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Two-layers neural networks for Schrödinger eigenvalue problems

Dus Mathias∗†, Ehrlacher Virginie∗†

August 21, 2024

Abstract

The aim of this article is to analyze numerical schemes using two-layer neural networks with
infinite width for the resolution of high-dimensional Schrödinger eigenvalue problems with smooth
interaction potentials and Neumann boundary condition on the unit cube in any dimension. More
precisely, any eigenfunction associated to the lowest eigenvalue of the Schrödinger operator is a unit
L2 norm minimizer of the associated energy. Using Barron’s representation of the solution with
a probability measure defined on the set of parameter values and following the approach initially
suggested by Bach and Chizat [1], the energy is minimized thanks to a constrained gradient curve
dynamic on the 2-Wasserstein space of the set of parameter values defining the neural network. We
prove the existence of solutions to this constrained gradient curve. Furthermore, we prove that,
if it converges, the represented function is then an eigenfunction of the considered Schrödinger
operator. At least up to our knowledge, this is the first work where this type of analysis is carried
out to deal with the minimization of non-convex functionals.

AMS classification: 35P99, 65N75, 49Q22

1 Introduction

The main interest of this work is to introduce a rigorous framework for solving eigenvalue problems
of a certain type of elliptic operators i.e. Schrödinger operators, using neural networks. A first step
towards this objective came from ideas introduced in [1, 2] where authors propose a numerical method
to solve a different but close problem: {

−∆u? = f on Ω,

∂nu
? = 0 on ∂Ω

(1)

where f is a source term. Under some conditions on f ∈ L2(Ω), it is possible to approximate numeri-
cally the minimizer u? as a convex combination of what we call, feature functions. In the same article,
it is shown that minimizing a certain variational energy Eτ , it is possible to solve Poisson-Neumann
problem efficiently when the source term f belongs to the Barron’s space B0(Ω). To do so, authors pro-
pose to analyze the convergence of the gradient curve associated to Eτ . More precisely, they prove that
if the gradient curve converges then it is necessarily towards an optimum. Some numerical experiments
shows the potential of the method on simple canonical examples.

For the Schrödinger eigenvalue problem, things are a bit different. It consists of finding one/the
ground eigencouple of the elliptic operator −∆ + W where W is a potential, supplemented with
boundary condition that we do not specify here. In [3], authors adapted the work [4] to give conditions
on the potential W such that the ground eigenstate belongs to the Barron space of order s > 0 denoted
Bs. More specifically, they prove that if the potential W belongs to Bs and if the ground eigenvalue
is negative, then the eigenvector u? belongs to Bs and a two-layers neural approximation is relevant
when s ≥ 2.

The ultimate goal of studying the Schrödinger problem is to get the ground state of the multi-body
Schrödinger operator given by:
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H := −1

2

N∑
n=1

∆xn +

N∑
n=1

M∑
m=1

−Zm
|xn −Xm|

+
∑

1≤j<n≤N

1

|xj − xn|
. (2)

where:

• (xn)1≤n≤N is the position of N electrons,

• (Xm)1≤m≤M is the position of M , nucleis of charge (Zm)1≤m≤M

• The domain of H is H1(RdN ).

The difficulties posed by the Coulombic singularities, the unbounded domain, and the antisymmetry
condition (due to spins) on the domain of definition of H are not addressed in this paper. However,
it is hoped that this work will serve as a theoretical starting point for the solution of these issues.
Furthermore, the so-called Jastrow factor ansatz demonstrates that the ground eigenstate exhibits a
high degree of regularity in the W 2,∞ sense [5]. Additionally, the mixed derivative regularity described
in [6] provides further evidence for a neural approximation in the manner described by [7]. It must be
acknowledged that the Coulomb potential is not of Barron regularity. However, experimental results
presented in references [8, 9] indicate that for at least simple systems, the eigenstate can be represented
by complex neural networks for which no mathematical framework is clearly defined.

In this work, we will follow and adapt the strategy presented in [1, 2]. First, we introduce the
Schrödinger energy, which we restrict to functions written as an expectation of some simple functions.
This energy, rewritten as a function over probability measures, is then minimized using a gradient
curve with respect to the 2-Wasserstein metric. A result of convergence of the curve towards a measure
representing an eigenfunction is presented, and numerical experiments demonstrate the efficiency of
the method, which surprisingly converges towards a ground state.

The article is decomposed as follow. In Section 1, the problem is presented in a rigorous way with a
rigorous definition of the eigenvalue problem and energy for which we introduce the penalized gradient
flow. In Section 3, the existence of such flow is proved and in Section 4, the convergence towards a
minimizer is shown under the hypothesis of convergence of the trajectory. Finally in Section 5, some
simulations illustrate the potential of the method.

Notation: The notation C is used for universal constants. If there exists a dependence on some
parameter ι, the constant is denoted C(ι).

2 Preliminaries and notation

The aim of this section is to present the eigenvalue problem considered in this work and fix some
notation.

2.1 Problem setting

Let Ω := [0, 1]d be the d-dimensional hypercube and ∂Ω denote the boundary of Ω. We first introduce
the quadratic functional E : H1(Ω)→ R defined as follows:

∀u ∈ H1(Ω), E(u) :=

∫
Ω

|∇u|2 +Wu2dx

where W ∈ L∞(Ω;R). The functional E is then the quadratic form associated to the Schrödinger
operator −∆ + W with Neumann boundary condition, which is a self-adjoint operator with compact
resolvent on L2(Ω) with domain H2(Ω). We are interested in the computation of a solution u? ∈ H1(Ω)
of the following minimization problem

u? ∈ argmin
u∈H1(Ω), ‖u‖L2(Ω)=1

E(u), (3)
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solution of the Schrödinger eigenvalue problem with Neumann boundary condition: find (u?, λ) ∈
H1(Ω)× R solution to: {

−∆u? +Wu? = λu? on Ω,

∂nu
? = 0 on ∂Ω.

(4)

Moreover, since u? is a minimizer of (3), it holds that λ is the lowest eigenvalue of the operator
−∆ +W . For convenience, we use the following notation for the constraint:

∀u ∈ L2(Ω), C(u) :=

∫
Ω

|u|2dx.

The aim of the present paper is to propose and analyze a neural-network based numerical method
for the resolution of (3) in the spirit of [2, 1], based on the use of inifinite-width two-layer neural
networks.

2.2 Activation function

We introduce here the particular choice of activation function we consider in this work, which is the
same as the one used in [2]. Let σ : R→ R be the classical Rectified Linear Unit (ReLU) function so
that for all y ∈ R, σ(y) := max(y, 0). Let ρ : R→ R be defined by Z exp

(
−

tan(π2 y)2

2

)
if |y| ≤ 1

0 otherwise,
(5)

where the constant Z ∈ R is defined such that the integral of ρ is equal to one. For all τ > 0, we then
define ρτ := τρ(τ ·) and στ : R→ R the regularized ReLU function defined by

∀y ∈ R, στ (y) := (ρτ ? σ)(y). (6)

In this work, we will rather use a hat version of the regularized ReLU activation function. More
precisely, we define:

∀y ∈ R, σH,τ (y) := στ (y + 1)− στ (2y) + στ (y − 1), (7)

which is called hereafter the regularized HReLU (Hat ReLU) activation. When τ = +∞, the following
notation is proposed:

∀y ∈ R, σH(y) := σ(y + 1)− σ(2y) + σ(y − 1). (8)

Note that a direct corollary of [2, Lemma 2] is that there exists a constant C > 0 such that for all
τ > 0,

‖σH − σH,τ‖H1(R) ≤
C√
τ

(9)

We will also use the fact that there exists a constant C > 0 such that for all τ > 0,

‖σH,τ‖L∞(R) ≤ C, ‖σ′H,τ‖L∞(R) ≤ C, ‖σ′′H,τ‖L∞(R) ≤ Cτ and ‖σ′′′H,τ‖L∞(R) ≤ Cτ2. (10)

2.3 Infinite width two-layer neural networks

Let us introduce the set of parameter values of the neural network

Θ := R×Sd−1 × R,

where Sd−1 denotes the unit sphere embedded in Rd. Moreover, let P2(Θ) be the set of probability
measures on Θ with finite second-order moments. The space P2(Θ) is equipped with the 2-Wasserstein
distance:

∀µ, ν ∈ P2(Θ), W 2
2 (µ, ν) := inf

γ∈Γ(µ,ν)

∫
Θ2

d(θ, θ̃)2 dγ(θ, θ̃),
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where Γ(µ, ν) is the set of probability measures on Θ2 with marginals given respectively by µ and ν and
where d is the geodesic distance in Θ. The geodesic distance between θ := (a,w, b), θ̃ := (ã, w̃, b̃) ∈ Θ
is defined as:

d(θ, θ̃) =

√
(a− ã)2 + dSd−1(w, w̃)2 + (b− b̃)2,

with dSd−1 the geodesic distance on the unit sphere Sd−1. We also denote by Γo(µ, ν) the subset of

probability measures γ ∈ Γ(µ, ν) such that W2(µ, ν) =

√∫
Θ2

d(θ, θ̃)2 dγ(θ, θ̃). If γ 6∈ Γo(µ, ν), we use

the notation W2,γ(µ, ν) :=

√∫
Θ2

d(θ, θ̃)2 dγ(θ, θ̃).

For any τ > 0, we introduce the function Φτ : Θ× Ω→ R defined such that

∀θ := (a,w, b) ∈ Θ, ∀x ∈ Ω, Φτ (θ;x) := aσH,τ (w · x+ b), (11)

and the operator Pτ : P2(Θ)→ H1(Ω) defined by:

∀µ ∈ P2(Θ), Pτµ :=

∫
Θ

Φτ (θ; ·)dµ(θ).

The aim of this paper is to analyze a numerical method which consists in approximating a solution
u∗ ∈ H1(Ω) to (3) by a function of the form Pτµ

? where µ? is a solution of a constrained minimization
problem of the form

inf
µ∈P2(Θ)
Cτ (µ)=0

Eτ (µ).
(12)

where:

• the energy writes:

Eτ :

{
P2(Θ) 7→ R

µ→ E(Pτµ).
(13)

• the constraint cost is:

Cτ :

{
P2(Θ) 7→ R

µ→ ‖Pτµ‖L2(Ω) − 1.

The associated set of constraint is denoted by Xτ := {µ ∈ P2(Θ) | Cτ (µ) = 0}.

More precisely, we prove the existence of a constrained gradient curve (µt)t≥0 associated to (a regu-
larized version of) the constrained minimization problem (12). Then, under the assumption that such
a curve converges as t goes to infinity to some measure µ∞ ∈ P2(Θ), we prove that Pτ (µ∞) is an
eigenfunction of the Schrödinger operator −∆+W . We would like to stress on the fact that this eigen-
function may however be associated to an eigenvalue λ∞ which may not be the smallest eigenvalue of
the operator −∆ +W in general.

2.4 Barron spaces and regularity of eigenfunctions of Schrödinger opera-
tors

In this section, we introduce the Barron space to justify our choice of neural network approximation
of ground eigenstates. To do so, let us introduce the orthonormal basis in L2(Ω) composed of the
eigenfunctions {φk}k∈Nd of the Laplacian operator with Neumann boundary condition, where

∀k = (k1, . . . , kd) ∈ Nd, ∀x := (x1, · · · , xd) ∈ Ω, φk(x1, . . . , xd) :=

d∏
i=1

cos(πkixi). (14)

Notice that {φk}k∈Nd is also an orthogonal basis of H1(Ω). Using this basis, we have the Fourier
representation formula for any function u ∈ L2(Ω):

u =
∑
k∈Nd

û(k)φk,
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where for all k ∈ Nd, û(k) := 〈φk, u〉L2(Ω). This allows to define the (spectral) Barron space [4] as
follows:

Definition 1. For all s > 0, the Barron space Bs(Ω) is defined as:

Bs(Ω) :=
{
u ∈ L1(Ω) :

∑
k∈Nd

(1 + πs|k|s1)|û(k)| < +∞
}

(15)

and the space B2(Ω) is denoted B(Ω). Moreover, the space Bs(Ω) is embedded with the norm:

‖u‖Bs(Ω) :=
∑
k∈Nd

(1 + πs|k|s1)|û(k)|. (16)

One of the reason we consider problem (12) is that under some regularity hypothesis on the po-
tential, the ground eigenvector is unique and belongs to some Barron space. More precisely, using
Krein-Rutman theory, the authors of [3] proved the following result.

Theorem 1 ([3]). Let s > 0. If W ∈ L∞(Ω) ∪ Bs(Ω) is such that (−∆ + W,H1(Ω)) has a spectral
gap, then there exists a unique ground eigenvector u? which belongs to Bs(Ω).

By the theorem of approximation of Barron function, it is then possible to approximate the ground
state u? by a two-layer neural network. To present such result, we introduce the concept of feature
space Fχ,m(B) defined as:

Fχ,m(B) :=

{
m∑
i=1

aiχ(wi · x+ bi) : ai, bi ∈ R, wi ∈ Rd, |wi| = 1, |bi| ≤ 1,

m∑
i=1

|ai| ≤ 4B

}
(17)

where χ : R→ R be measurable, m ∈ N∗ and B > 0.

Theorem 2 ([4]). For any u ∈ B(Ω), m ∈ N∗ :

(i) there exists um ∈ FσH ,m(‖u‖B(Ω)) such that:

‖u− um‖H1(Ω) ≤
C‖u‖B(Ω)√

m
,

(ii) there exists ũm ∈ FσH,m,m(‖u‖B(Ω)) such that:

‖u− ũm‖H1(Ω) ≤
C‖u‖B(Ω)√

m
. (18)

where for both items, C is a universal constant which does not depend on d neither on u.

The problem with Theorem 1 is that we do not have a clear estimate of the Barron norm of u? wrt
the Barron norm of W . Consequently, we are not sure that the quantity ‖u?‖B(Ω) is not exploding
wrt dimension. This constitutes an important question that we do not treat in this paper but remains
fundamental to legitimate our choice of numerical approximation.

3 Existence of a gradient curve

In the following, we denote by TΘ the tangent bundle of Θ, i.e.

TΘ :=
⋃
θ∈Θ

{θ} × TθΘ,

where TθΘ is the tangent space to Θ at the element θ∈ Θ. It is easy to check that for all θ := (a,w, b) ∈
Θ, it holds that TθΘ = R× Span{w}⊥ × R, where Span{w}⊥ is the subspace of Rd containing all d-
dimensional vectors orthogonal to w.

For any θ := (a,w, b) ∈ Θ and any function f : Θ → R differentiable at θ, we denote by ∇f(θ) ∈
Rd+2 the (euclidean) gradient of f . We also denote by ∇Θf(θ) the orthogonal projection of ∇f(θ)
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onto TθΘ and by ∇Θ⊥f(θ) the orthogonal projection of ∇f(θ) onto (TθΘ)⊥ = {0}×Span{w}×{0} =
Span{(0, w, 0)}. Therefore, we have the unique orthogonal decomposition of the gradient:

∇f(θ) = ∇Θf(θ) +∇Θ⊥f(θ) (19)

For r > 0, let us introduce Kr := [−r, r] × Sd−1 × [−r, r]. Restraining the domain of Cτ , it is
relatively easy to get continuity and even differentiability of this functional.

Lemma 1. The application Cτ : P2(Kr)→ R is continuous (with respect to the W2 metric). Moreover,
there exists a constant C(τ, r) > 0 such that for all (µ, ν) ∈ P2(Kr)

2 such that Pτµ 6= 0,W2(µ, ν) ≤
C(τ, µ) and γ ∈ Γo(µ, ν),

Cτ (ν) = Cτ (µ) +

∫
Θ2

∇ΘCτ,µ(θ) · (θ̃ − θ)dγ(θ, θ̃) + o(W2(µ, ν))

where for all θ ∈ Θ, Cτ,µ(θ) :=
〈Pτµ,Φτ (θ)〉L2(Ω)

‖Pτµ‖L2(Ω)
is the smooth constraint potential.

Proof. Before developing the proof, we will need the following notation:

Mτ (θ, θ̃;x) :=

∫ 1

0

(θ̃ − θ)THθΦτ (θ + t(θ̃ − θ);x)(θ̃ − θ)(1− t)dt.

Now, for µ, ν ∈ P2(Kr) and γ ∈ Γ(µ, ν) supported in K2
r , it holds that:

Cτ (ν) = C
(∫

Kr

Φτ (θ̃; ·)dν(θ̃)
)

= C
(∫

K2
r

Φτ (θ̃; ·)dγ(θ, θ̃)
)

= C
(∫

K2
r

[
Φτ (θ; ·) +∇θΦτ (θ; ·) · (θ̃ − θ) +Mτ (θ, θ̃; ·)

]
dγ(θ, θ̃)

)
= Cτ (µ) + d C |Pτ (µ)

(∫
K2
r

[
∇θΦτ (θ; ·) · (θ̃ − θ) +Mτ (θ, θ̃; ·)

]
dγ(θ, θ̃)

)
+

∫ 1

0

(1− t)d2 C∫
K2
r
[Φτ (θ;·)+t(∇θΦτ (θ;·)·(θ̃−θ)+Mτ (θ,θ̃;·))]dγ(θ,θ̃)(du, du)dt

where the notation du :=

∫
K2
r

[
∇θΦτ (θ; ·) · (θ̃ − θ) +Mτ (θ, θ̃; ·)

]
dγ(θ, θ̃) is introduced to ease the

reading. We have:

• d Cv(dv) =
〈v, dv〉L2(Ω)

‖v‖L2(Ω)
and consequently

|d Cv(dv)| ≤ ‖dv‖L2(Ω), (20)

,

• d2 Cv(dv, dv) =
1

2

‖dv‖2L2(Ω)

‖v‖L2(Ω)
− 1

4

〈v, dv〉2L2(Ω)

‖v‖L2(Ω)
and consequently

|d2 Cv(dv, dv)| ≤
(

1 +
1

‖v‖L2(Ω)

)
‖dv‖2L2(Ω). (21)

.

Using estimates taken from [2, Proof of corollary 1] i.e

‖du‖2L2(Ω) ≤ C(1 + r2 + τ2 + r2τ2)W 2
2 (µ, ν), (22)

one gets:
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‖Pτµ+ tdu‖L2(Ω) ≥ ‖Pτµ‖L2(Ω) − C
√

1 + r2 + τ2 + r2τ2W2(µ, ν)

so there exists C(τ, r) such that if W2(µ, ν) ≤ C(τ, r) then ‖Pτµ + tdu‖L2(Ω) > 0 for all 0 ≤ t ≤ 1.
Using this and (20)-(22) one gets:

Cτ (ν) = Cτ (µ) +

∫
Θ2

d C |Pτ (µ)(∇Φτ (θ) · (θ̃ − θ))dγ(θ, θ̃) + o(W2(µ, ν))

which is the desired result.

We have an equivalent result for the energy Eτ .

Lemma 2. The application Eτ : P2(Kr)→ R is continuous (with respect to the W2 metric). Moreover,
for all (µ, ν) ∈ P2(Kr)

2 such that for all γ ∈ Γo(µ, ν),

Eτ (ν) = Eτ (µ) +

∫
Θ2

∇ΘVτ,µ(θ) · (θ̃ − θ)dγ(θ, θ̃) + o(W2(µ, ν))

where for all θ ∈ Θ, Vτ,µ(θ) := 〈∇Pτµ,∇Φτ (θ; ·)〉L2(Ω) +〈WPτµ,Φτ (θ; ·)〉L2(Ω) is the smooth constraint
potential.

Proof. It suffices to adapt the proof [2, Proposition 3].

The penalized energy ECτ,r : P2(Θ) 7→ R∪{+∞} which is defined by:

∀µ ∈ P2(Θ), ECτ,r(µ) :=

 Eτ (µ) if Cτ (µ) = 0 and Supp(µ) ⊂ Kr,
+∞ otherwise.

where Supp(µ) denotes the support of the probability measure µ. Let us also introduce the notation:

Xτ := {µ ∈ P2(Θ) | Cτ (µ) = 0} and Xτ,r := {µ ∈ P2(Θ) | Cτ (µ) = 0 and Supp(µ) ⊂ Kr}.

This allows to prove smoothness on the constrained energy.

Proposition 1. The constrained energy ECτ,r is lower semicontinuous and coercive.

Proof. Coercivity is obvious. For the lower semicontinuity, let (µn)n≥0 be a converging sequence in
(P2(Θ),W2) and let µ be its limit. There are two possible situations. Either there exists an integer
N ∈ N such that for all n ≥ N , µn 6∈ Xτ,r. In this case, it then holds that:

ECτ,r(µ) ≤ lim inf
n→∞

ECτ,r(µn) = +∞.

Otherwise, for any N ∈ N, there exists n ≥ N such that µn ∈ Xτ,r. As a consequence, there exists an
extracted subsequence of (µn)n≥0, still denoted by (µn)n≥0 for the sake of convenience, the elements
of which all belong to Xτ,r and which still converges to µ. As Cτ is continuous from Lemma 1,
Xτ = C−1

τ ({0}) is closed and µ belongs to Xτ . Moreover, by Portmanteau theorem, Supp(µ) ⊂ Kr

which yields that µ ∈ Xτ,r. In addition, as the energy Eτ is lower semi-continuous from Lemma 2,

ECτ,r(µ) = Eτ (µ) ≤ lim inf
n→∞

Eτ (µn) = lim inf
n→∞

ECτ,r(µn).

This proves the lower semicontinuity of the constrained energy.

We need the following preliminary Lemma of non degeneracy of the constraint to prove the existence
of a Lagrange multiplier. It involves the definition of the local slope:

Definition 2. Let E : P2(Θ) → R be an energy functional. The local slope at a measure µ ∈ P2(Θ)
is the negative quantity (that can be infinite):

|∂E|(µ) := lim inf
ν∈P2(Θ),W2(µ,ν)→0

|(E(ν)− E(µ))−|
W2(ν, µ)

where the superscript is the negative part.
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Lemma 3. For all µ ∈ Xτ , |∂ Cτ |2(µ) = ‖∇ΘCτ,µ‖2L2(Θ;µ) ≥
1∫

Θ
a2dµ

> 0.

Proof. Let µ ∈ Xτ . For t ∈ [0, 1], the operator Tt : (a,w, b) 3 Θ 7→ ((1 + t)a,w, b) allows to define the
curve µt := Tt#µ for which it is simple to prove that:

• Cτ (µt) = 1 + t,

• W2(µ, µt) ≤ t

√∫
Θ

a2dµ where

∫
Θ

a2dµ > 0 since µ ∈ Xτ .

Consequently, it holds:

|∂ Cτ |(µ) ≥ 1√∫
Θ
a2dµ

and the conclusion immediately follows.

The following proposition is the main result of the paper where we identify the local slope of the
constrained energy.

Proposition 2. If Supp(µ) ⊂ Kr−δ for some δ > 0 and µ ∈ Xτ , then the local slope of the constrained
energy is given by:

|∂ ECτ,r |(µ) = ‖∇ΘVτ,µ − σµ∇ΘCτ,µ‖L2(Θ;µ)

where:

σµ :=
〈∇ΘVτ,µ,∇ΘCτ,µ〉L2(Θ;µ)

‖∇ΘCτ,µ‖2L2(Θ;µ)

.

is well-defined by Lemma 3.

Before going into the proof of Proposition 2, we need the following notations and proposition. Let
P be the set of geodesics of Θ, i.e. the set of absolutely continuous curves π : [0, 1] → Θ such that
for all t1, t2 ∈ [0, 1], d(π(t1), π(t2)) = d(π(0), π(1))|t1 − t2|. It then holds that for all 0 ≤ t ≤ 1, we

have |π̇(t)| = lim
ε→0

d(π(t), π(t+ ε))

|ε|
= d(π(0), π(1)). For all s ∈ [0, 1], we define the application map

es : P → Θ such that es(π) := π(s). Owing to this, McCann interpolation gives the fundamental
characterization of constant speed geodesics in P2(Θ) :

Proposition 3. [10, Proposition 2.10] For all µ, ν ∈ P2(Θ) and any geodesic κ : [0, 1] → P2(Θ)
between them (i.e. such that κ(0) = µ and κ(1) = ν) with respect to the W2 metric, there exists
Π ∈ P2(P) such that:

∀t ∈ [0, 1], κ(t) = et#Π.

Moreover, we introduce the operator G:

G :=

{
P → TΘ
π 7→ (π(0), π̇(0))

which will be useful later.

Proof. Let µ, ν ∈ Xτ and γ ∈ Γo(µ, ν). Then by Lemma 1:∫
Θ2

∇Cτ,µ(θ) · (θ̃ − θ)dγ(θ, θ̃) = o(W2(µ, ν)).

Consequently,

ECτ,r(µ)− ECτ,r(ν) =

∫
Θ2

∇(Vτ,µ − σµCτ,µ) · (θ̃ − θ)dγ(µ, ν) + o(W2(µ, ν)). (23)

The first term in the right hand side of (23) can be decomposed as follows:
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∫
Θ2

∇(Vτ,µ − σµCτ,µ) · (θ̃ − θ)dγ(µ, ν) =

∫
Θ2

∇Θ(Vτ,µ − σµCτ,µ) · (θ̃ − θ)dγ(θ, θ̃)

+

∫
Θ2

∇Θ⊥(Vτ,µ − σµCτ,µ) · (θ̃ − θ)dγ(θ, θ̃).
(24)

The first term in (24) can be easily bounded:

∣∣∣∣∫
Θ2

∇Θ(Vτ,µ − σµCτ,µ) · (θ̃ − θ)dγ(θ, θ̃)

∣∣∣∣ ≤ ‖∇ΘVτ,µ − σµ∇ΘCτ,µ‖L2(Θ;µ)

√∫
Θ2

|θ̃ − θ|2dγ(θ, θ̃)

≤ ‖∇ΘVτ,µ − σµ∇ΘCτ,µ‖L2(Θ;µ)W2(µ, ν)
(25)

where we used the fact that the euclidean distance is bounded by the geodesic distance on the subman-
ifold Θ to get the last inequality. The second term in (24) is a bit more difficult to bound and to do so,
we use McCann’s representation of optimal plans. There exists Π ∈ P2(P) such that γ = (e0, e1)#Π
and:∣∣∣∣∫

Θ2

∇Θ⊥(Vτ,µ − σµCτ,µ) · (θ̃ − θ)dγ(θ, θ̃)

∣∣∣∣ =

∣∣∣∣∫
TΘ

∇Θ⊥(Vτ,µ − σµCτ,µ) · (expθ(v)− θ) dG#(θ, v)

∣∣∣∣
≤

∫
TΘ

|∇Θ⊥(Vτ,µ − σµCτ,µ)||v|2 dG#(θ, v)

≤ Cr

∫
TΘ

|v|2 dG#(θ, v)

= CrW
2
2 (µ, ν),

(26)
where we used the fact that:

• On the sphere expz(v) = cos(|v|)z + sin(|v|) v
|v|

, so that

|P⊥θ (expθ(v)− θ)| = | cos(|v|)− 1| ≤ |v|2

to get the second inequality.

• The support of µ is included in Kr so ‖Vτ,µ − σµCτ,µ‖W 1,∞(Θ) ≤ Cr for some constant Cr ≥ 0
to get the last one.

Injecting (25)-(26) in (24) gives:

| ECτ,r(µ)− ECτ,r(ν)| ≤ ‖∇ΘVτ,µ − σµ∇ΘCτ,µ‖L2(Θ;µ)W2(µ, ν) + o(W2(µ, ν))

and finally:

|∂ ECτ |(µ) ≤ ‖∇ΘVτ,µ − σµ∇ΘCτ,µ‖L2(Θ;µ). (27)

For the reverse inequality, one considers the following curves:{
µs = exp(−s∇ΘVτ,µ)#µ
µs,t = exp(t∇ΘCτ,µs)#µs.

and defines the function f(s, t) := Cτ (µs,t). We will use the implicit function theorem on f and to do
so, it is necessary to prove that it is C1.

Lemma 4. The function f(s, t) := Cτ (µs,t) is C1 on a neighborhood of (0, 0).

Proof. Let dt, ds ∈ R, then we have for γ := (i× exp(dt∇ΘCτ,µs))#µs,t:

Cτ (µs,t+dt) = Cτ (µs,t) +

∫
Θ2

∇ΘCτ,µ(θ) · (θ̃ − θ)dγ(θ, θ̃) + o(W2,γ(µs,t, µs,t+dt))

= Cτ (µs,t) +

∫
Θ

∇ΘCτ,µ(θ) · (expθ(dt∇ΘCτ,µs))− θ)dµs,t(θ) + o(W2,γ(µs,t, µs,t+dt)).
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Hence as W2,γ(µs,t, µs,t+dt) = dt‖∇ΘCτ,µs‖L2(Θ;dµs,t) ,

Cτ (µs,t+dt)− Cτ (µs,t)

dt
=

∫
Θ

∇ΘCτ,µ(θ) · expθ(dt∇ΘCτ,µs))− θ
dt

dµs,t(θ) + o(dt)

As ∇ΘCτ,µ(θ) is uniformly bounded, we can use the dominated convergence theorem and

lim
dt→0

Cτ (µs,t+dt)− Cτ (µs,t)

dt
= ‖∇ΘCτ,µs,t‖2Θ;µs,t . (28)

For the s derivative, things get more complex since Jacobi fields are involved. The analysis is based
on [11] where authors define the following Jacobi map:

Jv(v0, v1)(θ) :=

 the value at ζ = 1 of the Jacobi field ζ 7→ jζ ∈ Texpθ(ζv(θ))Θ
along the geodesic ζ 7→ expθ(ζv(θ))
having initial conditions j0(θ) = v0(θ), j′0(θ) = v1(θ)

(29)

and define:

jv(v0, v1) ◦ exp(v(θ)) := Jv(v0, v1)(θ) (30)

meaning that:

∀θ ∈ Θ, θ̃ ∈ exp(v)−1({θ}), jv(v0, v1)(θ) = Jv(v0, v1)(θ̃).

By the same reference [11], the curve s 7→ µs,t is absolutely continuous and its velocity field (ws)s
writes:

ws = jt∇ΘCτ,µs

(
−∇ΘVτ,µ, t

d

ds
∇ΘCτ,µs

)
(31)

where the s derivative has to be understood in the following sense:
d

ds
∇ΘCτ,µs =

∂

∂s
(∇ΘCτ,µs ◦

exp(−sVτ,µ)). Consequently, s 7→ f(s, t) is differentiable a.e and:

∂f

∂s
=

∫
Θ

∇ΘCτ,µs,t · wsdµs,t.

To conclude, we need to prove the continuity of the rhs of last equation. To do so and by standard
calculations, one needs compute the s derivative of s 7→ Pτµs:

∂Pτµs
∂s

=

∫
Θ

∇ΘCτ,µ(θ) · ∇ΘΦτ (θ, ·)dµs(θ)

and consequently s 7→ ∇ΘCτ,µs(θ) is differentiable:

d

ds
∇ΘCτ,µs = ∇Θ

(
〈∂Pτµs∂s

,Φτ (θ)〉L2(Ω)

‖Pτµs‖L2(Ω)
− 〈Pτµs,Φτ (θ)〉L2(Ω) ×

〈Pτµs, ∂Pτµs∂s
〉L2(Ω)

‖Pτµs‖3L2(Ω)

)
which is continuous in the s variable. As the manifold Θ is smooth, the application J·(·, ·) is smooth
and the application s→ ws(θ) is C1. Then finally,

∂f

∂s
(s+ ds, t)− ∂f

∂s
(s, t) =

∫
Θ

∇ΘCτ,µs,t · wsd(µs+ds,t − µs,t)

+

∫
Θ

(∇ΘCτ,µs+ds,t · ws+ds −∇ΘCτ,µs,t · ws)dµs,t
(32)

and:

• the first term in (32) goes to zero as µs,t, µs+ds,t are compactly supported (since µ is compactly
supported) and function ∇ΘCτ,µs,t · ws is continuous in the theta variable.

• The second term in (32) goes to zero because of the smoothness of the integrand wrt the s
variable and dominated convergence theorem which is easily applicable since the integrand is
uniformly bounded on Θ wrt s on the compact support of µs,t.
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This finishes the proof of the lemma.

By the boundedness of ∇ΘVτ,µ, σµ∇ΘCτ,µ in L∞ and as Supp(µ) ⊂ Kr−δ for some δ > 0, there
exists an ε > 0 such that for (s, t) ∈ [0, ε]2, Supp(µs) ⊂ Kr and Supp(µs,t) ⊂ Kr. As µ ∈ Xτ ,
f(0, 0) = Cτ (µ) = 0. Moreover:

∂f

∂t |s,t=0
=

d

dt
Cτ (exp(t∇ΘCµ)#µ) = ‖∇ΘCτ,µ‖2L2(Θ;µ) 6= 0.

For the other derivative,

∂f

∂s |s,t=0
=

d

ds
Cτ (µs) = −〈∇ΘVτ,µ,∇ΘCτ,µ〉L2(Θ;µ).

By the implicit function theorem, there exists an open interval [0, ε̃[ and a C1 function t : [0, ε[→ R+

with t′(0) =

∂f
∂s |s,t=0

∂f
∂t |s,t=0

= −σµ such that for all 0 ≤ s < ε̃, f(s, t(s)) = 0. To conclude, we need the two

following estimates that will be derived using the notation ψs,t = exp(t∇ΘCµs) ◦ exp(−s∇ΘVτ,µ):

• We first estimate W2(µs,t(s), µ):

W 2
2 (µs,t(s), µ)

s2
≤
∫

Θ

d(ψs,t(s)(θ), θ)
2

s2
dµ(θ) (33)

passing to the limit:

lim sup
s→0

W 2
2 (µs,t(s), µ)

s2
≤ ‖∇ΘVτ,µ − σµ∇ΘCτ,µ‖2L2(Θ,µ). (34)

To justify this, we need a bit of work involving the dominated convergence theorem.

– The derivatives of ψ are given below at t, s = 0:
∂ψ

∂t |s,t=0
(θ) = ∇ΘCτ,µ(θ)

∂ψ

∂s |s,t=0
(θ) = −∇ΘVτ,µ(θ).

Consequently, the pointwise limit of the rhs of (33) is

∣∣∣∣∂ψ∂s |s,t=0
(θ) +

∂ψ

∂t |s,t=0
(θ)t′(0)

∣∣∣∣ =

|∇ΘVτ,µ(θ)− σµ∇ΘCτ,µ(θ)|.
– Now we will calculate the velocity field of the smooth curve s 7→ ψs,t(s). To do so consider

the variation of geodesic:

ι(s, u) := exp(ut(s)∇ΘCµs) ◦ exp(−s∇ΘVτ,µ).

We have:
∂ι

∂s |s,u=0
= −∇ΘVτ,µ

∂2ι

∂s∂u |s,u=0
=

∂

∂s
(t(s)∇ΘCτ,µs ◦ exp(−s∇ΘVτ,µ))|s=0 = t′(0)∇ΘCτ,µ

where the last equality comes from the fact that t(0) = 0. Hence, the velocity field of the
smooth curve s 7→ ψs,t(s)(θ) is the Jacobi field J(θ) evaluated at u = 1 with initial condition
given by: {

J0(θ) = −∇ΘVτ,µ(θ)
J ′0(θ) = −σµ∇ΘCτ,µ(θ)

By the boundedness of J0, J
′
0 on the support of µ (which is compact), we deduce that J(θ)

is uniformly bounded on the support of µ and:
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d(ψs,t(s)(θ), θ)

s
≤ ‖J‖L∞(supp(µ))

so we can apply the dominated convergence theorem.

• Then for the energy:

ECτ,r(µs,t(s))− E
C
τ,r(µ) =

∫
Θ

∇ΘVτ,µ(θ) · (ψs,t(s)(θ)− θ)dµ(θ) + o(W2(µ, µs,t(s)))

and using the same techniques as above, one can pass to the limit:

lim
s→0

Eτ,r(µs,t(s))− Eτ,r(µ)

s
= −

∫
Θ

∇ΘVτ,µ(θ) · (∇ΘVτ,µ − σµ∇ΘCτ,µ)dµ(θ)

= −
∫

Θ

(Vτ,µ(θ)− σµ∇ΘCτ,µ) · (∇ΘVτ,µ − σµ∇ΘCτ,µ)dµ(θ)

= −‖∇ΘVτ,µ − σµ∇ΘCτ,µ‖2L2(Θ;µ)

(35)

where the first equality comes from the fact that ∇ΘVτ,µ − σµ∇ΘCτ,µ is orthogonal to ∇ΘCτ,µ
by the definition of σµ.

To conclude with (34)-(35):

lim inf
s→0

ECτ,r(µs,t(s))− E
C
τ,r(µ)

W2(µ, µs,t(s))
= lim

s→0

ECτ,r(µs,t(s))− E
C
τ,r(µ)

s
lim
s→0

s

W2(µ, µs,t(s))
≥ −‖∇ΘVτ,µ − σµ∇ΘCτ,µ‖

and

|∂ ECτ,r |(µ) ≥ ‖∇ΘVτ,µ − σµ∇ΘCτ,µ‖L2(Θ;µ). (36)

With (27)-(36), we have:

|∂ ECτ,r |(µ) = ‖∇ΘVτ,µ − σµ∇ΘCτ,µ‖L2(Θ;µ).

Remark 1. If Supp(µ) 6⊂ Kr−δ for all δ > 0 and µ ∈ Xτ , one can easily reproduce the proof above to
show that:

|∂ ECτ,r |(µ) = ‖Πr(∇ΘVτ,µ − σµ∇ΘCτ,µ)‖L2(Θ;µ)

where Πr is the projection on the tangent space of the manifold with boundary Kr.

The form of the local slope given by Proposition 2 and Remark 1 allows to prove its regularity.

Proposition 4. The local slope |∂ ECτ,r | is continuous.

Proof. The map Pτ : P2(Θ) → H1(Ω) is continuous by [2, Corollary 1]. This easily implies that
maps µ 3 P2(Ω) 7→ ∇ΘVτ,µ 3 L2(Θ;µ) and µ 3 P2(Ω) 7→ ∇ΘCτ,µ 3 L2(Θ;µ) are continuous. Also
by definition of σµ and Lemma 3, the map µ 3 P2(Ω) 7→ σµ 3 R is also continuous. Finally, the
projection map Πr : L2(Θ;µ)→ L2(Θ;µ) is continuous as it is 1-Lipschitz.

Finally, we can prove the existence of the gradient curve in Proposition 5.

Proposition 5. For all µ0 ∈ Xτ,r for some r > 0, there exists a locally absolutely continuous curve

(µrt )t≥0 of maximal slope for ECτ,r with respect to |∂ ECτ,r |. Moreover for almost all t ≥ 0, there exists

a vector field vrt ∈ L2(Θ;µt)
d+2 such that:∫

Θ

‖vrt ‖2dµt = ‖vrt ‖2L2(Θ;µt)
< +∞
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and: {
∂tµ

r
t + div(vrtµ

r
t ) = 0

µ(0) = µ0.
(37)

Remark 2. Proposition 5 does not give the uniqueness of the curve. To do so, one should restrict the
space to measure in Xτ and define a metric derived from the classic Wasserstein one for which the
functional Eτ,r is λ-geodesically convex. An example of such procedure is the work [12] where authors
restrict the space of measures to those with fixed mean and variance. In addition, they construct a
metric derived from W2 using a midpoint iterative approach. Under such new metric, they prove the
geodesically convexity of the entropy and a potential to state the existence and the uniqueness of the
Fokker-Planck equation constrained by mean and variance. Transferring such an argument to our
context is more difficult since the condition ‖Pτµ‖2L2(Ω) = 1 has a much less obvious interpretation
with respect to the measure µ.

Proof. It suffices to apply [13, Theorem 2.3.1] owing the coercivity and the lower semicontinuity of
ECτ,r by Proposition 1 and the lower semicontinuity of |∂ ECτ,r |. The existence of the vector field vt for
almost all t ≥ 0 is given by the absolute continuity of the curve [0, 1] 3 t 7→ µt (because it is a gradient
curve) and by [14, Proposition 2.5].

Lemma 5. The velocity field vrt in (39) is orthogonal to ∇ΘCµrt in L2(Θ;µrt ).

Proof. Using the proof of Proposition 5 of [2], one gets the differentiability of R+ 3 t→ Cτ (µrt ) almost
everywhere and for almost all t ≥ 0:

d

dt
[Cτ (µrt )] =

∫
Θ

∇ΘCτ,µrt (θ) · v
r
t (θ) dµ

r
t (θ).

As µrt belongs to Xτ for almost all time, then
d

dt
[Cτ (µrt )] = 0 for almost all time which proves the

orthogonality.

From now on we introduce the notation:

V Cτ,µ := Vτ,µ − σµCτ,µ. (38)

and characterizes the velocity field vrt .

Proposition 6. The velocity field vrt in (39) is equal to ∇ΘV
C
τ,µrt

= (∇ΘVµrt − σµrt∇ΘCµrt ) µ
r
t -almost

everywhere as long as there exists δ > 0 such that Supp(µr(t)) ⊂ Kr−δ.

Proof. Using again the proof of Proposition 5 of [2], one gets the differentiability of R+ 3 t→ Eτ (µrt )
almost everywhere and for almost all t ≥ 0:

d

dt

[
ECτ,r(µrt )

]
=

∫
Θ

∇ΘVτ,µrt (θ) · v
r
t (θ) dµ

r
t (θ)

=

∫
Θ

(∇ΘVτ,µrt − σµrt∇ΘCτ,µrt )(θ) · v
r
t (θ) dµ

r
t (θ)

=

∫
Θ

∇ΘV
C
τ,µrt

(θ) · vrt (θ)dµrt (θ)

where the second equation comes from the fact that vrt is orthogonal to ∇ΘCµrt for the scalar product

of L2(Θ;µrt ) by Lemma 5. As µr is a curve of maximal slope with respect to the upper gradient |∂ ECτ,r |
of ECτ,r, one has:

d

dt

[
ECτ,r(µt)

]
=

∫
Θ

∇ΘV
C
τ,µrt
· vrt (θ) dµr(t)(θ) ≤ −

1

2
‖vrt ‖L2(Θ;dµr(t)) −

1

2
|∂ ECτ,r |2(µr(t))

≤ −1

2
‖vrt ‖2L2(Θ;dµr(t)) −

1

2
‖∇ΘV

C
τ,µrt
‖2L2(Θ;dµrt )
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where we used Proposition 2. As a consequence,∫
Θ

(
1

2
|∇ΘV

C
τ,µrt
|2 +

1

2
|vrt (θ)|2 −∇ΘV

C
τ,µrt
· vrt (θ)

)
dµr(t)(θ) ≤ 0

and
vrt = −∇ΘV

C
τ,µrt

µrt -a.e.

In fact the gradient flow writes as the pushforward of the initial measure by the flow generated
with the velocity field −∇ΘV

C
τ,µrt

.

Proposition 7. Let χr : R+ ×Θ→ Θ be the flow associated to the velocity field −∇ΘV
C
τ,µrt

:{
∂tχ

r(t) = −∇ΘV
C
τ,µrt

χr(0; θ) = θ.

Then χr is uniquely defined, continuous, and for all t ≥ 0, χr(t) is Lipschitz on Kr. Moreover, as
long as Supp(µrt ) ⊂ Kr−δ for some δ > 0:

µrt = χr(t)#µ0.

Proof. [Checked] This is a direct consequence of the fact that the vector field ∇ΘV
C
τ,µt is C∞.

Before stating the theorem of existence without support limitation, we need the following prelimi-
nary lemmas 6-7:

Lemma 6. For all µ ∈ Xτ,r, it holds:

|σµ| ≤ C(τ)

(∫
Θ

a2dµ

)
‖Pτµ‖H1(Ω)

Proof. By the definition of σµ and Cauchy Schwartz inequality,

|σµ| ≤
‖∇ΘVτ,µ‖L2(Θ;µ)

‖∇ΘCτ,µ‖L2(Θ;µ)
.

Then,

•

‖∇ΘVτ,µ‖L2(Θ;µ) ≤ Cτ

√∫
Θ

a2dµ‖Pτµ‖H1(Ω)

• By Lemma 3,

‖∇ΘCτ,µ‖L2(Θ;µ) ≥ 1/

√∫
Θ

a2dµ

Therefore combining both inequalities:

|σµ| ≤ Cτ
(∫

Θ

a2dµ

)
‖Pτµ‖H1(Ω)

Lemma 7. For all µ ∈ Xτ,r, it holds:

∀θ ∈ Θ, |∂aV Cτ,µ| ≤ Cτr2.
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Proof.
|∂aV Cτ,µ| = |d EPτµ(στ (w ·+b))− σµ〈Pτµ, στ (w ·+b)〉L2(Ω)|

≤ C(‖Pτµ‖H1(Ω) + |σµ|)
≤ Cτr

2

where we used Lemma 6 to get last inequality.

Finally, Theorem 3 gives the existence of a gradient curve removing the support penalization in
the energy.

Theorem 3. Let T > 0, r0 > 0 and µ0 ∈ P2(Θ) such that Supp(µ0) ⊂ Kr0 . There exists a curve
(µt)t≥0 such that : {

∂tµt + div((−∇ΘV
C
τ,µt)µt) = 0

µ(0) = µ0.
(39)

and for almost all t ≥ 0 : ∫
Θ

|∇ΘV
C
τ,µt |

2 dµt = ‖∇ΘV
C
τ,µt‖

2
L2(Θ;µt)

< +∞.

Moreover, the solution satisfies :

∀t ≥ 0, µt = χ(t)#µ0

with χ : R+ ×Θ→ Θ solution to {
∂tχ(t; θ) = −∇ΘV

C
τ,µt(θ)

χ(0; θ) = θ.

Proof. Let T > 0 and:

• r0 > 0 be such that Supp(µ0) ⊂ Kr0 ,

• µr : R+ 3 t 7→ µr(t) be a gradient curve associated to Eτ,r for r > r0.

The only way that mass escapes from Kr is through the variable a, so we need to focus on the velocity
in this variable only. Now defines:

rt := sup{a | θ = (a,w, b) ∈ Supp(µrt )} ≤ r.

By Lemma 7, it holds that |∂aV Cµrt (θ)| ≤ Cτr
2
t for all t ≥ 0 and by definition of rt :

|∂aV Cτ,µrt (θ)| ≤ Cτrtr. (40)

This implies that:

rt ≤ r0e
Cτrt (41)

Indeed, for all (a,w, b) ∈ Supp(µrt ) and by (40), there exists a0 with |a0| ≤ r0 such that:

|a| ≤ |a0|+ Cτr

∫ t

0

rsds

and taking the sup:

rt ≤ r0 + Cτr

∫ t

0

rsds

and Gronwall lemma gives (41).

Therefore for all time t ∈
[
0, Tr :=

1

Cτr
ln

(
r + r0

2r0

)]
, Supp(µr(t)) ⊂ K(r+r0)/2 ⊂ Kr. Hence we

do not hit the boundary of Kr and the velocity field associated to the curve µrt is −∇V Cτ,µt during such
period of time (cf Proposition 6).
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Defining for all n ∈ N∗
rn := (n+ 1)r0,

we can build inductively a gradient curve (µt)t≥0 on

[
0,

1

Cr0

n∑
i=1

1

(i+ 1)
log

(
i+ 2

2(i+ 1)

)]
. As the width

of this interval is diverging, it is possible to construct a gradient curve on R+. By construction, the
velocity field associated to this curve is −∇V Cτ,µt . The rest of the proof comes from Propositions 5, 6
and 7.

4 Convergence

Our convergence result towards a global optimum is based on the following hypothesis on the initial
measure µ0 for which we need to define the projection operator:

πw,b :=

{
Θ→ Sd−1 × R

(a,w, b) 7→ (w, b).

Hypothesis 1. The support of the measure πw,b#µ0 verifies:

SRd(1)× [−
√
d− 2,

√
d+ 2] ⊂ Supp(πw,b#µ0)

and µ0 ∈ Xτ

As we will use Hypothesis 1, we need to be sure it is not empty.

Proposition 8. There exists a measure µ0 ∈ P2(Θ) satisfying Hypothesis 1.

Proof. Define µ00 := δ1 × δ(w,b) for some arbitrary (w, b) ∈ Sd−1 × [−
√
d − 2,

√
d + 2]. Finally, set

µ0 := δ1/‖Pτµ00‖L2(Ω)
× δ(w,b) such that ‖Pτµ0‖L2(Ω) = 1 and µ0 belongs to Xτ .

Under such hypothesis, one gets a result of convergence in the spirit of a previous work from Bach
and Chizat [1]:

Theorem 4. If µ0 satisfies Hypothesis 1 and µ(t) converges towards µ? ∈ P2(Θ) as t goes to infinity,
then V Cτ,µ? = 0 everywhere.

Proof. The proof is identical to the proof of [2, Theorem 7] and given in Appendix for completeness.

In fact the equilibrium µ? given by Theorem 4 represents an eigenstate:

Theorem 5. If µ ∈ Xτ is such that V Cτ,µ = 0 everywhere, then Pτµ is an eigenvector of the Poisson-
Neumann equation with σµ as eigenvalue.

Proof. V Cτ,µ = 0 is equivalent to:

∀θ ∈ Θ, 〈∇xPτµ,∇xΦ(θ; ·)〉L2(Ω) + 〈WPτµ,Φ(θ; ·)〉L2(Ω) − σµ〈Pτµ,Φ(θ; ·)〉L2(Ω) = 0.

As the space of features is dense in H1(Ω), the conclusion is straightforward.

5 Numerical simulations

In this section, we present some numerical experiments to show that the method has good performance
in practice. For all tests, we use the following parameters:

• We use the tensorflow/keras framework.

• Two-layer neural networks are utilized with a network width of either m = 100 or m = 1000.

• The dataset is made of 105 points sampled uniformly from the domain Ω.
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• Batches are made of n := 100 points taken from the dataset.

• The energy E , the constraint C and its derivatives are computed by Monte-Carlo approximation
and automatic differentiation.

• The optimizer is the classical stochastic gradient descent (SGD) with learning rate equal to
1

τm
.

• At each time step, we normalize the last linear layer to impose the unit L2 norm condition.

• To evaluate the performance of our method, we use a finite difference algorithm that is capable
of computing eigenvectors and eigenvalues in the case where the potential depends only on the
first two variables.

• Note that because of Monte-Carlo sampling, the neural network algorithm is stochastic. This is
why, we ran our algorithms 8 times to evaluate the mean and the variance of our results.

In the first test, we take a potential such that the solution behaves well with respect to tensor
trains method [15] i.e.:

W (x) = 100 cos(2πx1).

Figures 1-4 show the energy and L2 error during optimization. The red horizontal line corresponds
to the first eigenvalue computed by the finite difference algorithm while the L2 error is computed with
respect to the first eigenvector computed by this same algorithm. The thick blue line represents the
mean value and the shaded area shows the variance of the quantity.

(a) m = 100 (b) m = 1000

Figure 1: The tensorized case when d = 2

Next when one increases the dimension, curves are given in Figure 2. Remark that for m = 1000,
the time of optimization was taken larger to reach convergence.
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(a) m = 100 (b) m = 1000

Figure 2: The tensorized case when d = 8

For both cases d = 2 and d = 8, we see that the approximation works well and that the width has
little influence on the result. Next we give a less obvious test where tensor techniques behave well. We
call this test the ”cos diagonal test”.

W (x) = −100 cos(2π(x1 − x2))

Plots are given here for d = 2 and d = 8.

(a) d = 2,m = 100 (b) d = 2,m = 1000

(c) d = 8,m = 100 (d) d = 8,m = 1000

Figure 3: The cos diagonal test

Finally, a test where tensor methods fail as the potential:
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W (x) = −100e−
1
2 (x1−x2)2

.

is not separable, is studied. For obvious reasons, we call this test the ”exponential diagonal” one.
Plots are given in figure 4.

(a) d = 2,m = 100 (b) d = 2,m = 1000

(c) d = 8,m = 100 (d) d = 8,m = 1000

Figure 4: The exp diagonal test

Our conclusions are given below:

• On each example, the algorithm seems to converge towards the fundamental eigenvalue of the
operator involved.

• For the three tests globally speaking, neural networks behave well when dimension increases.

• The dependence with respect to the width is not very clear sometimes giving better results in
the tensorized case (Figures 1-2) with less variance. On the contrary in the exponential diagonal
case, a wider network deteriorates the error and the variance.

• Neural networks algorithms allow to have good approximation of the exact solution when tensor
methods fail.

To compare more precisely the effect of increasing the width or the batch size, we compare the
L2 error after convergence for different parameters in Figure 5 for the cos diagonal test. It seems
that increasing the width drastically does not improve the error and a threshold phenomenon occurs.
In contrast, increasing the batch size appears to be beneficial to get more precise results with less
variance.
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Figure 5: L2 error for different n and m

For the sake of completeness, we show a last case with a double well potential. First define
f(z) = (z2 − 1)−2 and g(z) = f(4(z − 0.5)), the potential W is given by:

W (x) = 100 exp(−g(x1)).

A visual representation of the potential is given in Figure 6.

Figure 6: The double well potential

Owing to remarks related to Figure 5, we take a smaller network of size m = 200 and a larger batch
size with n = 1000. The results given in Figure 7, are as precise as the single well cases.
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(a) d = 2 (b) d = 8

Figure 7: The double well case

6 Conclusion and perspectives

In this work, an eigencouple of the Schrödinger operator is approximated by a two-layer neural network
of infinite width, which can be represented by a probability measure. Subsequently, a Wasserstein
gradient flow with respect to a constrained energy is introduced, and an existence result is provided.
Assuming the convergence of the gradient flow, it is shown that the gradient flow converges to a
suitable measure that represents an eigenfunction. Finally, some numerical experiments demonstrate
the efficacy of the method, which surprisingly converges to a minimal energy state. At this time, no
proof exists to substantiate this fact theoretically. Furthermore, the convergence result assumes the
convergence itself, which represents a technical limitation. Finally, numerical tests were conducted
on very smooth potentials for which the result from [3] holds, meaning that the solution can be
approximated by two-layer neural networks. In order to address the Schrödinger multibody problem
presented in the introduction, it is essential to consider less regular potentials and, consequently, more
complex neural networks. Furthermore to be relevant for applications, the results obtained should be
subsequently more accurate than the one obtained in the present framework. One potential avenue
for improvement is the use of the natural gradient technique, as introduced in [16] and the reference
therein. We intend to investigate this path in a future research work.
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A Proof of Theorem 4

A.1 Convergence of the measure a critical point

In the following, a LaSalle’s principle argument is invoked in order to prove Theorem 4. For simplicity,
we note ECτ := ECτ,∞ for 0 < τ < +∞.

A.1.1 Escape from non suitable critical points

In this section, we use the notation ω := (w, b) so that:

θ = (a,w, b) = (a, ω)

to make the difference between ”linear” variables and ”nonlinear” ones. Moreover in order to ease the
reading, we introduce the notation:

vµ := ∇ΘV
C
τ,µ.

Let us first prove the following preliminary lemma.

Lemma 8. For all µ in P2(Θ), it holds that:

max(|Vτ,µ(θ)|, |∇ΘVτ,µ(θ)|) ≤ C(τ)

√∫
Θ

|θ|2dµ× |θ|

and

max(|Cτ,µ(θ)|, |∇ΘCτ,µ(θ)|) ≤ C(τ)

√∫
Θ

|θ|2dµ× |θ|.

Proof. It is a direct application of [2, Corollary 1].

The velocity potential and the derived vector field are smooth in the sense give by Lemma 9.

Lemma 9. For all µ, ν in Xτ , it holds that

∀θ ∈ Θ, |V Cτ,µ(θ)− V Cτ,ν(θ)| ≤ C
max

(
1,M

7/2
2,µν

)
min(1,

√∫
Θ
a2dµ,

√∫
Θ
a2dν)3

W2(µ, ν)|θ|

∀θ ∈ Θ, |vµ(θ)− vν(θ)| ≤ C
max

(
1,M

7/2
2,µν

)
min(1,

√∫
Θ
a2dµ,

√∫
Θ
a2dν)3

W2(µ, ν)|θ|

where:

M2,µν :=

∫
Θ

|θ1|2dµ(θ1) +

∫
Θ

|θ2|2dν(θ2) (42)

Proof. Here we focus on vµ, the proof for V Cτ,µ being very similar. One can decompose vµ as

vµ =: vµ,1 + v2,µ − σµ∇ΘCτ,µ, (43)

with

vµ,1 := ∇Θ

[
〈∇xPτµ,∇xΦτ (θ; ·)〉L2(Ω)

]
,

vµ,2 := ∇Θ

[
〈WPτµ,Φτ (θ; ·)〉L2(Ω)

]
.

Using standard integral derivation and Fubini theorems, it holds that for all γ ∈ Γo(µ, ν),

vµ,1(θ)− vν,1(θ) =

∫
Θ2

∫
Ω

∇Θ∇xΦτ (θ;x)(∇xΦτ (θ1;x)−∇xΦτ (θ2;x))dxdγ(θ1, θ2).
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Owing to (10), one gets

|vµ,1(θ)− vν,1(θ)| ≤ C(τ)

∫
Θ2

max(|θ1|, |θ2|)|θ1 − θ1||θ|dγ(θ1, θ2)

≤ C(τ)

√∫
Θ

|θ1|2dµ+

∫
Θ

|θ2|2dνW2(µ, ν)|θ|,

where we used the Cauchy-Schwartz inequality. For the second term in the decomposition (43), one
has:

vµ,2 − vν,2 =

∫
Θ2

∫
Ω

W (x)(Φτ (θ1;x)− Φτ (θ2;x))∇ΘΦτ (θ;x)dxdγ(θ1, θ2)

Owing to (10), one gets:

|vµ,2(θ)− vν,2(θ)| ≤ C(τ)

∫
Θ2

∫
Ω

max(|θ1, θ2|)|θ1 − θ1|dxdγ(θ1, θ2)|θ|

≤ C(τ)

√∫
Θ

|θ1|2dµ+

∫
Θ

|θ2|2dνW2(µ, ν)|θ|

where we used again the Cauchy-Schwartz inequality. For ∇ΘCτ,µ, it is bounded according to Lemma
8 and doing the same calculation as above with W = 1:

|∇ΘCτ,µ(θ)−∇ΘCτ,µ(θ)| ≤ C(τ)

√∫
Θ

|θ1|2dµ+

∫
Θ

|θ2|2dν|θ|W2(µ, ν).

The remaining term to analyze is σµ for which by Lemma 3 and Lemma 8:

|σµ| ≤ C(τ)

∫
|θ|2dµ√∫
a2dµ

.

Moreover, it is Lipschitz:

|σν − σµ| ≤

∣∣∣∣∣ 1

‖∇Cτ,µ‖2L2(Θ;µ)

− 1

‖∇Cτ,ν‖2L2(Θ;ν)

∣∣∣∣∣ 〈∇ΘVτ,µ,∇ΘCτ,µ〉L2(Θ;µ)

+
1

‖∇Cτ,ν‖2L2(Θ;ν)

|〈∇ΘVτ,µ −∇ΘVτ,ν ,∇ΘCτ,µ〉L2(Θ;µ)|

+
1

‖∇Cτ,ν‖2L2(Θ;ν)

|〈∇ΘVτ,ν ,∇ΘCτ,µ −∇ΘCτ,ν〉L2(Θ;µ)|

(44)

For the first term denoted A1 and introducing an arbitrary γ ∈ Γo(µ, ν), it can be bounded by:

∣∣∫
Θ2(∇ΘCτ,µ(θ1)−∇ΘCτ,ν(θ2)) · (∇ΘCτ,µ(θ1) +∇ΘCτ,ν(θ2))dγ(θ1, θ2)

∣∣
‖∇Cµ‖L2(Θ;µ)‖∇Cν‖2L2(Θ;ν)

‖∇Vµ‖L2(Θ;µ).

and the term on the numerator can be decomposed as A1 = B1 +B2 where:

B1 :=

∣∣∣∣∫
Θ2

(∇ΘCτ,µ(θ1)−∇ΘCτ,ν(θ1)) · (∇ΘCτ,µ(θ1) +∇ΘCτ,ν(θ2))dγ(θ1, θ2)

∣∣∣∣
and:

B2 :=

∣∣∣∣∫
Θ2

(∇ΘCτ,ν(θ1)−∇ΘCτ,ν(θ2)) · (∇ΘCτ,µ(θ1) +∇ΘCτ,ν(θ2))dγ(θ1, θ2)

∣∣∣∣
Reusing the estimate on ∇ΘCτ,µ computed above and Lemma 8, one gets:

B1 ≤ C(τ)

(∫
Θ

|θ1|2dµ+

∫
Θ

|θ2|2dν
)
W2(µ, ν)

∫
Θ2

|θ1|(|θ1|+ |θ2|)dγ(θ1, θ2)

≤ C(τ)

(∫
Θ

|θ1|2dµ+

∫
Θ

|θ2|2dν
)2

W2(µ, ν)
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For A2, it suffices to use the uniform boundedness of HΘΦτ to prove that:

B2 ≤ C(τ)

(∫
Θ

|θ1|2dµ+

∫
Θ

|θ2|2dν
)∫

Θ2

|θ1 − θ2|(|θ1|+ |θ2|)dγ(θ1, θ2)

≤ C(τ)

(∫
Θ

|θ1|2dµ+

∫
Θ

|θ2|2dν
)3/2

W2(µ, ν).

Using Lemma 3, one has:

A1‖∇Vµ‖L2(Θ;µ)

‖∇Cµ‖L2(Θ;µ)‖∇Cν‖2L2(Θ;ν)

≤ C(τ)
max(1,M3

2,µν)√∫
Θ
|a1|2dµ

∫
Θ
|a2|2dν

W2(µ, ν).

The bound of other terms in (44) are similar, easier to compute and left for the reader.
To conclude, using estimate derived above and Lemma 8:

|σµ∇ΘCτ,µ − σν∇ΘCτ,ν | ≤ |σµ − σν ||∇ΘCτ,ν |+ |σµ||∇ΘCτ,µ −∇ΘCτ,ν |

≤ C(τ)
max(1,M3

2,µν)√∫
Θ
|a1|2dµ

∫
Θ
|a2|2dν

W2(µ, ν)
√
M2,µν |θ|

+ C(τ)

∫
|θ|2dµ√∫
a2dµ

√
M2,µν |θ|W2(µ, ν)

≤ C(τ)
max(1,M

7/2
2,µν)

min(1,
√∫

Θ
a2dµ,

√∫
Θ
a2dν)3

W2(µ, ν)|θ|.

Proposition 9. Let µ ∈ P2(Θ) such that there exists θ ∈ Θ, φµ(θ) 6= 0. Then there exist a set A ⊂ Θ
and ε > 0 such that if there exists t0 > 0 with W2(µt0 , µ) ≤ ε and µt0(A) > 0, then there exists a time
0 < t0 < t1 < +∞ such that W2(µt1 , µ) > ε.

Proof. As φµ is linear in a, it can be written under the form

V Cτ,µ(θ) =: aψµ(ω).

By hypothesis, the set
A0 := {θ ∈ Θ | φµ(θ) 6= 0}

is a non empty (open set). This is equivalent to say that either there exists ω such that ψµ(ω) 6= 0 or
rµ 6= 0. Suppose that ψµ 6= 0 is non zero somewhere. For all α ∈ R, we denote by{

A+
α = ψ−1

µ (]α,+∞[),

A−α = ψ−1
µ (]−∞, α[).

Now we focus on A−0 and suppose that this set is non empty. The case where A+
0 is non empty is

similar to handle and left to the reader.
By Lemma 10 and the regular value theorem, there exists η > 0 such that ∂A−−η = ψ−1

µ ({−η}) is a
(d+ 1)−orientable manifold on which ∇ωψµ is non zero. With our choice of activation function σH,τ ,
it is easy to prove that A−−η is a bounded set. Indeed, if b is large enough, then Ω 3 x 7→ σH,τ (w ·x+b)
is zero and ψµ(w, b) is zero.

On A−−η, the gradient ∇ωψµ is pointing outward A−−η and, denoting by nout the outward unit vector

to A−−η, there exists β > 0 such that |∇ωψµ · nout| > β for on ∂A−−η, since this continuous function is
nonzero on a compact set. Hence, defining:

A := {(a, ω) ∈ Θ | ω ∈ A−−η, a ≥ 0}

and owing to the fact that vµ = (vµ,a, vµ,ω) with vµ,a = ψµ(ω) and vµ,ω = a∇ωψµ(ω), it holds:{
vµ,a < η on A

vµ,ω · nout > βa on R+ × ∂A−−η.
(45)
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By contradiction, suppose that µt0 has non zero mass on A and that W2(µ, µt) ≤ ε (with ε fixed
later) for all time t ≥ t0. Then using Lemma 9, one has:

|vµt(θ)− vµ(θ)| ≤ C(τ, µ)|θ|ε (46)

and
|V Cτ,µt(θ)− V

C
τ,µt(θ)| ≤ C(τ, µ)|θ|ε.

One takes ε :=
η

2C(τ, µ)R
where R > 0 satisfies:

R2µt0(A) >

∫
|θ|2dµ+

η2

4C2(τ, µ)R
(47)

which exists since µt0(A) > 0 by hypothesis. On the set {θ ∈ A | |θ| ≤ R} and by (46), we have:

|vµt(θ)− vµ(θ)| ≤ η

2

and so by (45): {
−vµt,a > η/2 on A

−vµt,ω · nout < −β/2× a on R+×∂A−−η.

The general picture is given by Figure 8. As a consequence, there exists a time t1 such that the
set {θ ∈ A | |θ| ≤ R} has no mass and∫

|θ|2dµt(θ) ≥ R2µt(A) ≥ R2µt0(A).

At the same time, as W2(µ, µt) ≤ ε :∫
|θ|2dµt(θ) ≤

∫
|θ|2dµ(θ) + ε2 =

∫
|θ|2dµ(θ) +

η2

4C(τ, µ)2R2

and this a contradiction with the condition (47) on R.

Remark 3. The set A constructed in the proof of previous lemma is of the form:

A := {(a, ω) ∈ Θ | ω ∈ A−−η1
} ∪ {(a, ω) | ω ∈ A+

η2
} (48)

where η1, η2 are strictly positive.

Lemma 10. For all µ ∈ P2(Θ), if ψµ < 0 somewhere, there exists a strictly negative regular value −η
(η > 0) of ψµ.

Proof. As ψµ < 0 somewhere and by continuity, there exists a non empty open O ⊂]−∞, 0[ such that
O ⊂ range(ψµ). Next, we use the Sard-Morse theorem recalled below:

Theorem 6 (Sard-Morse). Let M be a differentiable manifold and f :M→ R of class Cn, then the
image of the critical points of f (where the gradient is zero) is Lebesgue negligible in R.

This result applies to V Cτ,µ and the image of critical points of φµ is Lebesgue negligible. As a

consequence, there exists a point o ∈ O which is a regular value of V Cτ,µ. As o ∈ O, it is strictly
negative and this finishes the proof of the lemma.
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a

ω

•

•

A−vµt,ω
−vµt,ω

−vµt,a

Figure 8: The escape of mass towards large values of a

A.1.2 Convergence

This preliminary lemma gives an insight of why Hypothesis 1 is useful:

Lemma 11. For all µ ∈ P2(Θ), θ /∈ R×SRd(1)×]−
√
d− 2,

√
d+ 2[, τ > 1, the potential writes:

V Cτ,µ(θ) = 0.

In particular, V Cτ,µ(θ) does not depend on a,w, b.

Proof. For all x ∈ Ω, |b| >
√
d+ 2, τ > 1:

|w · x+ b| ≥ |b| − |x|∞|w|1 > 2

and
σH,τ (w · x+ b) = 0.

This implies that for |b| ≥
√
d+ 2, µ ∈ P2(Θ), the potential V Cτ,µ = 0.

In fact Hypothesis 1 is verified by the gradient curve (µ(t))t≥0 for all time. This is proved in the
next lemma.

Lemma 12. If µ0 satisfies Hypothesis 1 then for all t ≥ 0 and all open set O ⊂ SRd(1) × [−
√
d −

2,
√
d+ 2],

µt(R×O) > 0

The arguments of the proof of last lemma are based on fine tools of algebraic topology. One can
find a nice introduction to the topic in the reference book [17]. With simple words, we enjoy the
homotopy properties on the sphere to prove that the measure µ(t) keeps a large enough support.

Proof. For all t ≥ 0, as µt = (χ(t))#µ0, we have [1, Lemma C.8]:

Supp(µt) = χ(t) (Supp(µ0)). (49)

Now let ξt(w, b) := (PSRd (1)×R ◦ χ(t))((0, w, b)) where PSRd (1)×R is the projection on SRd(1) × R (w, b
variables). We claim that the choice of the function of activation lets the extremal spheres invariant

ie ξt(w,±(
√
d + 2)) = (w,±(

√
d + 2)). Indeed, by Lemma 11 for θ = (a,w,±(

√
d + 2)), V Cτ,µ(θ) = 0

giving: {
vµ,w(θ) = 0,
vµ,b(θ) = 0

and the claim is proven. Consequently by Lemma 13, the continuous map ξt is surjective.
Now let O ⊂ SRd(1) × [−

√
d − 2,

√
d + 2] be an open set. By what precedes, there exists a point

ω ∈ SRd(1)× [−
√
d− 2,

√
d+ 2] such that ξt(ω) ∈ O and χ(t)((0, ω)) ∈ R×O. As (0, ω) belongs to the

support of µ0 by hypothesis then χ(t)((0, ω)) belongs to the support of µ(t) by (49) and:
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µt(R×O) > 0

which finishes the proof of the lemma.

Lemma 13 gives conditions for the surjectivity of a continuous map on a cylinder.

Lemma 13. Let f be a continuous map f : SRd(1) × [0, 1] → SRd(1) × [0, 1] =: C, homotopic to the
identity such that:

∀w ∈ SRd(1),

{
f(w, 0) =(w, 0),

f(w, 1) =(w, 1).

Then f is surjective.

Proof. Suppose that f misses a point p, then necessarily p = (w, t) with 0 < t < 1. We can write:

g : C → C \ {p}

the restriction of f on its image. The induced homomorphism on homology groups writes:

g? : Hd−1(C)→ Hd−1(C \ {p}).

Aside that, we have the classic information on homology groups of C and C \ {p}:{
Hd−1(C) = Hd−1(SRd(1)) ' Z,

Hd−1(C \ {p}) = Hd−1(SRd(1) ∨ SRd(1)) ' Z2

where ∨ designates the wedge sum. Thus, the homomorphism g? can be written as:

g? : Z→ Z2.

As g lets the two spheres w → (w, 0), w → (w, 1) invariant, we have:

g?(1) = (1, 1).

Now we note i : C \ {p} → C the canonical inclusion map. For all (a, b) ∈ Z2,

i?(a, b) = a+ b.

By hypothesis, f is homotopic to the identity so f? = I? and f?(1) = 1 but at the same time:

f?(1) = i?g?(1) = i?((1, 1)) = 2

which gives a contradiction.

It allows to conclude on the convergence and prove Theorem 4.

Proof of Theorem 4. Suppose V Cτ,µ? 6= 0 somewhere. Reusing the separation of variables (see the proof
of Proposition 9:

V Cτ,µ?(θ) = aψµ(w, b).

Hence ψµ is not identically zero and the set A defined in (48) is not empty and verifies:

A ⊂ R×SRd(1) × [−
√
d− 2,

√
d+ 2] (50)

by Lemma 11.
By Proposition 9, there exists ε > 0 such that if W2(µt0 , µ

?) ≤ ε for some t0 and µt0(A) > 0 then
there exists a further time t1 with W2(µt0 , µ

?) > ε. As (µt)t≥0 converges towards µ?, there exists t0
such that:
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∀t ≥ t0, W2(µt0 , µ
?) ≤ ε.

But by Lemma 12 and (50), for all time µt(A) > 0 and consequently there exists a time t1 > t0 with:

W2(µt0 , µ
?) > ε

which gives the contradiction.
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