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Abstract

While past major climate transitions can be unequivocally identified, understand-
ing of underlying mechanisms and timescales is lacking. We employ a dimensional
analysis of benthic stable isotope records across different timescales to uncover
how Cenozoic climatic fluctuations are associated with changes in the number
of feedbacks and mechanisms involved. Our analysis indicates that warmer and
colder climates respond substantially differently to orbital forcing. Notably, a
that large numbers of feedbacks dominated during the Icehouse state at obliq-
uity and eccentricity timescale, and during the Warmhouse and Hothouse states
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at precession timescales. During the Coolhouse state the number of active feed-
backs was low and had no dominant timescale. Coupling between climate signals
that affect oxygen and carbon isotope records appears high only in the Icehouse
state, and low to absent in all other states. We also find that anomalously high
active feedback numbers and very high coupling occurred across all timescales
during the PETM, which suggests a complete system perturbation. In conclusion,
our findings challenge the notion of a singular model of interconnected feedbacks
in reproducing Cenozoic paleoclimate variability, given that different numbers of
active feedbacks with different levels of coupling governed over different timescales
between climate states, which then affected the inherent (in-)stability of each
climate state.

Keywords: Cenozoic climate variability, Abrupt climate shifts, Dimensional analysis

1 Introduction

Earth’s climatic history has been reconstructed using sediment archives from both
marine and terrestrial environments. In particular, the development of high-resolution
deep-sea oxygen (δ18O) and carbon (δ13C) isotope records has since the 1970s [1, 2]
greatly enhanced understanding of past climate trends, cyclic variations, rates of
change, and transient events throughout the Cenozoic era (66 My ago to present).
However, the compilations have suffered limitations in accurately documenting the
full range and detailed characteristics of Cenozoic climate variability, due to gaps
and insufficient age control and temporal resolution, especially for the period before
34 My ago. A recent study [3] addressed these challenges by utilizing sediment
archives obtained by the International Ocean Discovery Program (IODP) and its
predecessor programs (DSDP, ODP) to compile and analyze a comprehensive new
composite record of carbon and oxygen isotopes in deep-sea benthic foraminifera
that was precisely tuned to astronomical cycles. The new climate reference curve,
CENOGRID (CENOzoic Global Reference benthic foraminiferal carbon and oxygen
Isotope Dataset) [3], provides high-resolution coverage of the past 66 My to detect
long-term Cenozoic climate variability (Figure 2A).

Employing statistical recurrence analysis (RA) on the CENOGRID record, West-
erhold et al. [3] identified four key climatic regimes in the Cenozoic era: Hothouse,
Warmhouse, Coolhouse, and Icehouse, each demonstrating unique and statistically
significant dynamics [3]. The Warmhouse and Hothouse states prevailed from approxi-
mately 66 million years ago (the Cretaceous/Paleogene boundary) to about 34 million
years ago (the Eocene-Oligocene Transition). During these periods, temperatures
exceeded present-day levels by more than ≥5°C and ≥10°C, respectively. Notably, the
Hothouse climate state witnessed transient warming events known as hyperthermals,
marked by concurrent negative excursions in δ13C and δ18O, indicating substantial
carbon release into the climate system and global warming [4–8].

The Warmhouse-Coolhouse transition occurred at the Eocene-Oligocene Tran-
sition, accompanied by a significant temperature drop and establishment of a
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semi-permanent Antarctic Ice Sheet [8–12]. The Coolhouse state extended from
approximately 34 million years ago to 3.3 million years ago and comprised two phases,
separated around 14 million years ago by a δ18O increase and transient δ13C rise in
the deep ocean, signaling rapid Antarctic Ice Sheet expansion [13, 14]. The Icehouse
state, characterized by the fluctuation of ice sheets in the Northern Hemisphere, was
fully established during the Pliocene-Pleistocene transition [15] and continues until
the present.

The Cenozoic climate has experienced several transitions [3, 16] associated with
tipping points [17] of the Earth system. In Ref. [18] such transitions have been charac-
terized, by combining recurrence analysis of the individual time series [19, 20] with a
multi-variate analysis based on the quasi-potential theory [21, 22]. In addition to the
critical transitions between the four macroclusters of climate variability mentioned
above, the analysis identified several other occurrences of tipping behaviour [18].

Here we aim to offer a further advance by applying a multiscale and bivariate
dimensional analysis of the CENOGRID record [23, 24] to rank and characterize the
four climate states in terms of number of effective feedback and associated timescales,
together with stability/predictability in the record with a focus on the critical transi-
tions, and δ13C-δ18O coupling at multi-millennial timescales (see schematic in Figure
1).

Fig. 1 Schematic of the main features of the four main climate states. The four climate
states are ranked in terms of number and timescales of effective feedbacks, stability/predictability,
and δ13C-δ18O coupling at multi-millennial timescales.

So far, this type of analysis has proved great skills in other different applications
[23, 24]. In our application, it extracts intrinsic scale-dependent components from the
CENOGRID δ13C and δ18O records via Empirical Mode Decomposition (EMD) [25]
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and determines, across timescales (τ), three key parameters [26–28]: (1) instantaneous
dimension d, which provides an estimate of the number of positive feedbacks (more
mechanisms acting on the system lead to higher than average values of d); (2) extremal
index θ, which quantifies the stability with respect to perturbations of the system;
i.e., its intrinsic persistence, where θ close to 0 (1) means that the system persists
for longer (shorter) in a given state; and (3) co-recurrence ratio α, which quantifies
the mutual coupling between two proxies, with α close to 1 (0) meaning stronger
(weaker) coupling. It is well known that, depending on the timescale of interest, the
same system might exhibit different stability properties, depending on whether posi-
tive or negative feedbacks dominate [29]. We note that the instantaneous dimension
should be interpreted in relative rather than absolute terms. Rather than taking the
obtained estimate of d at face value, we proceed as follows. If, e.g., state (a) features
a larger d value than state (b), then we conclude that the number of effective feed-
back mechanisms of state (a) is larger. Furthermore, if, e.g., state (c) features a larger
value of d at the timescale τ1 than at timescale τ2, then we rank τ1 as the prima-
ry/dominant mode of variability. Key aspects of the EMD, an in-depth description
of the uni-variate and bi-variate parameters, and our scale-dependent procedure are
reported in the Methods.

Multiscale analysis of the CENOGRID dataset

The behavior of our multiscale bivariate metrics (Figure 2) highlights key proper-
ties of the climate variability recorded in the CENOGRID dataset. The instantaneous
dimension d (Figure 2A) clearly indicates a lower number of effective feedback dur-
ing the Coolhouse than during the other climate states, except for an increase during
specific events such as the Monterey positive carbon isotope excursion between 16.9
and 13.5 My ago [30] that lacks dominant expression of any specific orbital period.
The timescale-dependent estimate of d reveals that, while the Warmhouse and the
Hothouse states are dominated by active positive feedbacks (larger d) at short orbital
timescales (mainly precession), the Icehouse is dominated by active positive feedbacks
at obliquity and eccentricity timescales. For warm climates this can be due to the
moderate-to-high carbon dioxide levels and the existence of a mix of tropical and tem-
perate ecosystems observed during both the Hothouse and the Warmhouse, which is
also evident from the uni-variate analysis (Supplementary Figures S1-S2) which shows
larger d for the δ13C than δ18O. Conversely, for the Icehouse this can be related to the
presence of enhanced polar ice sheets and glaciers, enhancing ice-ocean-atmosphere
coupling processes, and associated greenhouse gas variability. In general, we observe
substantial short-term (τ ≲ 23 ky) mutual coupling (increased α; Figure 2D) between
δ13C and δ18O during warm climate states, especially after the PETM, which no
longer occurs during cold climate states, together with temporarily strongly enhanced
coupling during specific intervals such as the Late Danian, Early Eocene Hyperther-
mals, and the middle Miocene Monterey event. During the Icehouse, starting from
the M2 glaciation, prolonged mutual coupling is found at obliquity and eccentricity
timescales, which did not persistently occur before. This is related to the repeated
glacial-interglacial variations, whereby a strong coupling is established between the
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Fig. 2 Multiscale bivariate analysis during the last 66 Ma. (A) Time series of the
CENOGRID paleoclimate records of δ13C (blue) and δ18O (red) during the last 66 Ma. Bi-variate
multi-scale metrics: (B) instantaneous dimension d, (C) extremal index θ, and (D) co-recurrence index
α. Vertical dashed lines in panel (A) mark the different geological epochs, while specific events are
reported when they occurred. Vertical continuous and dotted lines in panels (B)-(D) indicate the Tip-
ping Points (TPs) identified by Rousseau et al. [18] with a uni-variate approach for δ18O and δ13C,
respectively. The horizontal dashed-dotted white lines refer to Milankovitch timescales of precession
(∼ 23 ky), obliquity (∼ 41 ky), and eccentricity (∼ 100 ky), respectively. We note that θ close to 0
(1) means a more (less) stable/persistent state, while α close to 0 (1) means a less (more) mutual
coupling.

average surface temperature and the intensity of the carbon cycle. Furthermore, while
all climate states are characterized by low-stability behavior (high θ; Figure 2C) at
timescales shorter than the obliquity period, increased stability/persistence (lower θ)
is observed at obliquity and eccentricity timescales during the Icehouse climate state,
marking the current climate state as the one with most persistent responses at orbital
41- and 100-ky timescales out of the entire past 66 My, related to the glacial-interglacial
cycles.

Finally, our analysis uniquely highlights the exceptional nature, even among other
hyperthermals, of the Paleocene Eocene Thermal Maximum (PETM), where d is high
and almost constant across all timescales and lacks association with any particular
orbital timescale, while coupling is high at all timescales (high α; Figure 2C). In
contrast, the Eocene-Oligocene Transition (EOT, ∼34 Ma) seems to be primarily
influenced by processes at precession timescales, marking the end of the precession-
dominated Hot-/Warmhouse period. Both these transitions were identified recently as
key abrupt transitions (Tipping Points, TPs) associated with major regime shifts that
separate clusters of climate variability [18], although here we also provide a rank in
terms of active feedback and associated timescales.
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Dynamical Features of the Four Climate Variability
Macroclusters across Timescales

To facilitate interpretation of our results, we investigate the average values of d, θ,
and α in the timescale domain (τ) for the four climate states as compared with those
of the full record (Fig. 3).

The Hothouse climate state is characterized by d decrease with increasing τ , with
a bit of a plateau around the 100-ky eccentricity period, which indicates the largest
number of feedbacks in the climate response at around the 23-ky precession timescale.
Thus, the primary mode of variability of the Hothouse climate is recognized to be
precession. A similarly decreasing trend with τ is visible for θ, which suggests increased
climate stability at the primary mode (precession) of variability. Finally, α is clearly
high at precession timescales, as well as at timescales larger than the eccentricity
period. The former can be related to responses to precession variations, but the latter
mainly is due to the PETM signature. The Warmhouse state is also characterized by
decreasing d and θ with increasing τ , while d values are lower and θ values similar,
relative to the Hothouse. As opposed to the Hothouse, the Warmhouse is characterized
by approximately constant α for all timescales at around 0.1, which indicates low
mutual coupling between δ13C-δ18O. Based on the d behavior we identify precession
as the primary mode of variability.

During the Coolhouse state, a different behavior is observed, characterized by
absence of a clearly dominant timescale for d. Yet, θ and α decrease with τ in a similar
manner as observed in the warm climate states, and values are also similar to those in
the warm states. This decrease in θ and α metrics reflects relatively stable conditions
during the Coolhouse state. Based on the timescale-independence of d we are not
able to find a primary mode of variability for the Coolhouse. Finally, results differ
completely for the Icehouse state, with a high overall number and slight timescale-
dependence for d, which peaks at around the 41-ky obliquity timescale, reaching a
plateau around the 100-ky eccentricity timescale. This suggests an increased number of
feedback mechanisms involved in climate responses at both 41- and 100-ky timescales,
relative to the prior warm climate states and the Coolhouse state (centered on the 23-
ky timescale). Thus, we rank the obliquity and the eccentricity cycles as the primary
and secondary modes of variability, respectively. Meanwhile, extremal index θ, while
still characterized by a decrease with τ , shows considerably lower values (i.e., greater
stability since θ approaches 0) than the previous climate states. Additionally, α is
once again highly timescale dependent, but now peaks at 41 and 100 ky timescales,
reaching higher values than previously observed. This behavior likely reflects an increse
in ice-ocean-atmosphere interactions.

Overall, our analysis implies that warmer and colder climates respond substan-
tially differently to orbital forcing. Responses during warm climates are dominated by
precession timescale variations, whereas cold climates appear to be driven mainly by
responses on obliquity and eccentricity timescales.

To further inspect climate responses at orbital timescales, we investigate the 2-D
(d, θ) parameter-space behavior and the probability distribution functions (pdfs) in
the four climate states (Fig. 4), as well as in different geological epochs (Supplementary
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Fig. 3 Time-averaged multi-scale bi-variate statistics during the four climate states
identified by [3]. Temporal averages of the bi-variate multi-scale metrics: (A) instantaneous dimen-
sion ⟨d⟩, (B) extremal index θ, and (C) co-recurrence ratio α. The error bars refers to the inter-quartile
range. The vertical dashed-dotted black lines refer to Milankovitch scales of precession (∼ 23 ky),
obliquity (∼ 41 ky), and eccentricity (∼ 100 ky), respectively. Colors refer to the different climate
states, while the gray shaded bars refer to the full record. We note that θ close to 0 (1) means a more
(less) stable/persistent state, while α close to 0 (1) means a less (more) mutual coupling.
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Figure S3) and in a uni-variate framework between two consecutive TPs identified by
Rousseau et al. [18] (Supplementary Figures S4, S5).
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Fig. 4 Multiscale bivariate scatter-plots of the metrics at Milankovitch scales. d − θ
scatter plots colored by time instants at the three Milankovitch scales of precession (A), obliquity (D),
and eccentricity (G), respectively. The distribution of the instantaneous dimension d over the four
different climate states identified by [3] at the three Milankovitch scales of precession (B), obliquity
(E), and eccentricity (H), respectively. The distribution of the extremal index θ over the four different
climate states identified by [3] at the three Milankovitch scales of precession (C), obliquity (F), and
eccentricity (I), respectively. We remark that θ close to 0 (1) means more (less) stable/persistent state.

Moving across orbital timescales (Fig. 4 (A), (D), (G)) there is a transition toward
a different portion of the 2-D parameter-space between warm (red and orange dots)
and cold (cyan and violet dots) climates, which is particularly evident for the Icehouse
(see violet dots in Fig. 4 (A)). Furthermore, for the Icehouse a wider spread in the
range of values of both d (between 4 and 12) and θ (between 0.2 and 0.6) is observed
at the eccentricity timescale, while a narrower θ-range occurs at the precession scale
(between 0.5 and 0.7). A larger d range is seen during the part of the Coolhouse and
the entire Icehouse; conversely, a confined region in the d-θ space (ranging d in 4-10
and θ in 0.65-0.85 or 0.55-0.75) is associated with both Hothouse and Warmhouse
states. This is confirmed by the d and θ pdfs for the four climate states (Fig. 4 (B)-(C),
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(E)-(F), (H)-(I)). The uniqueness of the Icehouse state is evidenced by the d distri-
bution across orbital timescales which peaks at ∼10 for all Milankovitch cycles. The
d distribution is also almost similar at all orbital timescales during the Coolhouse,
albeit with a peak at lower values (∼5). Conversely, the two warm states are charac-
terized by different d distributions across orbital timescales: a wider d spread occurs at
the precession timescale, and more peaked distributions at obliquity and eccentricity
timescales, which also shift toward lower values (∼5). The θ pdfs confirm the unique-
ness of the Icehouse state: for all orbital timescales, θ is lower (more stable) during
the Icehouse and the shape of the pdf is completely different relative to those of the
other states, which turn are very similar to each other.

The unique nature of climate during the last ∼5 My is again evident from inspec-
tion of the dynamical properties of the Cenozoic climates compared with climates in
different geological epochs with a similar bivariate approach (Supplementary Figure
S3), as well as between two consecutive TPs of Rousseau et al. [18] using a uni-variate
framework (Supplementary Figures S4, S5). Yes, our result is more pronounced in
identifying the Icehouse as an unprecedented Cenozoic climate state. It is charac-
terized by co-existence of widespread variability on two primary orbital timescales,
through a large number of effective feedback mechanisms and with enhanced mutual
coupling between atmosphere and ocean. In contrast, warmer climate states (Hot-
house and Warmhouse) are characterized by a response at precession timescales, with
relatively low average and instantaneous numbers of effective feedback mechanisms
and low (Hothouse) to absent (Warmhouse) mutual coupling between δ13C and δ18O,
apart from a high level of coupling during the exceptional PETM (mainly at timescales
larger than the eccentricity period). The Coolhouse state is markedly different from
both the warmer climate states and the Icehouse state, with low effective feedback
mechanisms and coupling across timescales that lack a primary mode of variability for
any orbital cycle. Our results enable interpretation of the time-evolution of Earth’s
Cenozoic climate system as a trajectory within a dynamic landscape that is char-
acterized by multiscale features that delineate a hierarchy of metastable states and
corresponding transitions.

Conclusions and Outlook

The Cenozoic era, spanning the last 66 million years, has witnessed significant changes
in Earth’s climate [3], including several diverse critical transitions [18]. Understanding
the physical processes involved in this variability is crucial for interpreting paleoclimate
data and projecting future climate scenarios [31]. Our analysis clearly highlights the
crucial impact of polar ice sheet formation and evolution in regulating global climate,
and feedback mechanisms have been critical to shaping these ice sheets. For example,
polar ice sheet growth causes enhanced reflection of sunlight back into space, which
causes further cooling that, in turn, fosters further ice growth (the positive ice-albedo
feedback). Moreover, ice sheet waxing and waning is crucial in ocean-atmosphere cou-
pling, which is at the basis of heat transport across the globe and thermal regulation of
climate. And ice sheet fluctuations also affected vegetation-zone displacements, which
further affect surface albedo and, thus, the energy balance of climate [32, 33].
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We show here that the critical transitions identified in Ref. [18] are accompanied by
anomalously large value in the number of effective feedback mechanisms and anoma-
lously low values for the extremal index, which suggests dominant impacts of positive
feedbacks. The instability in the extent of ice sheets during the Icehouse states is also
associated with the anomalously high d values found in this period. In turn, our find-
ing of an increased persistence (stability) of the Icehouse climate state agrees with
a relatively stable Antarctic ice cover over extended periods despite varying climate
conditions.

The climate responses to orbital forcing -which influences mainly the spatial and
temporal distributions, and (weakly) the total amount of solar radiation reaching
Earth’s surface - consist of a complex interplay of positive and negative feedback. We
find that positive feedback are more effective on specific orbital periods under different
climate states. We detect that they acted on a dominant 23-ky (precession) timescale
during Hothouse and Warmhouse climate states, mixed 41-ky (obliquity) and 100-ky
(eccentricity) timescales during the Icehouse state, and that there is a remarkable lack
of dominant timescales during the Coolhouse state. The detection of the primary vari-
ability timescales provides fundamental insights into the drivers of long-term climate
variability and confirms the multiscale nature of climate variability [34, 35]. This is
valuable information for understanding their significance in the context of future cli-
mate changes, and for assessing the capability of (paleo-)climate models to adequately
replicate climate states and critical transitions between and within them. Crucially,
our results suggest that there may be no unique model of interconnected feedback for
reproducing paleoclimate variability across the entire Cenozoic era. Instead, we find
that the different macro clusters of climate variability associated with the metastable
states above are characterized by different numbers of feedback mechanisms that oper-
ate over different timescales for each climate state, and that this has considerable
impacts on each climate state’s inherent (in-)stability.

Methods

Empirical Mode Decomposition (EMD)

The Empirical Mode Decomposition (EMD) conforms with the class of adaptive
decomposition methods and it allows us to decompose a time series s(t) (e.g., δ13C or
δ18O) into a finite number nk of oscillating patterns ck(t), known as Intrinsic Mode
Functions (IMFs), and a monotonic residue r(t) as

s(t) =

nk∑
k=1

ck(t) + r(t). (1)

The set of IMFs is derived via the so-called sifting process [25] which first identi-
fies local extremes of s(t) that are then interpolated via cubic splines to derive the
upper and lower envelopes u(t) and ℓ(t), respectively. Then, the mean envelope m(t)
is derived and the detail h(t) = s(t)−m(t) is evaluated. If the detail h(t) has the same
(or differing by one) number of local extremes and zeros and a zero-average mean
envelope, then the first IMF is obtained; otherwise, the steps of the sifting process
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are iterated until these two properties are verified. The process stops when no more
IMFs can be extracted and a monotonic non-oscillating function is obtained, i.e., the
residue r(t).

The EMD provides a representation of the system as a sum of fluctuating contri-
butions at different average timescales [25], although each of them is a non-stationary
function with a time-dependent amplitude and phase, i.e., ck(t) = ak(t) cos [ϕk(t)].
The instantaneous amplitude ak(t) and phase ϕk(t) are derived via the Hilbert
transform. The reader is referred to [25] for further detail.

Uni-variate metrics

Instantaneous dimension

In a system described by the time-evolution of a given variable, i.e., via a time series
s(t), each time instant can be seen as a state of the system that can eventually be
visited several times in the future, and whose dynamical properties can be investigated
by combining recurrence and extreme value theory [36]. For any given state of interest
ζ, the logarithmic return of each state except ζ is

g(t) = − log [δ(s(t), ζ)] (2)

where δ is the Euclidean distance between two state vectors. As s(t) approaches ζ
then g(t) goes to infinite. If we define a threshold s(q) as the q-th empirical quantile
of g(t), we can introduce the exceedances u(ζ)

.
= {t | g(t) > s(q)}, which represent the

occurrences that exceed the neighborhood of the reference state. This concept was first
introduced by Poincaré [37] and is akin to the peaks-over-threshold approach widely
used in extreme value theory. According to the Freitas-Freitas-Todd theorem [38], the
cumulative probability distribution F (u, ζ) then converges to the exponential member
of the Generalised Pareto Distribution (GPD), expressed as follows:

F (u, ζ) ≃ exp

[
−u(ζ)

ς(ζ)

]
. (3)

The GPD parameter ς depends on the dynamical state ζ and can be used to
introduce the concept of an instantaneous dimension d at the point in time where
ζ is attained. This instantaneous dimension is simply defined as d(ζ) = ς(ζ)−1 and
represents a proxy for the number of active feedback determining the behavior of the
system around each state ζ in the phase-space [26, 27, 36, 39]. However, it is essential
to note that from a practical perspective, this instantaneous dimension needs to be
considered relative to the set of time series values available and also to be understood
in a relative sense. Indeed, averaging over the phase-space gives an estimation of the
information dimension of the system, i.e., how much space the system explores and how
intricate its patterns are, while the gradient (increase or decrease) of the instantaneous
dimension indicates structures which feature more or less feedback mechanisms.

Extremal index

The Süveges maximum likelihood estimator is used for evaluating the extremal index
[40, 41], which provides information on the time spent by the system in a given state ζ:
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θ =

∑N
i=1 ρSi +N − 1 +Nc−

2
∑N−1

i=1 ρSi

−
[(∑N−1

i=1 ρSi +N − 1 +Nc

)2

− 8Nc

∑N−1
i=1 ρSi

]1/2
2
∑N−1

i=1 ρSi

. (4)

Here, N represents the number of observations exceeding a defined threshold, ρ is
the distribution function of the selected threshold, Si denotes the exceeding distance,
and Nc =

∑N−1
i=1 I(Si ̸= 0), where I is the indicator function for the selected Si.

Further details on the calculation can be found in [40]. The extremal index θ can be
introduced in Eq. (3) as follows:

F (u, ζ) ≃ exp

[
−θ(ζ)

u(ζ)

ς(ζ)

]
. (5)

As θ(ζ) ∈ [0, 1], the state ζ is more persistent as θ(ζ) → 0, whereas when θ(ζ) → 1,
the state ζ is unstable, and the system immediately leaves ζ [27, 41]. An exploration of
all states (i.e., all time instants) provides an instantaneous view of the persistence of
the system into different states. Consequently, each state ζ of the system, correspond-
ing to the time instant t of the time series, is now described by the pair (d, θ). These
metrics have offered fresh insights and a different perspective on various geophysical
extreme phenomena [42–49].

Bi-variate metrics

The two metrics presented before enable us to retain information about a given system
within a uni-variate framework, i.e., as described via a single variable s(t). We can
extend this formalism to the bi-variate case by considering a system described by a
pair of variables, i.e., x(t) and y(t). If we define their associated reference state as
ζ = {ζx, ζy}, the joint logarithmic return is

g(x, y; ζ) = −1

2
log

[
δ(x(t), ζx)

2 + δ(y(t), ζy)
2
]
. (6)

As for the uni-variate case we can compute the co-dimension dxy, representing the
mutual number of feedback given by x and y in terms of their joint recurrences, or in
other words implying that a given reference state ζ is simultaneously observed in both
variables. similarly, the bi-variate extremal index θxy can be defined as a weighted
average of θx and θy [50].

In the bi-variate framework an additional dynamical system metric can be intro-
duced that provides a measure of the mutual coupling between x and y. It is known
as the co-recurrence ratio α

α =
# [g(x; ζx) > gq(x; ζx)|g(y; ζy) > gq(y; ζy)]

# [g(x; ζx) > gq(x; ζx)]
, (7)
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where #[·] denotes the number of events satisfying the condition [·]. It measures
the percentage of states ζ for which x resembles ζx, given that y resembles ζy. If
α = 0, there are no mutual co-recurrences; if α = 1 then a stronger coupling is present
between x and y. However, due to the Bayesian formulation of Eq. (7) α cannot be
interpreted in terms of causation but only as a measure of mutual relation between
the variables [50].

Instantaneous scale-dependent metrics

The previous discussion introduced the concepts of instantaneous dimension d and
inverse persistence θ to provide a local view of phase-space trajectory properties. This
allows us to obtain information for each sampled point contributing to the global
structure of the phase-space under study. However, in the case of multi-scale systems
characterized by processes occurring over a wide range of scales, a scale-dependent
phase-space structure can emerge [51]. To obtain a scale-dependent instantaneous view
of such systems, a combination of the Empirical Mode Decomposition (EMD) method
and extreme value theory is used.

For a multi-scale system described by s(t), we can express it as:

s(t) = ⟨s(t)⟩+
∑
τ

δs(τ)(t), (8)

where ⟨s(t)⟩ represents a steady-state time-averaged value, and δs(τ)(t) is a com-
ponent of the system operating at a mean scale τ . An analogy can be drawn between
Eq. (8) and Eq. (1) with the correspondence ck(t) ↔ δs(τ)(t) and r(t) ↔ ⟨s(t)⟩. This
means that for each scale τ , we can identify the corresponding invariant set Mτ as
the manifold obtained via the partial sums of Intrinsic Mode Functions (IMFs) with
scales τ⋆ < τ :

sτ (t) =

k∑
k⋆=1

ck⋆(t), (9)

For each scale τ ∈ [τ1, τnk
], where nk is the number of IMFs, given a trajectory

sτ (t) and a state of interest ζτ , the cumulative probability of logarithmic returns in
the neighborhood of ζτ follows a Generalized Pareto Distribution (GPD):

F (uτ , ζτ ) ≃ exp

[
−θτ (ζτ ),

uτ (ζτ )

ςτ (ζτ )

]
. (10)

Thus, two scale-dependent metrics d(t, τ) = ςτ (ζτ )
−1 and θ(t, τ) can be intro-

duced, representing the number of active feedback and the stability/persistence of
fluctuations up to a maximum scale of τ around each state ζτ . In a similar fashion
we can introduce, in a bi-variate framework, the scale-dependent co-recurrent ratio
α(t, τ). By using the EMD to derive scale-dependent components within the system
and extreme value theory-based metrics to obtain the instantaneous scale-dependent
metrics, this approach provides valuable insights into the system’s behavior at different
scales [23, 24].
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L.J., Lyle, M., Pälike, H., Röhl, U., Tian, J., Wilkens, R.H., Wilson, P.A., Zachos,
J.C.: An astronomically dated record of Earth’s climate and its predictability

14

https://doi.org/10.1594/PANGAEA.917503
https://fr.mathworks.com/matlabcentral/fileexchange/95768-attractor-local-dimension-and-local-persistence-computation.
https://fr.mathworks.com/matlabcentral/fileexchange/95768-attractor-local-dimension-and-local-persistence-computation.
https://doi.org/10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2
https://doi.org/10.1130/0016-7606(1975)86<1499:TMP>2.0.CO;2
https://doi.org/10.1126/science.188.4184.147
https://doi.org/10.1126/science.188.4184.147


over the last 66 million years. Science 369(6509), 1383–1387 (2020) https://doi.
org/10.1126/science.aba6853

[4] Lourens, L.J., Sluijs, A., Kroon, D., Zachos, J.C., Thomas, E., Röhl, U., Bowles,
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[40] Süveges, M.: Likelihood estimation of the extremal index. Extremes 10(1-2), 41–
55 (2007) https://doi.org/10.1007/s10687-007-0034-2

[41] Moloney, N.R., Faranda, D., Sato, Y.: An overview of the extremal index. Chaos
29(2), 022101 (2019) https://doi.org/10.1063/1.5079656

[42] Faranda, D., Alvarez-Castro, M.C., Messori, G., Rodrigues, D., Yiou, P.: The
hammam effect or how a warm ocean enhances large scale atmospheric pre-
dictability. Nature communications 10(1), 1–7 (2019)

[43] De Luca, P., Messori, G., Faranda, D., Ward, P.J., Coumou, D.: Compound warm–
dry and cold–wet events over the mediterranean. Earth System Dynamics 11(3),
793–805 (2020)
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