same
trend. The first bit is the sign bit, and it is less critical than
the second one. The second to the last bits show a decreasing
criticality, which is expected since the least significant bits
have smaller values. Furthermore, 1-polarity injections are
more critical for every bit but the first. This behaviour is due
to the regularization of the weights, which squeezes all the
weights around zero, making it less common to have ones in
the higher bits. Finally, the first bit is most critical to O-polarity
injections. This depends on the data distribution: the majority
of injections did not change the actual value, writing a 1 where
there already was a 1, but in general, we see that O-polarity

80+

60

Variance

40 1
201
0 T T T T
2388 ETEEEE OETREBEE
1ot fcNiET fcigcs
E ER £ z v £ R
accurate mull2s_2PT mull2s_2QH

T T ¥ 9 3 D T 8 o R T T 8 O3
$38cLf fgref L3l
S 8 5 B g 5 5 P § 5 5
E S E ER £ = v
mull2s_2R5 mull2s_34P mull2s_2TE

Fig. 4: General resilience for each experiment. Each figure describes the distribution of the fault categories per experiment.

faults are more critical, representing the 73% of malignant
outcomes.

The most interesting results are produced by the multiplier
mull2s_34P. In this case, Fls in the three Least Significant
Bits (LSBs) seldom resulted in malignant faults (less than
1% of the injections per each bit). Furthermore, 90% of the
malignant faults were produced by 1-polarity injections in bits
2 to 5. This behaviour is similar to the other multipliers, but
shows that the network with this multiplier is extremely critical
to faults that increase the magnitude of the value rather than
faults that decreases it. This datum can be used to deploy
reliable hardware by simply masking such a fault with a 0
value.

C. Reliable approximate multiplier

Multiplier mul12s_34P produced a very interesting result,
since more than 74% of the injections produced masked
faults. This is due to the small variation of the output of
the multiplier when changing the three LSBs. In order to
show this concept, we introduced a new local metric. We
gathered the approximate multipliers, and we computed all
the possible combinations storing both inputs and outputs.
Then, we grouped the data so that for each bucket, only the
three LSBs of the input of the weight varied. Finally, for each
bucket, we computed the mean and the variance of the outputs.
Figure 6 shows the variance plotted for each multiplier for
each input. On the z axis there are the different combinations
of inputs allowed (excluding the three LSBs obviously), while
on the y axis there is the variance. The red lines and the
superimposed text show how many points are strictly under
variance 1, that is, inputs that produce the same output when
varying the three LSBs.

The first multiplier is the accurate one. It shows quadratic
behavior. Note that the outputs generated varying only one of
the two inputs have the same distance, so the shown parabola
is composed of many horizontal segments. This behavior can
be explained as follows. The multiplier has two inputs a and
w. The output is computed as 0 = w X a. If we name the
outputs based on input w (thus fixing the value of a), we have
0; = w; X a. For each pair o; and o; there is a difference which
can be computed with the formula d;; = |0, —o;| = |[i—j| X a,
simply because a is fixed. With this concept in mind, is simple
to understand that the variance of successive buckets with
the same value of a has the same variance. Furthermore, the
variance decreases as a decreases, since the spreading among
values is proportional to a. As is to be expected, multipliers

mull2s_PT, mull2s_QH and mull2s_R5 show the same
quadratic behavior although noisier. Multiplier mul1l2s_TE
shows a completely different behavior: the outputs vary very
little in really big ranges. This datum is a confirmation of
MAE and MRE values.

Multiplier mul12s_34P shows a very interesting behavior
since all the points have O variance. This graph shows that
varying the LSBs has a no effect in many cases.

V. CONCLUSIONS

The results obtained in these FI campaigns suggest that
an approximate multiplier can be used for NN computations
making the whole NN more resilient. Furthermore, we can
identify two properties that the multiplier should have in order
to increase the resilience of the NN:

« the approximate output must be always somewhat similar
to the accurate computation (MAE and MRE are good
metrics in this regard),

« the output value should vary very little (or nothing) when
changing the LSBs of the inputs.

The first property is fundamental for approximate com-
puting. In general, the smaller the error of the approximate
multiplier, the better the multiplier is. The second property
is more interesting and can be used to build new metrics for
quantifying the resilience of a NN. Nevertheless, our method
does not investigate the effect of all the input bits of the
multiplier, so more effort has to be put in the investigation of
such phenomena. This method could also be used, in principle,
for a general circuit that is put in a NN. For this reason, the
next direction of investigation will be building a proper metrics
to quantify the resilience of circuits.

In general, approximate multipliers can be really useful in
the context of NNs. They use less energy than accurate circuits
and, as seen, may provide more accuracy. They can also be
used to increase the resilience at the cost of some accuracy
loss (which may or may not be acceptable depending on the
application). We showed that some multipliers are best suited
for increasing the resilience of the NN. Specifically, one of
the multipliers increased the number of masked faults by an
outstanding 9.3% of masked faults. Furthermore, we provided
a simple method to understand why this specific multiplier
boosted the performance so much, which also gave some
useful insights for the design of resilient circuits.

b I "
5} S 8

Malignant faults

)

injected bit

mull2s 2PT

injected bit

mull2s_2QH

injected bit

accurate

051 40| 050 oso

Both values
. 1-polarity

2 4 6 8 2 4 6 8
injected bit injected bit

mull2s_34P mull2s_2TE

injected bit

mull2s 2R5

Fig. 5: Number of malignant faults per bit normalized to the number of injections.

® 100000 - = Q-variance
Q = - - =" ® bucket
S 75000 4] | |- wl-1= - varance
@ . r - - - -
= Y r - - - -
@ 50000 4 s 2 - - - -
= % I = - = -
25000 \/ = = . - — —
o o
o L0.39% 1.56% 3.12% o 3.12% gy _oF 100.00% 25.00%
.............................
WToONNDOXRTO WTONNOLODRTO DTONNSORTO oToNNoOVRTO BFOoONNOOOTO oToNNOORTO
NNBRMNA@OY NNIRMASDOT NNSRMNAD0Y NNOSMNSOOY NNGRMNHOOT NNORmMES@OT
Mm XN KR Xg X LmxAxiegmxgx L RxXxExgx L AxXxGemxgx T RxExEmEx L nxIXx X g X
LSRNEMNARE LSRUETNARES oSRUERNRRE oSRORTNARE gOREEMNEARE oSR0ESNANS
~NT b = ~NT v — ~T b — N D — > inall b — N v —
o bl o o o -
accurate mull2s_2PT mull2s 2QH mull2s_2R5 mull2s_34P mull2s_2TE

Fig. 6: Variance of the output per each input combination varying on the three LSBs. The y-axis is the value of the variance.
The red-line and the superimposed percentage show how many points have variance strictly less than 1.

ACKNOWLEDGMENT

This work has been founded by the RE-TRUSTING project,
ANR-21-CE24-0015; the APROPOS project in the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sktodowska-Curie grant agreement

No

956090; and the FAIR - Future Artificial Intelligence

Research and received funding from the European Union
Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E
RESILIENZA (PNRR) — MISSIONE 4 COMPONENTE 2,
INVESTIMENTO 1.3 - D.D. 1555 11/10/2022, PEO0000013).
This manuscript reflects only the authors’ views and opinions,
neither the European Union nor the European Commission can
be considered responsible for them.

[1]

[2]

[3]

[4]

[51

[6]

[7

—

[8

=

[9]

REFERENCES

O. Russakovsky et al., “Imagenet large scale visual recognition chal-
lenge,” International journal of computer vision, vol. 115, pp. 211-252,
2015.

J. Wu et al., “Aircraft flight regime recognition with deep temporal
segmentation neural network,” Engineering Applications of Artificial
Intelligence, vol. 120, p. 105840, 2023.

S. Ghanem, P. Kanungo, G. Panda, and P. Parwekar, “An improved
and low-complexity neural network model for curved lane detection of
autonomous driving system,” Soft Computing, vol. 27, no. 1, pp. 493—
504, 2023.

G. Desoli et al., “14.1 a 2.9 tops/w deep convolutional neural network
soc in fd-soi 28nm for intelligent embedded systems,” in 2017 IEEE
International Solid-State Circuits Conference (ISSCC), pp. 238-239,
IEEE, 2017.

M. Andersch et al., “On latency in gpu throughput microarchitectures,”
in 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pp. 169-170, IEEE, 2015.

V. Sze et al., “Efficient processing of deep neural networks: A tutorial
and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329,
2017.

A. Bosio, D. Ménard, and O. Sentieys, eds., Approximate Computing
Techniques. Springer International Publishing, 2022.

E. Dupuis, S. Filip, O. Sentieys, D. Novo, I. O’Connor, and A. Bosio,
“Approximations in deep learning,” in Approximate Computing Tech-
niques, pp. 467-512, Springer International Publishing, 2022.

A. Lotfi et al., “Resiliency of automotive object detection networks on
gpu architectures,” in 2019 IEEE International Test Conference (ITC),
pp. 1-9, IEEE, 2019.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

B. Salami, O. S. Unsal, and A. C. Kestelman, “On the resilience
of rtl nn accelerators: Fault characterization and mitigation,” in 2018
30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pp. 322-329, IEEE, 2018.

A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability analysis
of a deep neural network,” in 2019 IEEE Latin American Test Symposium
(LATS), pp. 1-6, IEEE, 2019.

J. C. Knight, “Safety critical systems: challenges and directions,” in Pro-
ceedings of the 24th international conference on software engineering,
pp. 547-550, 2002.

G. Di Natale et al., Cross-layer reliability of computing systems. iet-the
institution of engineering and technology, 2020.

A. Ruospo et al., “Selective hardening of critical neurons in deep
neural networks,” in 2022 25th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), pp. 136-141,
IEEE, 2022.

A. Ruospo et al., “A survey on deep learning resilience assessment
methodologies,” Computer, vol. 56, no. 2, pp. 57-66, 2023.

B. D. Sierawski, B. L. Bhuva, and L. W. Massengill, “Reducing soft
error rate in logic circuits through approximate logic functions,” IEEE
transactions on nuclear science, vol. 53, no. 6, pp. 3417-3421, 2006.
G. S. Rodrigues et al., “Approximate tmr based on successive approxi-
mation to protect against multiple bit upset in microprocessors,” in 2018
18th European Conference on Radiation and Its Effects on Components
and Systems (RADECS), pp. 1-5, IEEE, 2018.

M. Traiola et al., “Test and reliability of approximate hardware,” in
Approximate Computing, pp. 233-266, Springer, 2022.

M. Biasielli et al., “Approximation-based fault tolerance in image
processing applications,” IEEE Transactions on Emerging Topics in
Computing, vol. 10, no. 2, pp. 648-661, 2021.

L. M. Luza et al., “Emulating the effects of radiation-induced soft-errors
for the reliability assessment of neural networks,” IEEE Transactions on
Emerging Topics in Computing, vol. 10, no. 4, pp. 1867-1882, 2021.
CEA-LIST, “N2D2.” [Online]. Available: https://github.com/CEA-
LIST/N2D2.

V. Mrazek et al., “Scalable construction of approximate multipliers with
formally guaranteed worst case error,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 26, no. 11, pp. 2572-2576, 2018.
A. Ruospo et al., “Investigating data representation for efficient and reli-
able convolutional neural networks,” Microprocessors and Microsystems,
vol. 86, p. 104318, 2021.

M. S. Ansari et al., “Improving the accuracy and hardware efficiency of
neural networks using approximate multipliers,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 28, no. 2, pp. 317-328,
2019.

M. Taheri et al., “Deepaxe: A framework for exploration of approx-
imation and reliability trade-offs in dnn accelerators,” in 2023 24th
International Symposium on Quality Electronic Design (ISQED), pp. 1-
8, IEEE, 2023.

