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ABSTRACT
As critical cyber-physical systems, urban transport systems are vul-
nerable to natural disasters and deliberate attacks. Ensuring their
resilience is crucial for sustainable operations and includes the abil-
ity to withstand, absorb and recover efficiently from disruptions.
Assessing the resilience of such systems requires a comprehensive
set of performance indicators covering social, economic, organi-
sational, environmental and technical concerns. In addition, the
interdependence of the different modes of transport and the result-
ing human activities requires the inclusion of the spatial dimension
to capture potential cascading failures. Furthermore, the integration
of both aleatory (data) and epistemic (modelling) uncertainties is
essential for robust performance indicators.
Current methods for assessing the resilience of transport systems
lack standardised performance indicator systems and assessment
methods, making comparative analysis and benchmarking of dis-
ruption management strategies difficult. This paper proposes a
unified framework for modelling and assessing performance indica-
tors for urban transport systems. The framework is demonstrated
using a simulated scenario in Eclipse SUMO and paves the way for
future research in this area.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • General and reference → Evaluation; •
Software and its engineering → Ultra-large-scale systems;
Operational analysis; • Computing methodologies→ Simu-
lation environments.
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1 INTRODUCTION
Urban transport systems are complex, vital cyber-physical systems
that are exposed to natural hazards [19] and man-made attacks [14].
To overcome these threats and ensure their continuous operation,
these systems must be resilient. Authors in [16] define the resilience
of urban transportation systems as "the ability of a system to resist,
reduce and absorb the impacts of a disturbance (shock, interruption, or
disaster), maintaining an acceptable level of service (static resilience),
and restoring the regular and balanced operation within a reasonable
period of time and cost (dynamic resilience)". The resilience of urban
transport systems is a complex concept that requires a multidis-
ciplinary holistic approach [9]. There is no single measure of the
resilience of urban transport systems, but a set of measures based
on multidimensional and multiscale performance indicators that
span time and space. This can be evidenced by acknowledging the
importance of urban transport systems for urban development and
the resulting activities that form a transport activity system (Fig-
ure.1) [37]. As shown in Figure.1, for a meaningful assessment of
the resilience of urban transport systems, performance indicators:

(i) must capture all concerns of human society ranging from eco-
nomic concerns (e.g. profits of a freight transport company, in-
herent costs), social concerns (user satisfaction, convenience,
speed and quality of transport), organisational concerns (e.g.
capacity to react timely to disruptions) to environmental con-
cerns (e.g. pollutant levels, noise, etc.), in addition to the
technical concerns, to name but a few [41].

(ii) have to be considered both temporally and spatially [26].
Indeed, the diversity of urban transport modalities and their
enabling human activities create a spatial interdependence in
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the use of the underlying infrastructure and services. This in-
terdependence exposes urban transport systems and human
activities to the risk of cascading failures.

(iii) must take into account the degree of ignorance or incom-
plete knowledge about the system and the concerns (epis-
temic uncertainty) and the inherent randomness and natural
variability associated with the properties that characterise
the concerns and their observation means, through physical
or logical sensors (aleatory uncertainty) [41].

Evaluating the performance of urban transport systems presents
substantial challenges due to the heterogeneity, scale and uncer-
tainty of data sources. Fortunately, Internet of Things (IoT) technolo-
gies, which play a central role in smart city initiatives worldwide,
offer valuable support in this regard. These technologies enable
remote monitoring, management and control of devices and gener-
ate new insights and actionable information from large real-time
data streams. Yet, existing approaches to resilience assessment suf-
fer from several limitations. They do not assess resilience on the
basis of a standardised and well-defined indicator system, but use
different indicators, criteria and assessment methods [50]. In addi-
tion, resilience assessment approaches mainly rely on a single (or
aggregated) operational measure of performance, functionality or
quality [42], which is often limited to the technical dimension of the
resilience [28]. In addition, interdependencies between concerns
are rarely considered, e.g. the impact of technical degradation on
economic, environmental, organisational or social resilience [22].
An important aspect that is missing in existing resilience assess-
ments is the measurement of uncertainty, although methods for
assessing uncertainty are crucial for the further development of
resilience theory and the application of resilience approaches [2].
To address these challenges, this paper outlines a unified framework
to modelling and evaluating the performance of urban transport
systems. The proposed framework is divided into three distinct
parts detailed in the following sections:

(1) The Section.2 introduces the RDF-star semantic knowl-
edge base and its reasoning engine [18], which provides
a structured and machine-understandable representation
of the transport activity system captured from sensor data
that are continuously made available within smart-cities,
equipped with semantic annotations that describe, among
other things, their origin and the degree of certainty regard-
ing the validity of their value;

(2) The Section.3 describes a unified modelling approach
for the specification of performance indicators from
which performance assessment monitors are derived.
The proposed modelling approach makes it possible to cap-
ture concerns at different levels of abstraction while incor-
porating epistemic and aleatory uncertainties;

(3) The Section.4 details the simulation environment based
on Eclipse SUMO (Simulation of Urban MObility) [24] that
plays the role of the transport activity system.

Finally in Section.4, the proposed framework is applied to a scenario
derived from the MoST scenario [12].

Figure 1: Performance Assessment of Urban Transport Sys-
tems

2 UNCERTAIN KNOWLEDGE MANAGEMENT
With the development of the IoT and smart-cities in particular
[51], more and more sensors are being installed at the edge of the
infrastructure, enabling continuous monitoring and analysis of our
environment [31]. This proliferation has benefited greatly from the
semantic web technologies and has given rise to the Semantic Web
of Things (SWoT) [20]. These technologies have demonstrated their
advantages in structuring and linking data on the web as well as
establishing the interoperability of sensors and their data thanks to
semantic annotations [4]. These annotations are based on formal
description languages (e.g. Resource Description Framework (RDF),
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RDF Schema (RDFS) andWeb Ontology Language (OWL)) that offer
advanced conceptual modelling capabilities. They are all based on
RDF triples ⟨𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏 𝑗𝑒𝑐𝑡⟩, where the predicate defines
a directed binary relation between a subject and an object [17]. In
addition, semantic web technologies provide reasoning capabilities
that enable IoT-based applications to make relevant decisions by
drawing inferences from all available semantic descriptions stored
in a Knowledge Base (KB) [25].
Formal description languages thus make it possible to describe
and reason about a broad spectrum of multidisciplinary knowledge
(also known as ontologies)[45]. This is particularly interesting in
the context of the resilience assessment of urban transport systems,
which, as mentioned previously, relies on performance indicators
based on a wide range of heterogeneous data about human society
(i.e. economic, social, environmental, etc.). However, semantic web
technologies do not copewell with uncertainty, neither in the formal
description of knowledge nor in the computation of inferences [29],
i.e. an RDF triple is considered a fact or a statement which is by
definition, something unambiguously true. However, uncertainties
exist at all levels of the IoT infrastructure [6].
Firstly, one must take into account the uncertainties related to the
availability and reliability of sensors, which depend on technologi-
cal constraints, environmental hazards and harsh conditions such
as heat, frost, vibration, humidity, etc. [34]. For example, the per-
formance of a solar panel degrades over time and is very sensitive
to the environment (clouds, dust, etc.). The reliability of the obser-
vations generated by a sensor can be affected by a low battery, by
internal faults leading to erroneous readings [21], by the relevance
of the sensor location in relation to the phenomenon observed,
etc. at the network infrastructure level, wireless communication is
also subject to technological limitations and environmental risks
that can lead to latency or interruptions in the availability of infor-
mation over different time periods [38]; finally, at the application
level, although SWoT provides means to solve the interoperability
issue, it suffers from the problem of semantic heterogeneity, as
there is currently no universally accepted standard for the descrip-
tion of sensors and their data. Although there are some efforts to
define a standard [27], the industrial actors involved in IoT often
develop their own ontological models. As a solution to this prob-
lem, ontology alignment engines aim to make different ontologies
interoperable [32]. However, the results are subject to uncertainties,
which are often arbitrated on the basis of a threshold value [44].
At this point, a distinction is made between uncertainty arising from
aleatory uncertainty, inherent randomness and natural variability
and epistemic uncertainty related to a certain degree of ignorance or
incomplete knowledge about the system under consideration.While
aleatory uncertainty cannot be reduced by additional knowledge,
epistemic uncertainty can be reduced by a better understanding
[13]. The evaluation of aleatory and epistemic uncertainties has
several semantics in IoT. It includes the reliability and Quality of
Information (QoI) of IoT devices, sensor data and communication
networks, the quantification of which is crucial [21]. In recent years,
numerous metrics have been proposed [1][11][7]. Furthermore, at
the edge of the IoT infrastructure, NN-based classifiers are used to
process raw sensor data, resulting in symbolic informationweighted
with a confidence level [15]. For example, Long Short Term Memory
(LSTM) algorithms, among others, automatically classify sensor

observations into higher-level classes of human activity weighted
by a probability over all the classes predicted by the model [10].
As already mentioned, semantic heterogeneity leads to ontological
alignments that result in correspondences between semantically
related entities characterised by a certain degree of relatedness or
similarity.
In IoT, uncertainty is a ubiquitous concept, but all related attributes
have in common that they question the trustworthiness of the in-
formation they qualify. In this paper, the semantics of uncertainty
is therefore defined as "the degree of certainty ∈ [0, 1] that one can
have in an RDF statement to accurately reflect the corresponding sit-
uation in the real world". [3]. Recently, RDF-star [18] has made it
possible to add descriptions to RDF statements, including scores,
weights, temporal aspects, and provenance (RDF-star is currently
only a draft and not part of the W3C RDF recommendation). In a
formal sense, RDF-star extends RDF-based languages by allowing
statements about statements (also known as reification in the con-
text of RDF). In this paper, facts are associated with certainty values
that they are true. The following is a simple example in which a
fact (here the value of a sensor) is linked to a certainty value.

@prefix ex: <http://example.org/> .
@prefix sosa: <http://www.w3.org/ns/sosa/> .
<<ex:sensor_1 sosa:hasSimpleResult 22.4>> ex:probability 0.9 .

Together with RDF-star, SPARQL-star enables the retrieval of in-
formation from the knowledge base. Derived from the SPARQL
query language, SPARQL-star inherits its expressive power [5]. For
example, the following query:

PREFIX sosa: <http://www.w3.org/ns/sosa/>
PREFIX ex: <http://example.org/>
SELECT ?o ?r ?c WHERE {

<<?o sosa:hasSimpleResult ?r>> ex:certainty ?c .
}

returns the following result:

?o ?r ?c

ex:sensor_1 22.4 0.90

What makes semantic web technologies and the first-order logic on
which they are based so powerful is the ability to infer from the facts,
i.e. to derive new facts. However, reasoningwith RDF-star in general
and with uncertainty in particular is not straightforward [48]; the
management of the inference rules remains the responsibility of the
developer, as the inference computations depend on the semantics
of the statements about the statements.
RDF-star is still in its infancy and only a few open source imple-
mentations are available. In the context of the framework described
in this paper, the DotNetRDF library was used [47]. Based on this
library, a set of inference rules for RDF-star statements was de-
veloped to deal with uncertainties. It consists of a set of inference
rules that propagate the uncertainty to the inferred facts. Most RDF,
RDFS and OWL inference rules [43] can be rewritten to handle and
propagate uncertainties as defined in this paper. For example, the
OWLWeb Ontology Language Reference [8] defines the transitivity
inference rule as follows: if a property P is a transitive property,
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then if a pair (x,y) is an instance of P, and the pair (y,z) is also
instance of P, then it can be inferred that the pair (x,z) is also an
instance of P.
More formally:

⟨𝑥, 𝑃,𝑦⟩, ⟨𝑦, 𝑃, 𝑧⟩ =⇒ ⟨𝑥, 𝑃, 𝑧⟩ (1)

The same rule is expressed in RDF star with uncertainty as follows
(where 𝑐1 and 𝑐2 are the level of certainty ∈ [0, 1] that the associated
statement is true):

⟨𝑥, 𝑃,𝑦⟩𝑐1 , ⟨𝑦, 𝑃, 𝑧⟩𝑐2 =⇒ ⟨𝑥, 𝑃, 𝑧⟩𝑐1×𝑐2 (2)

The technologies of the Semantic Web are based on the idea of the
open world. In an open world, if a certain statement is not present
in the ontology, this does not mean that the statement is false, but
rather that it is unknown. In other words, the system does not auto-
matically conclude that something is false because it is not explicitly
defined i.e. having the statement ex:car_1 ex:isThermicCar
true does not mean that ex:car_1 ex:isThermicCar false is
not true, but it is considered unknown. The introduction of the cer-
tainty that a statement is true, denoted as 𝑐1, allows the conclusion
that the certainty that it is false is 𝑐2 = 1 − 𝑐1. More formally, the
following inference rules was defined:

⟨𝑥, 𝑃, true⟩𝑐1 =⇒ ⟨𝑥, 𝑃, false⟩1−𝑐1 ,
⟨𝑥, 𝑃, false⟩𝑐1 =⇒ ⟨𝑥, 𝑃, true⟩1−𝑐1

(3)

In addition to the definition of inference rules, the SPARQL-star
query language has to enable the aggregation of results (this can
be achieved by defining SPARQL extensions). This is crucial as in
some situations multiple facts within the knowledge base can fulfil
a single query. This can be the case when different sensors provide
statements about one and the same phenomenon. The previous
query could return the following results, for example:

?o ?r ?c

ex:sensor_1 22.4 0.90

ex:sensor_2 21.2 0.95

ex:sensor_5 20.1 0.92

In this paper, assuming that the unit of measurement is the same
for all sensors, the aggregation of the results is achieved by us-
ing a weighted average where the weights are the levels of cer-
tainty associated with each statement matching the query «?o
sosa:hasSimpleResult ?r». The aggregated value is then cal-
culated as follows:

𝑅 =

𝑛∑︁
𝑖=1

(𝑟𝑖 × 𝑐𝑖 )/
𝑛∑︁
𝑖=1

(𝑐𝑖 ) (4)

The level of certainty that the aggregated value is true is calculated
as follows:

𝐶 =

𝑛∏
𝑖=1

(𝑐𝑖 )/
𝑛∑︁
𝑖=1

(𝑐𝑖 ) (5)

This section has provided an overview of data management with un-
certainty using RDF-star/SPARQL-star frameworks. A complete and
detailed explanation of the implementation of RDF-star/SPARQL-
star with uncertainty management is beyond the scope of this

document. In the next section, the performance assessment engine
is presented and the coupling with the RDF-star knowledge base is
explained.

3 PERFORMANCE MODELLING AND
EVALUATION FRAMEWORK

The resilience of urban transport systems requires various per-
formance indicators which, beyond technical concerns, must also
encompass all facets of human society, including economic, so-
cial, organisational and environmental concerns. However, while
performance-based indicators such as level of service, capacity
and travel time are commonly used to assess the resilience of ur-
ban transport systems [39], not enough attention is paid to socio-
economic, organisational and environmental indicators [49]. The
intricate interplay between the various modes of urban transport
and the human activities they enable leads to a spatial dependency
in the use of shared infrastructures and services. This inherent in-
terdependence makes both the transport system and the associated
human activities vulnerable to cascading failures. Consequently,
when assessing the resilience of urban transport systems, it is cru-
cial to include both the temporal and spatial perspective in the
performance indicators [39]. However, most publications in the
literature do not consider all modes of transport offered and their
interrelationships, as they do not take into account the influence
of the disruption of one mode on the others. In addition, none of
the publications allow the comparison of performance indicators
between different regions [26]. Finally, current approaches to as-
sessing resilience suffer from a lack of standardisation of indicator
systems, which leads to inconsistencies and limited comparability.
In order to make meaningful comparisons, a standardised system
of criteria and benchmarks is required for carrying out resilience
assessments.[50].
In the sequel, a general approach to modelling and evaluating per-
formance indicators is proposed. It builds on the mathematical
framework described in [36]. Essentially, the approach consists
in computing the likelihood of an observation sequence to con-
form a behavioural model. In the context of this study, the be-
havioural model formalises the properties that must be fulfilled
for certain concerns (e.g. economic, social, etc.) and is described
in the form of an Possibilistic Input/Output Hidden Semi-Markov
Model (P-IOHSMM). Formally, a P-IOSHMM is defined by the tuple
< 𝑄, ®𝜋,𝐴, 𝐵, ®𝑆𝑑 ,𝑇𝑑 > where:

• 𝑄 = {𝑥1, 𝑥2, . . . , 𝑥𝑁 } is the finite set of hidden states; 𝑥 (𝑘 )
denotes a hidden state at time 𝑘 ,

• ®𝜋 = (𝜋1, 𝜋2, . . . , 𝜋𝑁 )𝑇 is the initial state distribution vector.
𝜋𝑖 denotes the degree of possibility of the state 𝑖 to be the
first state of a state sequence,

• 𝐴 is the 𝑁 × 𝑁 state-transition matrix, where each cell 𝐴𝑖 𝑗
of the matrix is an input 𝑑𝑖 𝑗 -dimensional distribution of
possibility (1 ≤ 𝑖, 𝑗 ≤ 𝑁 ). 𝐴𝑖 𝑗 (®𝑢) = 𝑝 (𝑥 (𝑘+1) = 𝑗 |𝑥 (𝑘 ) =

𝑖, ®𝑢 (𝑘 ) = ®𝑢) denotes the degree of possibility of transitioning
to state 𝑥 (𝑘+1) = 𝑗 at time 𝑘 + 1, given the current state
𝑥 (𝑘 ) = 𝑖 and the input vector ®𝑢 (𝑘 ) = ®𝑢 at time 𝑘 . The sample
space of ®𝑢 (𝑘 ) is continuous (i.e. realizations of ®𝑢 (𝑘 ) ∈ R𝑑𝑖 𝑗 ),
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• ®𝐵 = (𝐵1, 𝐵2, . . . , 𝐵𝑁 )𝑇 is the state-emission vector, where
each element 𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑁 ) is an output 𝑏𝑖 -dimensional
distribution of possibility. 𝐵𝑖 ( ®𝑦) = 𝑝 ( ®𝑦 (𝑘 ) = ®𝑦 |𝑥 (𝑘 ) = 𝑖)
denotes the degree of possibility of observing the output
vector ®𝑦 (𝑘 ) = ®𝑦 at time 𝑘 while being in the state 𝑥 (𝑘 ) = 𝑖 .
The sample space of ®𝑦 (𝑘 ) is continuous (i.e. realizations of
®𝑦 (𝑘 ) ∈ R𝑏𝑖 ),

• ®𝑆𝑑 = (𝑆𝑑1 , 𝑆𝑑2 , . . . , 𝑆𝑑𝑁 )𝑇 is the state duration vector where
each element 𝑆𝑑𝑖 (1 ≤ 𝑖 ≤ 𝑁 ) is a one-dimensional distribu-
tion of possibility. 𝑆𝑑𝑖 (𝑧) (𝑧 ∈ N) is the degree of possibility
of being in the state 𝑥 (𝑘 ) = 𝑖 during 𝑧 consecutive observa-
tions1,

• 𝑇𝑑 is the 𝑁 × 𝑁 state-transition duration matrix where each
cell 𝑇𝑑𝑖 𝑗 (1 ≤ 𝑖, 𝑗 ≤ 𝑁 ) is a one-dimensional distribution of
possibility.𝑇𝑑𝑖 𝑗 (𝑧) (𝑧 ∈ N) is the degree of possibility for the
state-transition𝐴𝑖 𝑗 to last during 𝑧 consecutive observations.
In other words, it is the elapsed time required for the output
of the next state 𝑥 (𝑘+1) = 𝑗 to get stabilized (settling time)
with 𝑇𝑑𝑖 𝑗 < 𝑆𝑑 𝑗 .

Given the parameters Θ =< ®𝜋,𝐴, ®𝐵, ®𝑆𝑑 ,𝑇𝑑 > of the model and an
input sequence ®𝑢1:𝐾 of length 𝐾 , the evaluation problem consists in
measuring the degree of possibility that the output sequence ®𝑦1:𝐾
was generated by the model. The solution to this problem is given
by the possibilistic version of the forward algorithm [36].

Figure 2: P-IOHMM example

Distributions of possibility enable the definition of tolerances around
expectations, thereby allowing for the handling of epistemic un-
certainty. Figure. 2 provides a simple illustrative example. Here,
a P-IOHMM models the expected average vehicle speed within a
particular zone of the transport network (e.g. a lane, a district, etc.).
This model relies on statistical data and adapts according to the time
of day. In this instance, ®𝑢1:𝐾 relates to time, while ®𝑦1:𝐾 corresponds
to live observations of vehicle speeds within the particular zone
of the transport network. This approach offers enough flexibility
to be applied to any property, provided that distinct states can be
extracted from the data [35]. The approach is multivariate, which
means that in addition to speed, other properties can be used to
define a state.

1The elapsed time is given as the number of observations and consequently depends
on their sampling rate.

In this paper, corresponding to Section.2, live observation values
denoted by ®𝑢1:𝐾 and ®𝑦1:𝐾 are obtained using SPARQL-star queries.
For instance, Figure.3 illustrates SPARQL-star queries employed to
retrieve ®𝑦 as the weighted average speed of all vehicles belonging
to a specific class within a designated area of the transportation
network, and ®𝑢 as the time value.

Figure 3: P-IOHMM coupled with RDF-star/SPARQL-star

Here, (𝑠𝑢𝑚(?𝑠∗?𝑐1∗?𝑐2)/𝑠𝑢𝑚(?𝑐1∗?𝑐2)) corresponds to Equation.4.
In conjunction with the RDF-star knowledge base, the performance
assessment framework presented in this section offers a consistent
approach to modeling and measuring the performance of urban
transport systems within the range ∈ [0, 1] from various perspec-
tives. This framework, therefore, facilitates their comparison and
benchmarking. The following section illustrates the proposed frame-
work using a simulated scenario in Eclipse SUMO (Simulator of
Urban MObility) [24].

4 SIMULATION
The complete simulation workflow is shown in Figure.4. RDF-star
knowledge base receives live data from SUMO, a microscopic and
continuous multimodal traffic simulation tool, via the MQTT mes-
saging protocol. SUMO was chosen as a mobility simulator for
several reasons; (i) it provides full control over a running simu-
lation through a Traffic Control Interface (TraCI) and allows to
retrieve values of the simulated objects and manipulate their be-
haviour "online". This could be of particular interest, for example,
if one wants to simulate different strategies that travellers might
choose after an interruption and evaluate the impact of these be-
haviours on system performance [33]; (ii) TraCI also provides a
socket interface that enables co-simulation. For example, OMNet++
[46] is a network simulator that can be coupled to SUMO using
VEINS (Vehicles in Network Simulation [40]); (iii) in addition to the
simulation of vehicles, SUMO allows the simultaneous simulation
of various transportation modes such as pedestrian, bicycle, railway
and waterway traffic; (iv) it includes models for pollutant emissions.
[23] and (v), its community is very active. Therefore, this simulation
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framework enables the simulation of a transport activity system as
depicted in Figure.1.

Figure 4: Urban Transport System Performance Simulation
Workflow

During the simulation, several observations are gathered (see Ta-
ble.1) and enriched with semantic annotations in the form of RDF-
star facts. Each fact is equipped with an associated certainty value
and is published to a MQTT broker on the topic corresponding to
its related concern. The RDF-star knowledge base retrieves obser-
vations from each defined topic and, on a regular basis, triggers
inference rules to infer new facts, as described in Section.2. SPARQL-
star queries associated with ®𝑦 and ®𝑢 from the performance models
(see Figure.3) are executed. The values ®𝑦 and ®𝑢 are buffered and,
once the size of the buffer reaches the length 𝐾 , the observation se-
quence (®𝑢𝑖 , ®𝑦𝑖 )𝐾𝑖=1 is passed to the performance assessment engine.
A dashboard was developed that displays (i) the evolution of the
knowledge base as the simulation progresses, and (ii) the evolution
of performance values for each concern (i.e., performance model)
within each defined TAZ.

A Python library was developed to manage various activities via
the TraCI interface. The activities currently managed via the library
are described below.

4.1 Simulation Management Library
Evaluating the resilience of transport systems requires a compre-
hensive assessment that takes into account various performance
indicators within human society. This includes the examination
of economic, social, organisational and environmental aspects, to
name but a few. To fulfil this requirement, a Python library was
developed, allowing the management of the following activities
and associated agents during the simulation process:

- Taxi Fleet - A set of taxis whose task is to pick up customers
randomly distributed across the transport network during
the simulation. Several taxi fleets can be defined within the
simulation. Each taxi fleet is associated with the logistic con-
cern, each taxi is associated with the economic concern and
each taxi customer is associated with social, environmental
and mobility concerns. As described in Table.1 each concern
is associated with properties whose values are recorded/pub-
lished throughout the simulation.

- Bus Lines - A series of buses travel repeatedly on prede-
termined routes and pick up customers at predetermined
stops. The bus customers are randomly distributed to the
stops and automatically diverted to the next bus on the route
when the one arriving is full. The stops at which the bus
customers get off are selected at random from the remaining
stops on the route. Every bus customer is associated with
social, environmental and mobility concerns.

- Ambulance Fleet - A set of ambulances whose task is to (i)
pick up patients randomly distributed across the transport
network during the simulation and (ii) drop off patients at
predefined hospital locations. The longer it takes for an am-
bulance to arrive, the lower the patient’s chances of survival.
Several ambulance fleets can be defined within the simu-
lation. Each ambulance fleet is associated with the logistic
concern, each ambulance is associated with the economic
concern and each patient is associated with social, environ-
mental and mobility concerns.
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Concern Property Description Unit Value
Time
window (T)

Economic
Fleet net
income

A flat-rate charge based on the number
of kilometers driven and the time of day. Euros

∑𝑇
𝑡=1

∑𝑁
𝑎𝑔𝑒𝑛𝑡=1 (𝑖𝑎𝑔𝑒𝑛𝑡 (𝑡 ) ) 3600s

Fleet fuel
consumption

SUMO fuel consumption model from the
HBEFA database. ml/s

∑𝑇
𝑡=1

∑𝑁
𝑎𝑔𝑒𝑛𝑡=1 (𝑐𝑎𝑔𝑒𝑛𝑡 (𝑡 ) )

Impatience

The impatience of a driver is value between
0 and 1 that grows whenever the driver
has to stop intentionally (i.e. due to a jam or
waiting at an intersection).

max𝑇
𝑡=1 (𝑖 (𝑡 ) )

Health
The health of a person is a value between 0
and 1 that decreases whenever the
person waits for an ambulance.

min𝑇
𝑡=1 (ℎ (𝑡 ) )Social

Waiting
time

The number of seconds a vehicle has a
speed of less than 0.1 m/s. s max𝑇

𝑡=1 (𝑤𝑡 (𝑡 ) )
60s

State Could be ’driving’, ’waiting’, ’walking’, etc. Last state of the agent
over T 60s

TAZ
The Traffic Analysis Zone (TAZ) in which
the agent spent the longest time during the
time range𝑇 .

TAZ idMobility

Speed m/s 1
𝑁

∑𝑇
𝑡=1 (𝑠𝑎𝑔𝑒𝑛𝑡 (𝑡 ) )

Available
assets

The number of vehicles (e.g. taxis) of the
fleet not assigned a trip.

1
𝑁

∑𝑇
𝑡=1 (𝑎𝑎 (𝑡 ) )

Logistic Pending
reservations The number of reservations not satisfied. 1

𝑁

∑𝑇
𝑡=1 (𝑝𝑟 (𝑡 ) )

900s

𝐶𝑂2 Carbon dioxide mg/s
∑𝑇

𝑡=1 (𝐶𝑂2 (𝑡 ) )
𝐶𝑂 Carbon monoxide emission mg/s

∑𝑇
𝑡=1 (𝐶𝑂 (𝑡 ) )

𝑁𝑂𝑥 Nitrogen oxides emission mg/s
∑𝑇

𝑡=1 (𝑁𝑂𝑥 (𝑡 ) )
𝑃𝑀𝑥 Particulate matter emission mg/s

∑𝑇
𝑡=1 (𝑃𝑀𝑥 (𝑡 ) )

𝐻𝐶 Hydrocarbons emission mg/s
∑𝑇

𝑡=1 (𝐻𝐶 (𝑡 ) )

Environment

𝑁𝑜𝑖𝑠𝑒 db 1
𝑁

∑𝑇
𝑡=1 (𝑛𝑜𝑖𝑠𝑒 (𝑡 ) )

60s

Table 1: Concerns and their associated properties

- Private Vehicles - A set of thermic cars whose point of
departure is either randomly distributed across the network
or assigned to a Traffic Analysis Zone (TAZ) during the
simulation. Their destination is either selected at random or
assigned to a TAZ, and the corresponding route is calculated
dynamically. Each vehicle is associated with the mobility,
social and environmental concerns.

There are plans for the development of additional transport activi-
ties, including freight and goods transport companies and additional
modes of transport such as bicycles, electric vehicles and trains. Ta-
ble 1 describes the properties that are associated with each concern
the values of which are recorded/published during the simulation
for each agent and each activity they are associated with during
the simulation. In real life, all these properties can be retrieved
from sensors in the urban transport network (e.g. environmental
sensors) or from the users (e.g. smartwatches, mobile phones, etc.).
The diversity of urban transport modes and the human activities
they support lead to a spatial interdependence in the use of the un-
derlying infrastructure and services. This interdependence makes
urban transport systems and human activities vulnerable to cascad-
ing failures. For a meaningful assessment of the resilience of urban
transport systems, it is therefore crucial to look at the performance
indicators from a spatial perspective as well. To address the spa-
tial dimension, we define Traffic Analysis Zones (TAZs). TAZs are

widely used in transport demand modelling, designed to represent
the spatial distribution of trip origins and destinations while taking
into account population, employment, and other spatial factors that
influence travel demand [30]. The identification of the TAZs can
be achieved through the analysis of urban mobility islands. Figure.5
presents an example of urban mobility islands, and institutional
websites frequently provide data that can be used for this purpose2.

Figure 5: Urban Mobility Islands (inspired from [37])

2https://www.institutparisregion.fr/cartographies-interactives-cartoviz/
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As described in Table.1, the reported TAZ value corresponds to
the zone in which the agent spent the most time within the time
window T. A certainty level is then associated with this TAZ value
as follows: let 𝑇𝐴𝑍 = 𝑇1, ...,𝑇𝑛 be the set of unique TAZ the agent
went through during the time window𝑇 , 𝑁 = |𝑇𝐴𝑍 | be the number
of unique TAZs and 𝑑 (𝑇𝑖 ) be the number of times the agent went
through the TAZ𝑇𝑖 during the time window𝑇 . The certainty value,
𝐶 (𝑇𝑖 ), for a specific TAZ to have been visited by the agent during
the time window 𝑇 can be calculated using the following formula:

𝐶 (𝑇𝑖 ) =
𝑑 (𝑇𝑖 )∑𝑁
𝑗=1 𝑑 (𝑇𝑗 )

(6)

4.2 Scenario Generation Workflow
TheMoST scenario [12] was used to validate the proposed approach.
It consists of the transport network of Monaco city, the bus routes
defined in an xml file generated from GTFS (General Transit Feed
Specification) files and pre-defined TAZs. A simulation manager
was developed on the basis of the library described in section.4.1.
It provides means to define traffic demand distributions and the
sensors that are to be linked to each activity and each agent. An
example of distributions is given in Figure.6. These distributions
represent the nominal transport demand, i.e. the number of vehicles,
taxi customers, bus customers and patients that are instantiated
over time during the simulation. They can be defined for each
defined TAZ source/sink or for the entire transport network if no
TAZ source/sink is defined, for each bus line, for each taxi and
ambulance fleet. It is worth noting that these distributions can be
obtained from institutional database3.

Figure 6: Traffic Demand distributions

Capturing the performancemodels described in Section.3 and the as-
sociated SPARQL-star queries could be a complex and time-consuming
task. To facilitate the acquisition of the models, a tool was developed
that creates models from recorded nominal data. Figure.7 shows an
example of density kernels obtained from the simulation. It shows
the 𝑃𝑀𝑥 and 𝐻𝐶 pollutant values recorded by bus customers on a
particular bus route over time. The distributions of possibility can
then be extracted for successive time windows as shown in Figure.8.
The resulting model follows a Left-Right architecture, an example
of which is shown in Figure.9.
3https://www.institutparisregion.fr/mobilite-et-transports/deplacements/tableau-de-
bord-de-la-mobilite-en-ile-de-france/

Figure 7: Density kernels of pollutant properties (𝑃𝑀𝑥 and
𝐻𝐶) for bus customers on a particular bus line/TAZ.

Figure 8: Example of distribution of possibility obtained from
density kernels for a particular time window

Figure 9: Left-Right P-IOH(S)MM architecture; here, time
ranges are specified with seconds of the day.

These models make it possible to evaluate the performance of trans-
port systems in the event of disruptions from various points of
view. For instance, the Figure.10 depicts performance indicator val-
ues accross the TAZs in the aftermath of a simulated traffic light
controllers anomaly.

5 CONCLUSION
Urban transport systems, as critical cyber-physical infrastructure,
face vulnerability to disruptions from natural disasters and ma-
licious attacks. To ensure sustainable operation, enhancing their
resilience is crucial.
Assessing the resilience of urban transport systems is complex and
requires a comprehensive set of performance indicators covering
different aspects of human society such as economic, social, organ-
isational, environmental and technical aspects, taking into account
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Figure 10: Performance indicators for various concerns, distributed across the TAZs.

both aleatory and epistemic uncertainties. Additionally, the inter-
connected nature of different transport modes and their influence
on human activities necessitate incorporating the spatial dimension
into performance indicators. Significant challenges hinder the eval-
uation of urban transport system performance. Existing resilience
assessment approaches lack standardized indicator systems, leading
to inconsistencies and hindering comparisons and benchmarking.
This paper addresses these challenges by presenting a framework
for modelling and assessing performance indicators for urban trans-
port systems. The approach builds on an RDF-star knowledge base
and its reasoning engine, which collects semantically enriched ob-
servations from the urban transport system endowed with the cer-
tainty of their values that they accurately reflect the corresponding
situation in the real world. Based on this foundation, a performance
indicator modeling and evaluation framework is developped on the
basis of the Input/Output Hidden Semi-Markov model.
Although the proposed framework doesn’t offer a standardized set
of indicators, it outlines a comprehensive and unified approach
for modeling and measuring performance, enabling their compar-
ison and benchmarking. It forms the basis for future research in
this area. In particular, we aim to analyze the dynamics of failure
propagation and gain a deeper understanding of how these failures
cascade across various areas of concern. Additionally, defining Traf-
fic Analysis Zones (TAZs) is crucial for ensuring the validity of the
performance evaluation. Different TAZs may be needed depending
on the specific performance concern being evaluated. This suggests
the need to explore different approaches, which will require further
investigation.
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