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ABSTRACT

This paper describes the adaptation to a distributed computational
setting of a well-scaling parallel algorithm for computing Morse-
Smale segmentations based on path compression. Additionally, we
extend the algorithm to efficiently compute connected components
in distributed structured and unstructured grids, based either on the
connectivity of the underlying mesh or a feature mask. Our imple-
mentation is seamlessly integrated with the distributed extension
of the Topology ToolKit (TTK), ensuring robust performance and
scalability. To demonstrate the practicality and efficiency of our
algorithms, we conducted a series of scaling experiments on large-
scale datasets, with sizes of up to 40963 vertices on up to 64 nodes
and 768 cores.

Index Terms: Distributed algorithms, Scientific visualization.

1 INTRODUCTION

Topological Data Analysis (TDA) has become a popular tool for
capturing the inherent structure and features of interest of scalar
field data. It has been used for a multitude of visualization and
analysis tasks, for example in the areas of fluid and combustion dy-
namics [28,30,36], climate science [4,9,37] or astrophysics [45,49]
and more [26, 54]. Topological abstractions capture the global struc-
ture of data and allow researchers to extract relevant features more
quickly and easily. As dataset sizes continue to grow, relying on a
single machine for computing abstractions is becoming increasingly
impractical. This is particularly true for methods involving larger
data capture, such as increasingly accurate scientific simulations
or medical imaging. Generally, shared computation is almost al-
ways preferred to distributed computation as communication can
quickly become a bottleneck and impede the speed of the computa-
tion, especially for global problems such as the computation of TDA
abstractions. However, memory limitations necessitate data distri-
bution across multiple machines to efficiently process and analyze
large-scale datasets.

One prominent topological abstraction is the Morse-Smale (MS)
complex, which segments the domain into areas of similar gradi-
ent flow and has been used for the visualization of instabilities in
hydrodynamic mixing layers [31], highlighting the dark matter cos-
mic web [49], feature extraction of combustion simulations [30],
feature tracking [38], and many more applications. However, the
distributed computation of Morse-Smale complexes is an underde-
veloped field [22], and to the best of our knowledge at the time of
writing, there is no publicly available implementation.

This paper describes Distributed Path Compression (DPC), an
adaption of a well-scaling shared-memory parallel algorithm for
computing the MS segmentation [33] to a distributed setting. To
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evaluate our implementation, we performed weak and strong scal-
ing experiments for DPC. Our results show that due to the global
nature of the problem and the additional communication overhead,
the original shared-memory parallel implementation always outper-
forms the distributed version when working on a similar number of
threads (e.g., 1 node with 48 threads performs better than 4 nodes
with 12 threads). However, for large datasets it is often not possible
to acquire singular nodes with the needed memory requirements,
necessitating data distribution. Due to the lack of reference im-
plementations, we were not able to compare DPC against other
approaches. Thus, we consider the provision of a public implemen-
tation for future benchmarks to be a core contribution of this work.

To compare DPC at least somehow to existing implementations,
we also describe a modification of DPC for the computation of con-
nected components in structured and unstructured grids (Fig. 1). To
this end, we compare the DPC-based connected component com-
putation against the implementation provided in the Visualization
Toolkit (VTK). Our results show that DPC requires much less mem-
ory and performs better or, at worst, similarly to the VTK equivalent
for larger node counts and problem sizes.

To summarize, the main contributions of our work are:

1. a hybrid-parallel algorithm for the computation of Morse-
Smale segmentations;

2. a hybrid-parallel algorithm for the computation of connected
components based on the principle of path compression; and

3. the integration of both algorithms into TTK for reproducibility,
future benchmarks, and utilization by end-users.

2 RELATED WORK

2.1 Morse-Smale Complex

The Morse-Smale complex (MS complex) provides an abstract
overview over the gradient flow of the scalar field [47, 48]. Criti-
cal points represent areas where the gradient flow is zero and are
connected by separatrices, boundary lines segmenting the domain
into areas of similar flow. The complex was first formally defined
for piecewise linear 2-manifolds by Edelsbrunner et al. [5] and later
extended to 3-manifolds [7], where the authors first derive a quasi
MS complex, which is structurally indistinguishable from the MS
complex, but where the arcs may just be of a monotone ascent or
descent, not the maximal ascent or descent, to then derive the MS
complex from it. Bremer et al. [2] compute the MS complex by start-
ing from saddle points and tracing two paths of steepest ascent and
two of steepest descent. These paths naturally partition the domain
in the cells of the MS complex. Gyulassy et al. [20, 21] extended
these ideas to 3D domains and introduced topological simplification
based on the MS complex.

Gyulassy et al [17] describe a divide-and-conquer algorithm with
on-the-fly simplification to allow for a memory efficient computa-
tion. Their approach and the improvement done by Gyulassy in
his thesis [23] are also based on discrete Morse theory. Robins et
al. [40] extended these ideas to the first provably correct algorithm
for computing the MS complex using discrete Morse theory.



Figure 1: Connected Component extraction for ctBones [52], the magnetic reconnection [16] and the AT complex [52] datasets based on a
threshold, which characterize bones of the foot, high-density boundaries and low density areas, respectively. Running these computations on
multiple nodes allows us to use much larger datasets by using the distributed memory of all the nodes.

Gyulassy et al. [19] presented a new approach for computing the
MS complex, by using streamlines to compute mountains/basins,
which leads to an MS complex, whose accuracy depends on the ac-
curacy of the integration used. Günther et al. [15, 24], while mostly
aiming to compute persistent homology, used the MS complex as
an intermediate step to compute the persistence. The MS complex
is extracted by integrating along critical points in parallel. Shiv-
ashankar et al. presented algorithms for the parallel computation of
2D [43] and 3D [44] MS complexes, based on discrete Morse theory.
They first compute the discrete gradient field and then extract the
relevant manifolds as collections of gradient paths, by breadth-first
search starting from critical points. Gyulassy et al. [18] presented an
algorithm with improved accuracy, while still presenting substantial
speedups. They first generate a version on discrete Morse theory
and then modify it using the numerically traced features. Subhash et
al. [50] presented the first GPU based algorithm for the MS complex.
One previous computational bottleneck was correctly identifying the
structure of saddle-saddle connection. They compute the connectiv-
ity via a series of matrix operations which allows them to count paths
completely lock free. Gerber et al. [13] presented the Morse-Smale
Approximation which is conceptually similar to our segmentation,
however, they follow the steepest k-nearest neighbors, instead of the
steepest direct neighbor. Maack et al. [33] computed the ascending
and descending segmentation of the domain using path compression
on the discrete gradient field. These are then merged into a fast
preview of the MS complex. This algorithm is the basis for the
distributed version we use.

Concepts like local-global or fully distributed representations of
the Morse-Smale complex are still underdeveloped. Gyulassy et
al. [22] presented a method in which the data is distributed over
multiple blocks, where each block computes their local gradient
and MS complex, which are subsequently merged into one complex.
However, this approach depends on partial and local simplification
to make it feasible for larger complexes, and the distributed imple-
mentation is not publicly available.

2.2 Distributed Union-Find / Connected Components

Path Compression can be used as an efficient algorithm type for the
Find component of the Union-Find data structure. While Union-Find
by itself is inherently sequential, there have been efforts towards
parallelizing and distributing it. In the following we will present
some distributed Union-Find results and elaborate on how they
differ from our approach. While there are many other algorithms for
computing connected components (such as ones based on parallel
domain decomposition [29, 46] or random edge sampling [12, 25]),
we solely focus on ones based on Union-Find.

Using a variation of path compression for finding connectivity in
shared memory environments was first described by Shiloach and
Vishkin [42]. Their theoretical model worked on n+2m processors,
with n and m being the number of vertices and edges respectively.

Later, Cybenko et al. [3] presented some of the first distributed
parallel algorithms for computing connected components based on
Union-Find, which can be seen as the basis for many of the follow-
ing methods, but these algorithms exhibited poor scaling behaviour.
However, their distributed model, which is based on merging local
subsets of the data until one processor has the complete solution,
showed weak scaling behaviour. In contrast, the algorithm by Manne
and Patwary [34] is computing as much local Union-Find work as
possible to minimize the needed merges. One important distinction
to our approach is that we do not care for complete Union-Find
forest, but only the final segmentation labeling for each component.
Iverson et al. [27] evaluated multiple algorithms for computing con-
nected component labeling of graphs distributed across multiple
processors. Our algorithm is a variation of the distributed Union-
Find algorithm (which is in turn a variation of the original one by
Shiloach and Vishkin [42]), which was shown by them to scale well.
Friederici et al. [11] used a distributed version of their previous [10]
shared-memory Union-Find algorithm for efficient percolation anal-
ysis in turbulent flows. Their algorithm allows for arbitrary repre-
sentatives for the components, which may lead to more efficient
computation, as less pointers need to be rearranged.
In contrast to our method which uses one synchronous communi-
cation step and relies on a given distribution done by VTK, Xu et
al. [53] present an asynchronous Union-Find method with dynamic
redistribution for load-balancing reasons.

3 BACKGROUND

This section provides the theoretical background of the proposed ap-
proach and introduces the notations used throughout the manuscript.
For a comprehensive introduction to computational topology, we
refer the reader to the textbook of Edelsbrunner and Harer [6].

3.1 Scalar Fields
The input of our approach is a piecewise-linear (PL) scalar field
f : K→ R, where real-valued data is given at the vertices of a con-
nected simplicial complex K, and values on edges are linearly
interpolated. We denote the vertices (0-simplices) and edges (1-
simplices) of the complex K with V(K) and E(K), respectively.
Neighbor vertices of a vertex v are denoted by N (v,K) = {u ∈
V(K) : ⟨v,u⟩ ∈ E(K)}. K does not need to be simply connected,
but we require that f is injective on the vertices of K, which can
always be enforced by applying a variant of Simulation of Simplic-
ity [8].

3.2 Critical Points
The sub-level set f−1

−∞(w) of an isovalue w ∈ R is defined as
f−1
−∞(w) = {p ∈M | f (p)< w}. As w continuously increases, the

topology of f−1
−∞(w) changes at specific vertices of K, called the

critical points of f . Let Lk−(v) be the lower link of the vertex v:
Lk−(v) = {σ ∈ Lk(v) | ∀u ∈ σ : f (u)< f (v)}. The upper link of v



is defined symmetrically: Lk+(v) = {σ ∈ Lk(v) | ∀u ∈ σ : f (u) >
f (v)}. A vertex v is regular if and only if both Lk−(v) and Lk+(v)
are simply connected. Otherwise, v is a critical vertex of f [1].
A critical vertex v can be classified by its index I(v), which is 0
for minima, 1 for 1-saddles, (d− 1) for (d− 1)-saddles and d for
maxima. Vertices for which the number of connected components of
Lk−(v) or Lk+(v) are greater than 2 are called degenerate saddles.

3.3 Ascending and Descending Manifolds
Let M(K) ⊂ V(K) be the set of maxima of K for f . Then the
descending manifold is a map d : V(K)→M(K) that assigns to
each vertex v ∈ V(K) the maximum m ∈M(K) that would be
reached by following the path starting at v along the steepest ascent
on K. This path is a sequence of n vertices (v = v1,v2, ...,vn = m)
where vi+1 = argmaxu∈N (vi,K) f (u). The ascending manifold is
defined symmetrically for minima reached by following the path
starting at v along the steepest descent. These paths are unambiguous
since f is injective.

3.4 Distributed Model
Our work is integrated into the Topology ToolKit (TTK) [35,51] and
is making use of its distributed capabilities. We will briefly recap
some parts in the relevant places, while referring to the introduction
paper by Le Guillou et al. [14] for more detail. One of the most
important data-structures in TTK is the triangulation, which allows
for constant time traversal queries, transformation of local into global
ids and reverse, extraction of the rank ids of vertices and more. For
this, a pre-processing step is necessary, in which the developer of
an algorithm specifies which traversal types will be needed, so they
can be pre-computed and cached. As TTK mostly relies on analysis
pipelines, which allows for many analysis algorithms or filters to be
chained together, this allows for relevant information to be computed
once and used by the whole pipeline.

4 METHODS

In this section, we will go over the preprocessing which needs to
happen at a previous step of the pipeline; recap the algorithm from
Maack et al. [33], present our distribution process; and show how
the concept of Distributed Path Compression (DPC) can be applied
to compute connected components.

4.1 Preprocessing
We need one layer of ghost vertices for our distribution scheme to
work. While every rank knows which of its simplices are actually
ghost simplices belonging to other ranks, the inverse is not true
(without additional computation): a rank does not intuitively know
which other ranks depend on its simplices. Therefore, we request
information from other ranks and do not preemptively supply infor-
mation. While we do not need unique scalar values for the connected
components, we need to remove ambiguity for the MS segmentation.
We apply a variant of Simulation of Simplicity [8], implemented by
TTK in the ttkArrayPreconditioning filter, based on globally
sorting the vertices according to their scalar values while breaking
ties by their global vertex id, and then creating a global order field
that assigns to each vertex its corresponding index in the sorted array.

In structured grids, the global ids and the value disambiguation
can be computed on-the-fly by special data structures in TTK. For
this and the neighborhood relations, we need to precondition the
triangulation with the preconditionDistributedVertices and
preconditionVertexNeighbors functions of TTK. In TTK tax-
onomy terms, our algorithms are in the class of data-dependent
communication, because the amount of communication is dependent
on the data distribution, even though we only have one communi-
cation step. Note that there are two types of vertex ids, local ids
which are unique in the ranks, and global ids over the different ranks.
For brevity, we omit detailed descriptions of when they have to be

converted, but generally local ids are used for addressing arrays in
the ranks and global ids are used during the communication phase.

4.2 Ascending and Descending Segmentation

Algorithm 1: DistributedPathCompression
Inputs: • simplical complex K

• scalar field f : K→ R
Outputs: ◦ descending manifold d : V(K)→M where

M are the maxima of f on K

1 d ← array( |V(K)| ) // create int array with |V(K)| entries
2 gv ← array() // create (id, rank(id), target)-struct array

3 parallel foreach vertex v ∈ V(K) do
4 if v belongs to the current rank then
5 d[v] ← argmaxu∈N (v,K) f (u) // assign v to largest

neighbor
6 else
7 d[v] ← v // treat ghost cell vertices as maxima
8 gv.add(v, rank(v))

9 parallel foreach thread t do
10 A ← AssignVerticesToThread(t, V(K))
11 while |A|> 0 do
12 foreach vertex v ∈ A do
13 u ← d[v] // current pointer of v

14 # atomic read
15 w ← d[u] // current pointer of u

16 if u = w then
17 A← A\{v} // delete v from active vertices
18 else
19 d[v]← w // assign w to v

20 // every rank is now finished with their local computation,
we now need to share segmentations over the ghost vertices

21 ExchangeGhostVertices(K, d, gv)
22 return d

The MS segmentations divide the scalar field into areas of similar
gradient flow, therefore all vertices of which the steepest ascent and
descent terminate in the same extrema, are in the same segment.
In the following we will only describe the process for the descend-
ing segmentation (steepest ascent), the process for the ascending
segmentation is symmetrical.

We use path compression, also known as pointer doubling, to
efficiently compute the integral lines, as it has been shown to scale
well [33, 41]. Initially, each vertex points to its largest neighbor and
then, in each global iteration, each vertex points to the vertex its
current pointer pointers to. This effectively doubles the step size in
each iteration.

We outline the overall distributed algorithm in Alg. 1. At first,
each vertex is assigned to its largest neighbor (line 3-5). One im-
portant change from the non-distributed to the distributed setting
is seen in line 7: as previously described, we make use of ghost
cells and vertices. If a vertex is a ghost vertex, it lies on the bound-
ary between two ranks and is present in one rank while actually
belonging to another rank. This means that the non-owning rank
has no information about the gradient behaviour in the owning rank.
Therefore, we pretend those vertices are maxima and let them point
to themselves (lines 7-8). We additionally save them separately in
a vector to handle them later in the communication step. For this,
we use a C++ structure containing the vertex id, the owning rank of
this vertex and the actual target to which it should point. The target
is initially set to -1 and needs to be filled by the owning rank and
communicated back.
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Figure 2: Illustration of the distributed path compression (DPC) procedure for one connected polyline (top left). The polyline has the shape of a
spiral and is distributed on four ranks whose boundaries are shown by red dashed lines. To compute connectivity, every rank needs one layer of
ghost vertices (a), dashed nodes and edges). Note, in VTK a vertex can be a ghost vertex in multiple ranks, but every vertex belongs exclusively
to a single rank, which is called the vertex owner. The goal of the DPC procedure is to assign to every vertex the largest vertex identifier of its
connected component, here P. In the first step of DPC, every rank computes a path compression for all its non-ghost vertices (b)). For instance,
after this step the R3 assigns to vertex D and E the ghost vertex F, and vertex O is pointing towards vertex P. For details regarding the path
compression on a single rank we refer the reader to the work of Maack et al. [33] and the summary described in Sec. 4.2. The next step involves a
cross-rank communication in which all ghost vertices retrieve the current pointers of their owners (table, column P0). For example, ghost vertex A is
owned by the R0 and is currently pointing towards B, so the R1 (which contains A as a ghost vertex) retrieves this assignment. Next, DPC performs
a path compression on the ghost vertices (table, columns P1,P2,P3). Here, after three iterations all ghost vertices point towards vertex P, which
is communicated across ranks (c)). Finally, every rank needs to perform one more iteration of a local path compression to correctly update all
pointers (d)).



To locally perform path compression in parallel, we distribute
all vertices among the available threads (lines 9-10). Each thread
processes its own list of active vertices, where a vertex remains active
as long as it is not pointing to a maximum. For each active vertex
v, the thread first retrieves the current pointer u of v (line 13), then
retrieves the vertex w pointed to by u (lines 14-15). While only the
current thread updates the pointer of v, another thread might update
the pointer of u during this process. Therefore, the first lookup does
not need synchronization, but the second lookup requires an atomic
read lock (line 14). This could be prevented by maintaining two
arrays where in one iteration of path compression, you only read
from one array and write into the other, and switching the arrays
after each iteration. However, this would come at higher memory
usage and our experiments have shown that light synchronization
outperforms the solution with two arrays. If u and w are equal,
indicating that v now points to a maximum, v can be removed from
the list of active vertices (line 17). Otherwise, v’s pointer is updated
to point to w (line 19). Since only the current thread updates v’s
pointer, this write operation does not require synchronization.

4.3 Distributed Communication
After computing the local segmentations per rank, we need to do one
communication phase to compute the correct segmentations over
all ranks, described in Alg. 2. For this, each rank sends ids of the
needed ghost vertices with their owners to rank 0 (line 4). Rank 0
then changes the ordering from who needs the ranks to who owns the
ranks (line 5-8) and request this information from the actual ranks
(line 10). Using the MPI Allgather command (line 13), the actual
targets for requested vertices get shared with all ranks. We need to
share this with every rank, because a vertex in the owning rank may
actually point to another ghost vertex at the other end of the rank,
when segmentations are stretching over multiple ranks. Each rank
now has all the information needed to build up a local ghost vertex
pointer graph which can be locally compressed one last time (line
15-25). Finally, they need to walk over their vertices and replace all
the ones pointing to ghost vertices with the correct targets received
and compressed earlier (line 27-33).

In our distribution approach (highlighted in Alg. 2 and used in the
other algorithms), rank 0 performs additional organizational work.
Specifically, rank 0 performs a global path compression on the ghost
vertices and then communicates the result to all ranks such that they
can update their pointers in a single iteration. Alternatively, this
could be implemented solely based on neighbor-to-neighbor com-
munication as opposed to one-to-all. However, to resolve segments
that stretch across multiple ranks, this approach requires multiple
iterations in which ghost-cell pointers are updated between neigh-
bors. Additionally, this approach also introduces technical problems
while resolving local and global ids, because a rank might retrieve
pointers to vertices not belonging to it (neither as a ghost vertex, nor
a normal vertex). The build-in data structures in TTK do not support
this case. Our initial experiments have shown that the alternative
approach incurs a higher communication overhead and requires cus-
tom data structures to resolve ids, which is why we opted to the first
approach that guarantees convergence in one iteration at the expense
of a global one-to-all communication.

4.4 Connected Components
Our algorithm for computing the MS segmentations can easily
be adapted for computing connected components, either implic-
itly based on a given feature mask or explicitly based on extracted
geometry. We describe it in Alg. 3.

Our algorithm for connected components follows out of our
method for MS segmentations. Before our main algorithm, we
compute a feature mask on our scalar field, which is generic and can
highlight any areas of interest e.g. all vertices with a value exceeding
a given threshold. Then, we start as previously, by letting all vertices

Algorithm 2: ExchangeGhostVertices
Inputs: • simplical complex K

• some segmentation d : K→ R, with
• array of (id, rank(id), target)-structs gv

Outputs: ◦ segmentation d : K→ R, with rank boundaries
correctly resolved

1 globalSize ← 0
2 allValuesFromRanks ← array()
3 Allreduce(gv.size(), globalSize, +) // each rank knows how

many ghost vertices are needed
4 Gather(gv, 0, allValuesFromRanks) // Rank 0 gets all the

needed ids, along with the ranks which need them
5 if rankId == 0 then
6 neededPerRanks← array(array(|ranks|))
7 foreach struct s ∈ allValuesFromRanks do
8 neededPerRanks[s.rank].add(s)
9 receivedIds← array()

10 Scatter(neededPerRanks, receivedIds, 0) // each rank gets
the information which of its ids are needed by some other
rank

11 foreach struct s ∈ receivedIds do
12 s.target← d[s.id]
13 Allgather(receivedIds, allValuesFromRanks) // every rank

now know where every ghost points to in the neighboring
rank

14 // now we need one last path compression to resolve
segmentations over multiple ranks

15 parallel foreach thread t do
16 A← AssignIdsToThread(t, i ∈ receivedIds)
17 while |A|> 0 do
18 foreach id i ∈ A do
19 u← receivedIds[v].target // current pointer of target

20 # atomic read
21 w← receivedIds[u].target // current pointer of u

22 if u = w then
23 A← A\{v} // delete v from active vertices
24 else
25 receivedIds[v].target ← w // assign w to v

26 // finally, replace each vertex pointing to a ghost vertex
with the correct value (possible from multiple ranks away)

27 parallel foreach thread t do
28 A← AssignVerticesToThread(t, V(K))
29 while |A|> 0 do
30 foreach vertex v ∈ A do
31 u← d[v] // current pointer of v
32 if u does not belong to the current rank then
33 d[v]← receivedIds[u].target

34 return d

with a positive feature mask point to their largest neighbors, but with
two important changes: the largest neighbor is not chosen based on
the actual scalar value, but on the scalar id (therefore they can also
be computed on pure geometry without any scalar data on it) and we
only consider the largest neighbor for which the feature mask is also
positive (line 6). Similar to the segmentation algorithm, we let ghost
vertices point to themselves and collect them for later(lines 8-9), but
unlike in the segmentation algorithm, we do not need to exchange all
the ghost vertices with our neighboring ranks, but only the masked
ones, which can significantly improve performance. Vertices with a
non-positive feature mask immediately point to some negative value
and are not considered for the further path compression steps (line
12).



Algorithm 3: ComputeConnectedComponents
Inputs: • simplicial complex K

• feature mask m : K→{0,1}
Outputs: ◦ segmentation d of K into connected components,

with the segmentation label being the highest vertex
id in the segmentation

1 d ← array( |V(K)| ) // create int array with |V(K)| entries
2 f v← array() // create (id, rank(id), target)-struct array

3 parallel foreach vertex v ∈ V(K) do
4 if m(v) = 1 then
5 if v belongs to the current rank then
6 d[v] ← argmaxu∈N (v,K) & m(u)==1 id(u) // assign

v to the neighbor with the largest id, which is also
part of the feature

7 else
8 d[v] ← v // treat ghost cell vertices as maxima
9 fv.add(v, rank(v))

10

11 else
12 d[v] ←−1

13 parallel foreach thread t do
14 A ← AssignVerticesToThread(t, V(K))
15 while |A|> 0 do
16 foreach vertex v ∈ A do
17 u ← d[v] // current pointer of v

18 # atomic read
19 w ← d[u] // current pointer of u

20 if u = w then
21 A← A\{v} // delete v from active vertices
22 else
23 d[v]← w // assign w to v

24 // finished first pathbcompression, now we need to stitch
segments together

25 parallel foreach vertex v ∈ V(K) do
26 if m(v) = 1 then
27 foreach u ∈N (v,K) do
28 if d[u]> d[v] then
29 d[d[v]]← d[u] // the target of this segmentation

will point to the target of the neighboring
segmentation, such that one further path
compression merges them

30 parallel foreach thread t do
31 A ← AssignVerticesToThread(t, V(K))
32 while |A|> 0 do
33 foreach vertex v ∈ A do
34 u ← d[v] // current pointer of v

35 # atomic read
36 w ← d[u] // current pointer of u

37 if u = w then
38 A← A\{v} // delete v from active vertices
39 else
40 d[v]← w // assign w to v

41 ExchangeForeignVertices(K, d, fV)
42 return d

Figure 3: Before (left) and after (right) applying the second pass path
compression to merge the sub-segmentations in the connected com-
ponents. How the segmentations are actually merged is not relevant,
it just has to be done in a consistent manner. We have chosen that
the segmentation whose target has a lower id gets attached to the
one with the higher id. In our example dataset, the id-generation is
dominated by the y-direction, therefore the remaining labeling is the
one whose segment stretches furthest in positive x-direction.

We then run our path compression on the relevant vertices until
convergence (lines 13-23). These are not the correct final segmen-
tations (as can be seen in Fig. 3), as one connected component can
have multiple local maxima in their id distribution. Therefore we
need to initialize a second iteration of path compression with slightly
different starting conditions: each (featured) vertex does not point
to the largest neighbor, but to the neighbor with the largest pointer
(line 29). After one more path compression (lines 30-40) we have
the correct local segmentation into connected components. Finally,
the distributed communication phase is the same as in the MS seg-
mentation algorithm, the actual distribution does not care what the
pointers actually signify.

5 EXPERIMENTS

Both of our algorithms are implemented within the Topology ToolKit
(TTK) [14, 51] and heavily utilize its data structures. The experi-
mental workloads were delivered via python pipelines executed with
ParaView v5.12.1. All experiments were run on the Elwetritsch
cluster of RPTU Kaiserslautern-Landau on up to 64 nodes, with
up to 12 cores per node, for a maximum of 768 cores in a hybrid
distributed-shared setting.

We expect the computation of the ascending and descending seg-
mentation to not scale well, due to the global nature of the problem.
Our goal is therefore to be able to compute this in a distributed
setting at all.

We evaluate both of our algorithms on synthetically gener-
ated datasets of various resolutions based on one layer of Perlin
Noise [39] with an amplitude of one and frequency in every di-
mension of 0.1. Additionally, our weak scaling study is run on a
simulation of the electronic density in the Adenine Thymine complex
(AT). This dataset is resampled using the pipelines from Guillou et
al. [14] according to the number of nodes used. A complete overview
of the timings can be seen in Tab. 1. For all algorithms we exclude
any preprocessing steps (exchanging ghost cells, computing order
arrays, computing feature masks, extracting geometry etc), as they
would probably have to be done at some point in the pipeline for
some of the MPI filters either way.

We compare our connectivity computation via Distributed Path
Compression (DPC) with the existing VTK Connectivity filter,
which works in a distributed setting. It follows the same principles
as computing connected components via DPC, with first running a
local connectivity algorithm (a connected wave propagation), cre-
ating a graph of region connections across ranks (every rank gets
this graph) and then running a connected component algorithm on
this graph and relabeling to the correct ids. However, it automati-



cally transforms the data from structured grids to unstructured grids
which may lead to extremely high memory usage, depending on
the size of the region of interest. In contrast, DPC can work on
implicitly thresholded grids, which maintains the data structure, but
assigns a negative value and segmentation id to non-relevant areas.
Therefore, we always need one extra array of memory that is the
same size as the original grid and uses the same type of ids (either
32- or 64-bit ids). Most of the computation is done in-place, apart
from the communication step. However, the additional memory
needed is bounded upwards by the amount of ghost vertices, which
is negligible compared to the size of the whole dataset, for sensible
dataset size / node count configurations. If the regions of interest are
sufficiently small or need to be extracted explicitly, this can easily
be done post-hoc after computing them implicitly with a simple
threshold operation for values larger than zero.

We ran into several problems with VTK and TTK when trying to
run experiments with additional large-scale datasets:

VTK Ghost Cell Computation When running our analysis
pipelines with 16 or more nodes letting VTK compute ghost sim-
plices became increasingly unreliable. When using verbose output
of pvbatch one could see that vtkDIYGhostUtilities froze in the
“Exchanging ghost data between blocks” step. Explicitly calling the
Ghost Cell Generator helped in some cases, but for many datasets
it still froze at that point (but not always). Using the AT example
pipeline with resampling worked, but also only by adding an explicit
Ghost Cell Generator. We also tried saving the datasets into a more
parallel friend format on fewer nodes and then processing it on more
nodes, to no avail. ParaView, the visualization software we used to
call VTK, changed the GhostCellGenerator and removed the legacy
generator in version 5.11.0, it is currently being investigated whether
this issue also occurred in the legacy generator.

VTK / TTK Unstructured Grid Distribution On more than 8
nodes, when switching from an Implicit to an Explicit Triangulation,
such as when explicitly extracting all values above a specific thresh-
old, and afterwards triangulating it, TTK would sometimes get such
in an endless loop while trying to precondition this triangulation.
This issue is known, however it is still unclear what exactly causes
this issue and whether it is due to ParaView distribution or due to
the TTK triangulation.

5.1 Strong Scaling
For our strong scaling study we have run the algorithms on Per-
lin Noise of multiple grid sizes, at 5123, 10243, 20483 and 40963.
While the larger grid was more beneficial for larger node counts, due
to memory constraints only the two highest node count configura-
tions could be run. Therefore, we mainly focus on the large grid and
compare timings starting from 4 nodes and doubling the node count
up to 64 nodes. The timings can be seen plotted for DPC in Fig. 4
and for computing connected components in Fig. 6. The raw timing
in seconds are presented in Tab. 1. A comparison of speedup and
parallel efficiency can be seen in Fig. 5 for DPC and in Fig. 7 for
computing connected components.

We have seen that the distribution step of path compression does
not scale well, as more nodes significantly increases the size of the
needed communication. However, the computation of connected
components scales well as only few components stretch over multi-
ple ranks and need to be distributed. This shows that the computation
of connected components is more dependant on the actual data dis-
tribution, while path compression is more independent but can be
much slower.

5.2 Weak Scaling
We run weak scaling experiments based on Perlin Noise with a high
threshold and on the resampled AT complex, the timings can be
found in Tab. 2. Fig. 8 plots the timings and weak parallel efficiency
for the AT complex and Perlin Noise.
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Figure 4: Timing for the strong scaling experiments of DPC based on
Perlin Noise at a grid size of 5123 (left) and 10243 (right) vertices.
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Figure 5: Illustration of parallel speedup and efficiency for DPC on
Perlin Noise at 5123 (dashed blue line) and 10243 (solid blue line). The
left plot shows the parallel speedup defined as the runtime of one
node divided by the runtime of n nodes, perfect scalability is marked
with the dashed gray line. The right plot shows the parallel efficiency
as the speedup divided by the number of nodes. The plot shows that
the distribution step of path compression does not scale well, as more
nodes significantly increase the size of the needed communication.
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Figure 6: Timing for the strong scaling experiments for computing
connected components with DPC (red) and with the VTK Connectivity
filter (gray) based on Perlin Noise at a grid size of 5123 (upper left),
10243 (upper right) and 20483 (lower) vertices.

One can see that computing the connected components implicitly
is at least as fast as computing it with the VTK connectivity filter
and they show very similar scaling behaviour, with the implicit
connected components scaling slightly worse for the Perlin Noise



Size in #Vertices Algorithm 1N 2N 4N 8N 16N 32N 64N
5123 Segmentation 11.291 20.629 1.468 2.440 3.687 4.875 6.785
10243 Segmentation 86.044 167.134 17.417 13.010 16.148 20.046 25.103
20483 Segmentation 905.872 2165.203 215.517 106.430 91.730 - -

5123 DPC CC 5.973 4.994 1.835 0.950 0.718 0.592 0.847
VTK CC 6.898 3.323 1.836 0.969 0.595 0.379 0.226

10243 DPC CC 44.7504 41.451 17.683 8.023 3.640 1.908 1.446
VTK CC 64.692 43.553 18.686 7.086 3.756 2.131 1.367

20483 DPC CC 237.242 402.772 111.073 68.752 29.125 15.188 8.912
VTK CC 671.906 349.608 174.838 88.756 45.556 24.410 13.350

40963 DPC CC - - - - 277.634 129.562 73.757
VTK CC - - - - 372.957 198.001 109.066

Table 1: Timing results of our experiments run on Perlin Noise first grouped by dataset size, and then by algorithm, comparing connected
component computation using Distributed Path Compression (DPC) and the VTK Connectivity filter. The remaining columns show, per node count,
the total runtime of the different algorithms in seconds. For some datasets the computations ran out of memory or failed because of the previously
described reasons and are therefore missing from the table.

Dataset #Nodes 1 2 4 8 16 32 64

AT complex

Segmentation Computation 1.963 8.505 1.359 2.569 5.885 11.839 26.006
Implicit CC 0.560 1.226 1.735 4.038 8.709 16.236 25.810
Explicit CC 0.012 0.312 1.079 7.384 20.126 50.634 -

VTK CC 0.242 0.691 4.600 18.867 47.442 109.149 -

Perlin Noise

Segmentation Computation 1.477 5.453 0.798 2.435 5.900 10.452 25.414
Implicit CC 0.604 1.542 0.931 1.034 1.098 1.312 1.615
Explicit CC 0.010 0.886 0.819 1.048 - - -

VTK CC 0.730 0.813 0.832 0.968 1.031 1.241 1.361
Table 2: Timing for Weak Scaling experiments based on the Adenine Thymine (AT) complex and on Perlin Noise, resampled to different sizes to
increase with increased node count, starting from 2563 vertices and doubling with every doubled node count, up to 10243 vertices. Algorithms
marked with - could not be run due to memory constraints.

1 2 4 8 16 32 64
0.5

1

2

4

8

16

32

#Nodes
1 2 4 8 16 32 64

0

0.2

0.4

0.6

0.8

1

1.2

#Nodes

Speedup Parallel Efficiency

Figure 7: Comparison of parallel speedup and efficiency between
computing connected components based on a feature mask implic-
itly with DPC (red), extracting this feature and explicitly computing
connected components with DPC (green, could not be run on all
configurations and starting at 2 nodes) and with the VTK Connectivity
filter (gray) on Perlin Noise at 5123 (dashed), 10243 (solid) and 20483

(dotted) vertices, thresholded such that the top 10% of vertices are
masked as relevant and are extracted. The left plot shows the paral-
lel speedup (y-axis) defined as the runtime of one node divided by
the runtime of n nodes (x-axis), perfect scalability is marked with the
dashed gray line. The right plot shows the parallel efficiency (y-axis)
as the speedup divided by the number of nodes (x-axis). The plot
shows that the computation of connected components scales well
when only few components stretch over multiple ranks and need to be
distributed. The smaller grid leads to highly unstable timings at high
node counts.

and slightly better for the AT complex. However, Perlin Noise was
thresholded with a high scalar value, extracting only little geometry
and leaving little actual work to do. In contrast, looking at the AT
complex, where more geometry was extracted, VTK connectivity
failed at the highest node-count / dataset size configuration, due to
memory issues.

5.3 Extraction based on different thresholds

One major advantage of our connected components computation is
that it can run implicitly on a pre-computed feature mask. Therefore
we also ran experiments with Perlin Noise of size 10243 and three
different computations of features: first we normalize the scalar
values and then we either mark everything above 0.9, above 0.5 or
above 0.1 as a feature. The values of Perlin Noise are normally
distributed, so therefore we either mark almost nothing (≈ 0.06%,
an unstructured grid with 671 960 vertices and 206 993 cells, for
an original grid size of 10243), roughly half of the domain, or al-
most everything(100%−≈ 0.06%) as a feature. While this feature
masking works easily for our approach, the VTK connectivity filter
only works on actively extracted geometry. This leads to drastically
higher memory usage and possibly worse timing behaviours. We
present the timings for this in Tab. 3, run on different node counts
with a Intel Xeon Gold 6126 and large amounts of memory each
(256GB per node for 1,2 and 4, 64GB per node for the rest). Note,
that for the lowest thresholds, most of the configurations could not
be run for the VTK connectivity, due to the high memory usage.

While the VTK connectivity is faster than our method for high
thresholds (less geometry / less work), we see that it scales worse
with increased geometry than our method, with our method being



Size in #Vertices Algorithm 1N 2N 4N 8N 16N 32N

Top 10% Implicit CC 47.285 23.433 9.086 4.686 2.582 1.431
VTK CC 2.394 1.308 0.737 0.410 0.255 0.256

Top 50% Implicit CC 163.410 217.288 189.417 95.898 49.360 26.345
VTK CC 675.794 396.708 210.169 94.0211 62.176 38.642

Top 90% Implicit CC 226.593 368.826 356.776 181.304 92.330 48.426
VTK CC - - 523.862 241.716 118.921 78.366

Table 3: Timing results of implicit connected components and VTK connectivity run on Perlin Noise of size 10243 with different feature thresholds,
extracting the Top 10%, Top 50% and Top 90% of the values. We see that, while being faster for small data, for larger data / more extraction, VTK
connectivity drastically slows down for larger extraction. Additionally, most of the more intensive workflows could not be run at all due to memory
constraints.

significantly faster at lower thresholds and the connected compo-
nents being able to be computed even on one node (even when
restricting their memory to 64GB). In contrast, for the two lower
thresholds, the distributed memory of 4 nodes, so 1024GB in total,
were needed.
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Figure 8: Timing (left) and parallel efficiency (right) for the weak
scaling experiments of DPC (red) and the VTK Connectivity filter
(gray) based on the AT complex (upper) and Perlin Noise (lower) with
a low amount of masked vertices and extracted geometry. Perfect
weak scaling parallel efficiency would be 1. The VTK based connected
components, running on unstructured grids, could not be run on the
AT complex for the last configuration, due to memory constraints.

5.4 Limitations
It is not only possible to implicitly compute the connected com-
ponents via DPC, but to extract geometry and then run it on the
geometry without a feature mask. However, in addition to the pre-
viously described problems with the distribution of unstructured
grids in TTK, this requires the usage of a triangulation and further
increases the memory usage, making it less efficient than the existing
VTK connectivity filter.

One of the primary limitations of DPC is its poor scalable ef-
ficiency. The global nature of the path compression paradigm ne-
cessitates extensive data exchange between nodes. As the number
of ranks grows, the overhead associated with maintaining global
consistency increases significantly, leading to worse performance

and reduced scalability. This issue becomes particularly pronounced
when the size of the dataset grows slower than the number of nodes.

Another limitation is related to the current global communication,
which may lead to congestion and redundant work done on the nodes.
Currently, rank 0 collects the edges for inter-rank connectivity with
the specific path compression targets and sends them to all the other
ranks, which build up a connectivity graph and path compress it
on their own. Other approaches would be to let rank 0 compress
the graph and only send the relevant edges to each rank or to shift
to inter-node, neighborhood communication, which would lead to
more communication steps with interleaved path compressions, but
less work in each communication step.

There may also be ways to further reduce the amount of ghost
vertices which need to be sent to minimize communication. For
connected components, it may be feasible to only send a few ghost
vertices at the boundaries because they may belong to the same
component. Including those ghost vertices which only point to other
ghost vertices will also reduce the communication sent, but increase
the program complexity to account for all edge cases.

6 CONCLUSION

We described an adaption of a well-scaling parallel algorithm for
computing Morse-Smale segmentations to a distributed setting, ad-
ditionally using it as a base to efficiently compute connected compo-
nents on distributed structured and unstructured grids. Furthermore,
we provide an implementation in TTK, which is open source and
integrated in the widely-used ParaView visualization environment,
and conduct a series of scaling experiments on large-scale datasets
in distributed environments.

Future work will focus on further optimizing communication pat-
terns and exploring additional applications of our methods in various
scientific domains. The integration of our algorithms into TTK pro-
vides a solid foundation for continued development and application
of topological data analysis tools in distributed computing environ-
ments. Some experiments could not be run due to shortcomings of
VTK and TTK. We aim to further investigate these problems, ad-
dress them and run more comprehensive benchmarks, with different
scientific visualization datasets and feature masks, and comparing
different communication approaches. Currently, resolving path com-
pression on the ghost vertices requires global communication. It is
possible to change this to only need rank neighborhood communi-
cation, at the cost of additional compression and communication
steps. Additionally, there is a clear trade-off between dataset size and
number of ranks. In contrast to shared memory parallelism where
more threads will often give at least some performance improvement,
with distributed computations, more ranks can significantly worsen
performance, due to the communication increase. Therefore it is
paramount to use as many threads as possible per rank and only as
many ranks as are actually needed for the dataset. We plan to con-
duct more thorough experiments on these trade-offs to find out when
this is worth it. Additionally, there are ways to additionally minimize



the amount of ghost vertices which need to be communicated, such
as compressing paths along ghost vertices, but only if they point to
other ghost vertices. These optimizations possibly introduce many
edge cases and therefore need to be cautiously evaluated.

Having the ability to compute the ascending and descending seg-
mentations in a distributed setting allows us to efficiently compute
the extremum graph used in the merge tree algorithm ExTreeM [32].
As there is currently no distributed merge tree algorithm available
in TTK, extending ExTreeM to a distributed setting would allow for
much more sophisticated analysis on large datasets.
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