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France

‡ LO and LT also contributed equally to this work.

* quentin.leclerc@pasteur.fr

Abstract

Background

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Long-term care facilities (LTCFs) are hotspots for pathogen transmission. Infection control

interventions are essential, but the high density and heterogeneity of interindividual contacts

within LTCF may hinder their efficacy. Here, we explore how the patient–staff contact struc-

ture may inform effective intervention implementation.

Methods and findings

Using an individual-based model (IBM), we reproduced methicillin-resistant Staphylococcus

aureus colonisation transmission dynamics over a detailed contact network recorded within

a French LTCF of 327 patients and 263 staff over 3 months. Simulated baseline cumulative

colonisation incidence was 21 patients (prediction interval: 11, 31) and 35 staff (prediction

interval: 19, 54). We examined the potential impact of 3 types of interventions against trans-

mission (reallocation reducing the number of unique contacts per staff, reinforced contact

precautions, and hypothetical vaccination protecting against acquisition), targeted towards

specific populations. All 3 interventions were effective when applied to all nurses or health-

care assistants (median reduction in MRSA colonisation incidence up to 35%), but the bene-

fit did not exceed 8% when targeting any other single staff category.

We identified “supercontactor” individuals with most contacts (“frequency-based,” over-

represented among nurses, porters, and rehabilitation staff) or with the longest cumulative
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time spent in contact (“duration-based,” overrepresented among healthcare assistants and

patients in elderly care or persistent vegetative state (PVS)). Targeting supercontactors

enhanced interventions against pathogen spread in the LTCF. With contact precautions, tar-

geting frequency-based staff supercontactors led to the highest incidence reduction (20%,

95% CI: 19, 21). Vaccinating a mix of frequency- and duration-based staff supercontactors

led to a higher reduction (23%, 95% CI: 22, 24) than all other approaches. Although based

on data from a single LTCF, when varying epidemiological parameters to extend to other

pathogens, our results suggest that targeting supercontactors is always the most effective

strategy, indicating this approach could be applied to prevent transmission of other nosoco-

mial pathogens.

Conclusions

By characterising the contact structure in hospital settings and identifying the categories of

staff and patients more likely to be supercontactors, with either more or longer contacts than

others, interventions against nosocomial spread could be more effective. We find that the

most efficient implementation strategy depends on the intervention (reallocation, contact

precautions, vaccination) and target population (staff, patients, supercontactors). Impor-

tantly, both staff and patients may be supercontactors, highlighting the importance of includ-

ing patients in measures to prevent pathogen transmission in LTCF.

Author summary

Why was this study done?

• Infection control in healthcare centres such as long-term facilities (LCTFs) is challeng-

ing due to high-density and varied contact patterns among individuals.

• Understanding the contact structure between and within patients and healthcare work-

ers and its impact on transmission could offer new perspectives to improve the effective-

ness of infection control interventions.

What did the researchers do and find?

• We developed an individual-based model (IBM) of methicillin-resistant Staphylococcus
aureus (MRSA) colonisation dynamics, informed by a detailed contact network and epi-

demiological data collected within an LTCF over 3 months.

• We used simulations to evaluate 3 intervention types: reallocation assigning patients to

a given staff member of each category throughout their entire stay, reinforced contact

precautions, and hypothetical vaccination reducing acquisition risk.

• We identified “supercontactors” with the most contacts (frequency-based, overrepre-

sented among nurses, porters, and rehabilitation staff) or longest time spent in contact

(duration-based, overrepresented among healthcare assistants and patients in elderly

care or persistent vegetative state (PVS)).
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• Simulations revealed that targeting supercontactors enhanced intervention efficacy,

with contact precautions reducing MRSA colonisation incidence by up to 20% (95% CI:

19, 21) and vaccination by up to 23% (95% CI: 22, 24).

What do these findings mean?

• Infection control measures can be optimised by identifying and targeting supercontac-

tors among staff and patients.

• Both staff and patients can be supercontactors, highlighting the need to include both

groups in infection prevention strategies.

• The most effective strategy depends on both the intervention (reallocation, contact pre-

cautions, vaccination) and the subpopulation targeted (staff, patients, supercontactors).

• Although our quantitative conclusions are informed by data from a single LTCF by

varying epidemiological parameters to explore other pathogens, we suggest that inter-

ventions targeting supercontactors could be applied to prevent the spread of other noso-

comial pathogens.

Introduction

Healthcare-associated infections (HAIs) are a major threat worldwide, with more than 4 mil-

lion infections occurring each year in Europe [1]. The recent Coronavirus Disease 2019

(COVID-19) pandemic has underlined the high risk of pathogen dissemination in health care

settings, similarly to what was previously reported for other coronaviruses, seasonal influenza,

or Ebola epidemics [2,3]. Bacterial nosocomial outbreaks are also frequently described, becom-

ing more and more difficult to control with the rise of multidrug resistance [4]. In addition to

significantly impacting the morbidity and mortality of hospitalised patients and potentially

healthcare workers (HCWs), HAI generate additional costs due to longer hospital stays or

additional expensive therapeutics, as well as legal consequences for practitioners and health-

care settings in case of patient lawsuits.

Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of such HAI, as

these infections most often affect individuals in a weakened immunological state, such as hos-

pitalised patients [5]. Crucially, MRSA colonisation is a risk factor for infection, since individ-

uals are more likely to be infected by an S. aureus strain they are carrying [6]. Consequently, it

is essential to understand how individuals become colonised by MRSA in healthcare settings

and to control the acquisition risk.

To limit pathogen dissemination through human cross-transmission in healthcare settings,

a range of measures can be implemented, mostly based on improving contact precautions,

such as patient isolation, hand-washing, wearing of gloves or masks. Vaccines to reduce the

risk of pathogen colonisation also represent ongoing research and development topics,

although none are commercially available and there have only been limited attempts to evalu-

ate their impact in healthcare settings thus far [7]. However, the high density of human con-

tacts involving HCWs, patients, and visitors, combined with variations in individual

behaviours and overall stochasticity in transmission often limit the impact of these control
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measures. For example, while effective in general, hand-washing may fail due to a few “super-

spreader” individuals who do not comply with hygiene recommendations [8]. Additionally,

the efficacy of each intervention itself may vary. For vaccination, the efficacy to reduce acquisi-

tion is uncertain due to the current absence of such a vaccine on the market [9]. For hand-

washing, the efficacy to reduce transmission depends on the type of product used and on the

compliance to the intervention [10]. In any case, these variations can affect the choice of which

implementation strategy should be considered.

Mathematical modelling can provide key insights on the potential effectiveness of interven-

tions while accounting for these uncertainties and identify which implementation strategies

are likely to remain effective across a large range of possible values. For this, however, realistic

models are required, able to capture the key transmission dynamics relevant to the setting of

interest, and parameterised using appropriate data.

Because the structure of contact networks within healthcare settings influences the spread

of HAI pathogens [11], manipulating contact network structures or targeting highly connected

individuals may significantly improve the efficacy of control measures [12]. Here, using indi-

vidual-based modelling of nosocomial pathogen spread, combined with fine-grained longitu-

dinal data on human close proximity interactions (CPIs), we show how detailed knowledge of

the structure of human interactions may help design more effective interventions for HAI con-

trol. We illustrate this point through an application to control the spread of colonisation by

MRSA in a long-term care facility (LTCF).

Methods

Data description

Data used here were previously collected during the Individual-Based Investigation of Resis-

tance Dissemination (i-Bird) study [13,14], which took place within a rehabilitation and LTCF

from the beginning of July to the end of October 2009. Over this period, each participant

(patient or hospital staff) was wearing an RFID sensor that recorded CPIs (at less than 1.5 m)

every 30 s. A dynamic network of proximities is therefore available over 117 days with infor-

mation on individual ID, ward of affectation, age, gender, etc. In addition, dedicated nurses

swabbed patients and hospital staff each week to detect MRSA colonisation.

The studied hospital is dedicated to follow-up care and rehabilitation of patients, with no

complex procedures being conducted on-site. The hospital was structured into 5 wards: (i) 3 neu-

rology care wards; (ii) 1 nutritional care ward; and (iii) 1 elderly care ward. In addition to

patients in neurology, elderly and nutritional care, in-patients also included those in persistent

vegetative state (PVS), and those in postoperative and orthopaedic care. Most patients had long

hospitalisation durations (median: 7 weeks). In addition to “classic” staff categories such as

nurses, physician, rehabilitation staff, patients could interact with other staff members, such as

hairdressers. Patients and staff could also interact with individuals belonging to their own group.

Overall, a total of 327 patients and 263 hospital staff had recorded contacts during the inves-

tigation period. This study is described in more detail in [13,14].

Model description

We developed a stochastic Susceptible-Colonised-Susceptible individual-based model that

simulates the dynamic transmission of a pathogen within a hospital over a network incorporat-

ing data on the detailed structure of CPIs. Individuals could either be patients or hospital staff

members. Hospital staff were divided into 6 categories: healthcare assistants, nurses (including

nurses, head nurses, and students), rehabilitation staff (occupational therapists, physiothera-

pists, and other rehabilitation staff), physicians, hospital porters, and other staff (animation,
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logistic, administration, and hospital service agents). The model accounts for admissions and

discharges from the hospital and interindividual contacts. Once admitted, a patient remains in

the hospital until discharged, whereas hospital staff can be present or absent according to their

daily schedule. Patient admission, discharges, and staff presence times are all directly taken

from the i-Bird study data to reproduce the study conditions in the model.

Transmission process

Every individual can either be colonised or non-colonised (susceptible) by the pathogen (here,

MRSA). At each contact between a susceptible and a colonised individual, the pathogen can be

transmitted from the colonised to the susceptible individual with a given probability. This

transmission probability is computed as the product of the between-individual contact dura-

tion and the pathogen-specific transmission probability, assuming that risks saturate after 1 h.

The model accounts for 4 different transmission probabilities depending on the status of the

individuals involved: patient-to-patient, patient-to-staff, staff-to-patient, and staff-to-staff (see

S1 Text). These probabilities are fixed, but the process of transmission itself is stochastic. To

determine if transmission occurs during a contact, a number is randomly drawn from a Uni-

form distribution between 0 and 1. If the number is lower than the relevant transmission prob-

ability, we consider that transmission occurs.

A colonised individual can naturally recover to the susceptible state after a colonisation

duration randomly drawn from a lognormal distribution, since this distribution was similar to

the observed one (S1 Fig). Such individuals may subsequently be recolonised (no immunity is

assumed). We also assume that no active decolonisation measures are implemented.

Individuals are assumed to be screened for colonisation with a probability estimated from

the data that depends on weekdays. The total number of swabs for a given day for patients and

staff are separately drawn from 2 Normal distributions parameterised using the i-Bird study

data, since these distributions were similar to the observed ones (S1 Fig). Patients and staff are

then randomly selected to be swabbed among those present in the facility on the given day.

Model parameterisation

The model was parameterised using the i-Bird data. Simulations ran over 84 days, with an ini-

tial 151 patients and 236 hospital staff members present, to reflect the duration and conditions

of the data collection. Values for model parameters were directly computed from the observed

data on MRSA colonisation among the patients and hospital staff. A summary list of model

parameters is provided in Table A in S1 Text. Detailed information on parameter value calcu-

lations is provided in S1 Text.

Building synthetic contacts

We built an algorithm to generate both realistic full and reported stochastic dynamic networks

of interindividual interactions in the hospital using parameters estimated from the observed

data. Details of parameters computations and CPI generation algorithm are provided in refer-

ence [15]. Briefly, the contact network measured in the i-Bird study captures patient–patient,

staff–staff, and patient–staff contacts. Contacts are assumed to be reciprocal. In the observed

network, not all contacts may have been recorded, due to several possibilities which we cannot

distinguish retrospectively (technical issues with sensors failing or low batteries, individuals

not wearing the sensors. . .). In parallel to the contact data, presence data was recorded for

patients with admission and discharge dates, and for staff based on their work schedules. We

developed an algorithm to reconstruct contacts at times when individuals were known to be

present in the facility, but had no contacts recorded during that time. We performed this
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reconstruction by stratifying individuals by ward and category (either patient or staff type) and

used information on contacts recorded for each group (frequency, duration, ward and cate-

gory of contacted individual) to infer missing contacts for the same group. This reconstruction

is stochastic, since for each contact reconstructed, the identity of the contacted individual was

randomly chosen among individuals belonging to the target ward and category and present in

the facility at that time.

Assessed control strategies

We evaluated 3 distinct contact-based control strategies: staff reallocation, contact precautions,

and vaccination. The way that each intervention impacts the contact network in the transmis-

sion model is highlighted in S2b Fig.

Reallocation was simulated as a modification of the contact network, in which patients

were allocated to a given staff member of each category for their entire length of stay. In the

baseline contact network, patients are not always taken care of by the same members of staff,

which increases overall connectivity and therefore pathogen transmission across the entire

facility. In the case of the reallocation intervention, we generated contacts using a previously

described algorithm [15], choosing in priority the staff member allocated to that patient (or

vice versa) when a corresponding contact occurred. For example, if we allocate patient p1 to

nurse n1, then nurse n1 will systematically be chosen in priority whenever the algorithm

attempts to create a contact between p1 and a nurse. Through this, we therefore reduce overall

connectivity in the network while maintaining patient care needs (e.g., if in the baseline net-

work patient p1 interacts with a nurse 3 times each day, then this will still be the case in the

reallocation contact network). Importantly, unlike the alternative “patient reallocation/cohort-

ing” intervention which can be found in the literature [16], the reallocation of patients to staff

members is made independently of colonisation status; that is, we do not specifically regroup

colonised individuals together and assign staff members to only take care of either colonised

or uncolonised individuals. We assumed that reallocation did not influence CPI rates. We

maintained the global care needs of patients over the entire period, defined by the average

number of unique contacts in the data between each patient and different staff categories, by

ward. A series of 64 scenarios exploring different combinations of staff categories affected by

reallocation were implemented. For each scenario, 30 independent contact networks were sto-

chastically generated in accordance with the new organisation.

Contact precautions were simulated by reducing instantaneous patient-to-hospital staff and

hospital staff-to-patient transmissions probabilities 2-, 4-, 6-, 8-, or 10-fold, irrespective of CPI

rates. Three specific scenarios were investigated: (i) contact precautions for all members of dif-

ferent staff categories; (ii) contact precautions for 60 randomly selected staff members among

nurses or all staff; and (iii) contact precautions for 60 individuals with the highest rates of con-

tacts, called “supercontactors.” Two definitions of supercontactors were assessed: (i) based on

the number of contacts (henceforth called “frequency-based supercontactors”); and (ii) based

on the duration of contact (henceforth called “duration-based supercontactors”). Frequency-

based supercontactors were defined as the patients or hospital staff members who had the

highest mean number of daily contacts with distinct individuals. Duration-based supercontac-

tors were defined as the patients or hospital staff members who had the highest mean daily

cumulative duration spent in contact with other individuals. Several strategies were explored

regarding the type (patients and/or staff members) of selected supercontactors on whom to

focus reinforced contact precautions.

Vaccination was simulated by reducing acquisition probabilities for vaccinated individuals

by 2-, 4-, 6-, 8-, or 10-fold, irrespective of CPI rates. The effect of this hypothetical vaccine
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therefore corresponds to an unvaccinated-to-vaccinated transmission probability reduction,

regardless of the categories of individuals in contact (staff or patient). For example, a 6-fold

reduction would translate into a vaccine efficacy of 1–1/6 = 83% to reduce the risk of acquisi-

tion. We examined the same scenarios as for contact precautions. We assume that the vaccine

has been administered with sufficient time before the simulation, and therefore, do not con-

sider a delay before reaching maximum vaccine efficacy. We also do not account for poten-

tially waning immunity due to the relatively short time period of our simulation. Here, we

assume that vaccination only reduces acquisition for vaccinated individuals. Hence, the proba-

bility of transmission from a vaccinated individual to a non-vaccinated individual remains the

same as the probability of transmission between 2 non-vaccinated individuals.

For all interventions and scenarios, the relative reduction in the cumulative incidence of

MRSA colonisation over the entire simulation period was used as an indicator of intervention

efficacy. This was calculated by simulating each scenario (including baseline) 500 times and

comparing each simulation result with 10 randomly chosen simulations of the baseline sce-

nario, leading to a total of 5,000 comparison points per scenario. We used a Wilcoxon test to

check if the median relative reduction in cumulative incidence was significantly different from

0 and derive 95% confidence intervals for the estimates as well as p-values.

We used the model to simulate the impact of these control strategies for other pathogens

than MRSA. To represent the varying epidemiological characteristics of these pathogens, we

either doubled or halved the values for the transmission rate or carriage duration (i.e., infec-

tious period) compared to the values we estimated from the data.

Results

A simulated hospital contact network that realistically mimics the observed

contact network

We designed a stochastic individual-based model (IBM) to reproduce the realistic dynamic

network of within-hospital between-human interactions. The model was calibrated to generate

simulated contact networks with the same characteristics as the real network provided by the

CPI data (see [15] for details). As shown on Fig 1A, the simulated contact network accurately

reproduced real average hourly patterns of patient-to-patient, staff-to-staff and staff-to-patient

interactions.

Observed weekly MRSA incidence is well reproduced by simulations of

network-based transmission

The Susceptible-Colonised process implemented into the IBM reproduces the transmission

process of a colonising pathogen, here MRSA, in the LTCF (S2a Fig). The model was parame-

terized to mimic the i-Bird study conditions. Model parameters were not calibrated using a

model-fitting approach. Instead, they were calculated directly from the i-Bird study data,

which contained information on the presence days of patients and staff, as well as positive and

negative MRSA colonisation swabs and, as detailed above, between-human interactions

assumed to be opportunities for transmission (see S1 Text). The simulated dynamic contact

network described in the previous section was used to mimic between-human interactions

and assumed to be the support of MRSA transmission within this LTCF [13,17]. When initial-

izing the model with MRSA carriage of patients and staff as reported by the i-Bird data, the

weekly incidence of MRSA colonisation predicted by the model reproduced well the observed

trends and weekly incidence over the study period (Fig 1B). For patients, 12/12 of model-gen-

erated median incidences were within the margins of error of the i-Bird study estimates, and
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8/12 of the observed incidences were within the 95% prediction interval of the model (weeks 4,

9, 10, and 12 being the exceptions). For staff, there are 2/12 outlier weeks where observed inci-

dences were the 95% prediction interval of the model (weeks 4 and 5); all other observed inci-

dences are within the prediction interval. The median cumulative incidence of MRSA

Fig 1. Real and simulated contacts and MRSA incidence. (a) Hourly distribution of number of unique contacts. The lines and points show the median

estimates, and the shaded areas show the interquartile ranges. The real values come from the i-Bird study, and the simulated values are shown for 50 simulated

contact networks. (b) MRSA colonisation weekly incidence over 3 months. Olive points correspond to the observed weekly incidence during the i-Bird study,

with lines indicating the margin of error, estimated using the number of individuals swabbed that week. Simulated results are obtained from 15,000 stochastic

model simulations (500 simulations of 50 simulated networks). The dark green line shows the median incidence, and the shaded area shows the 95% prediction

interval, defined as the interval between the 2.5th and 97.5th percentiles.

https://doi.org/10.1371/journal.pmed.1004433.g001
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colonisation in the total population of 327 patients and 263 staff over the three-month period

predicted by our model was 21 (prediction interval: 11, 31) for patients and 35 (prediction

interval: 19, 54) for staff. We use this cumulative incidence as baseline in our analyses on inter-

vention effectiveness in the following sections.

Hospital staff reallocation, especially in healthcare assistants, reduces

MRSA spread

To assess the extent to which the dissemination of MRSA can be restricted through an opti-

mised patient-staff allocation, we first assessed the impact of staff reallocation, defined as the

attribution of a reduced number of patients to each staff member during the entire investiga-

tion period (S2b Fig).

Simulating the transmission of MRSA over the different networks, we found that realloca-

tion scenarios targeting different hospital staff categories can help reduce cumulative incidence

of MRSA colonisation (Fig 2A for scenarios where 1, 2, or all staff categories were reallocated,

S3a Fig for all scenarios). Importantly, the benefit of the intervention varied depending on the

categories of staff reallocated. When only a single staff category was reallocated, the highest

incidence reduction was obtained for healthcare assistant reallocation (median decrease: 40%,

95% confidence interval: 39, 41). All scenarios with 2 categories reallocated involving health-

care assistants prevented between 39% and 56% of colonisations over the entire simulation

period. For comparison, reallocating all staff categories prevented 65% of colonisations (CI:

64, 66). Reallocation of either porters or physicians alone barely led to any change in incidence

compared to baseline, since these interventions did not substantially change the number of

unique staff–patient contacts within the hospital and, therefore, did not substantially affect

MRSA spread (S4 Fig). A pseudo-random contact network in which patients were homoge-

nously distributed among all staff members led to more contacts and a higher incidence as

compared to the one generated by the baseline network (38% increase, CI: 36, 39), since this

increased unique staff–patient contacts within the hospital (S4 Fig).

To see if the variability between scenarios was due to the different number of individuals

reallocated in each scenario, we divided the relative incidence reduction for each scenario by

the corresponding number of staff reallocated (Fig 2B). This did not substantially change the

order of the scenarios with the highest benefit, now calculated as relative incidence reduction

per reallocated staff. Scenarios where nurses or healthcare assistants were reallocated remained

high in the ranking, despite requiring a large number of staff to be allocated. Reallocation of

healthcare assistants only led to the highest overall relative reduction per staff reallocated

(3.9 × 10−3%, CI: 3.8 × 10−3, 4.0 × 10−3), even higher than if all staff are reallocated

(2.4 × 10−3%, CI: 2.4 × 10−3, 2.5 × 10−3). In any case, we still note heterogeneity in the efficacy

of different scenarios, indicating that there are other relevant characteristics which differ

between staff categories.

Reinforced contact precautions or vaccination of nurses or healthcare

assistants are more effective than staff reallocation

Next, we investigated the impact of reinforced contact precautions taken by hospital staff (e.g.,

glove wearing or improved hand hygiene compliance) and a hypothetical vaccination inter-

vention (S2b Fig). Contact precautions were simulated as a 2- to 10-fold reduction in both

patient-to-hospital staff and hospital staff-to-patient MRSA transmission probabilities during

contacts. Vaccination was simulated as a 2- to 10-fold reduction in MRSA acquisition proba-

bilities during contacts between any colonised individual and a non-colonised vaccinated

individual.
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Fig 2. Relative reduction in cumulative incidence of MRSA colonisation for different hospital staff reallocation scenarios,

shown per scenario (a), or per scenario divided by number of staff reallocated in that scenario (b). Top: Each bar depicts,

for a given scenario, the median relative reduction between 500 model simulations with no intervention, and 500 simulations

with staff reallocation. Error bars indicate the 95% confidence interval, calculated with Wilcoxon tests to assess if the relative

reduction is significantly different from 0. All corresponding p-values are<0.001, except where error bars cross 0 (p> 0.05, for

reallocation of porters only or porters and physicians). A negative reduction indicates that the intervention led to an increase in

cumulative incidence. Bottom: In each scenario, staff categories coloured are those reallocated. In the scenario with no

coloured squares, the contact network is random. In each plot, the scenarios are ranked from most to least effective.

https://doi.org/10.1371/journal.pmed.1004433.g002
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Contact precautions targeting healthcare assistants led to a large reduction in MRSA coloni-

sations, ranging from 18% to 31% as the assumed level of reduction in transmission probabili-

ties increased from 2- to 10-fold (Fig 3). This was closely followed by contact precautions

targeting nurses (10% to 21% reduction). Contact precautions for nurses appear to be as effec-

tive as reallocation of this staff category alone, as even an assumed 4-fold reduction in trans-

mission probabilities was sufficient to achieve a decrease in incidence equivalent to

reallocation (Fig 3). Vaccination of healthcare assistants or nurses had higher impact than con-

tact precautions (Fig 3).

By opposition, contact precautions or vaccination focused exclusively on either hospital

porters, physicians, rehabilitation, or other staff appeared ineffective, with percent reductions

below 5% irrespective of the assumed transmission probability reduction (Fig 3).

Heterogeneous distribution of “supercontactors” among patients and staff

To understand why intervention effectiveness to reduce the spread of MRSA varied depending

on the staff category targeted, we examined the extent to which different individuals were con-

nected in the contact network. We identified individuals substantially more connected than

others, and henceforth refer to them as “supercontactors.” We distinguish between 2 types of

supercontactors: (i) individuals with the highest number of daily distinct contacts (henceforth

called “frequency-based supercontactors”); and (ii) individuals with the highest overall daily

contact duration (henceforth called “duration-based supercontactors”).

We identified the top 60 duration- and frequency-based supercontactors for both patients

and staff (i.e., top 20% of individuals). If all individuals had the same probability of being

supercontactors, we expect that the distribution of patients/staff categories among

Fig 3. Effect of contact precautions and hypothetical vaccination targeting different hospital staff categories, compared to staff reallocation. The

coloured dashed lines show the median reduction when reallocating healthcare assistants only (turquoise) or nurses only (pink). All other estimates are shown

as median calculated for 500 intervention simulations. Error bars indicate the 95% confidence interval, calculated with Wilcoxon tests to assess if the relative

reduction is significantly different from 0. All corresponding p-values are<0.001, except where error bars cross 0 (p> 0.05).

https://doi.org/10.1371/journal.pmed.1004433.g003
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supercontactors (Fig 4, red and blue) would be aligned with the distribution of those same cat-

egories among all patients/staff (grey).

Among patients, those in neurology care are the first category of supercontactors (Fig 4,

left; 34% of duration-based, 45% of frequency-based). The observed distribution of patient cat-

egories among duration-based supercontactors (red) differed significantly from the distribu-

tion of those categories among all patients (grey; log likelihood ratio test: p-value <0.001). We

observed a greater proportion of patients in PVS and elderly care among duration-based

supercontactors than among all patients (Fig 4, left). The difference was not statistically signifi-

cant for frequency-based supercontactors (log likelihood ratio test: p-value>0.2).

Among staff, the majority of supercontactors were either healthcare assistants (Fig 4, right;

52% of duration-based, 33% of frequency-based) or nurses (Fig 4, right; 26% of duration-

based, 40% of frequency-based). The observed distribution of staff categories among supercon-

tactors differed significantly from the distribution of those categories among all staff (log likeli-

hood ratio test: duration-based p-value <0.01, frequency-based p-value<0.05). Compared to

the distribution among all staff, we observed a greater proportion of healthcare assistants

among duration-based supercontactors and a greater proportion of nurses, porters, and reha-

bilitation staff among frequency-based supercontactors (Fig 4).

There was almost no overlap between the identities of the frequency- and duration-based

supercontactors. Only 3 patients in PVS, 2 patients in neurological care, 1 nurse, and 1 rehabil-

itation staff were in both categories.

Fig 4. The distribution of supercontactors (SC) among hospital patients and staff is not homogeneous. The grey bars show the distribution of categories

among all patients (left) or staff (right), the red bars show the distribution of duration-based supercontactors, the blue bars show the distribution of frequency-

based supercontactors. If supercontactors were homogeneously distributed among categories, all the coloured bars would be aligned with the grey bars. Here,

only the distribution of the top 60 frequency-based and duration-based supercontactors for patients and staff is shown. PVS, persistent vegetative state.

https://doi.org/10.1371/journal.pmed.1004433.g004
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Targeting supercontactors is most effective to reduce MRSA spread

We used supercontactors as target for interventions in the hospital. We compared the effect of

reinforced contact precautions or hypothetical vaccination, targeting different combinations

of 60 supercontactors (i.e., contact-based or duration-based supercontactors among both

patients or hospital staff), 60 staff randomly chosen, or 60 patients randomly chosen. Here, we

only show the reductions for an assumed 6-fold reduction in transmission probabilities, with

other fold reductions shown in S5 Fig.

Targeting supercontactors within either staff or patients with an intervention was at least as

effective to reduce incidence than randomly targeting individuals in the same group with the

same intervention (grey, Fig 5). When targeting staff, implementing an intervention on a mix

of frequency- and duration-based supercontactors (purple) was most effective to reduce the

cumulative incidence of MRSA colonisations across the facility. When targeting patients,

focusing on duration-based supercontactors (red) gave better results. Regardless of the type of

supercontactors targeted, vaccination was equally or more effective than contact precautions

(Fig 5). Overall, vaccinating a mix of duration- and frequency-based staff supercontactors

appeared to be the most effective, with up to 23% (CI: 22, 24%) of colonisations prevented,

closely followed by vaccinating a mix of staff and patient duration-based supercontactors.

These results are partly explained by the relative time spent by staff and patients in contact

with either individuals of the same group (e.g., staff with staff) or of a different group (e.g., staff

with patients) (S6a Fig), as well as the relative values of the transmission probabilities for each

type of contact (S6b Fig and Table A in S1 Text). This is because, in our model, contact precau-

tions can only reduce between-group transmission (staff-to-patient and patient-to-staff), while

Fig 5. Comparison of contact precautions or hypothetical vaccination for 60 staff, patients, or a mix of staff and patients, targeting either duration-based

supercontactors (SC), frequency-based SC, a mix of duration and frequency-based SC, or random individuals. We assume the interventions lead to a 6-fold

reduction in transmission probabilities. For each strategy, the bar indicates the median relative reduction in cumulative incidence obtained for 500 simulations.

Error bars indicate the 95% confidence interval, calculated with Wilcoxon tests to assess if the relative reduction is significantly different from 0. All relative

reductions were significantly different from 0 (p< 0.001).

https://doi.org/10.1371/journal.pmed.1004433.g005
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vaccination reduces acquisition and hence can reduce within-group transmission (staff-to-

staff and patient-to-patient) (S2 Fig). For example, for patients, vaccination may be more effec-

tive than contact precautions since it reduces the largest per-contact transmission probability

(staff-to-patient) and reduces the probability for the most dominant type of contact (patient-

to-patient) (S6 Fig).

These conclusions are maintained when assessing different contact precautions or vaccina-

tion efficacies, i.e., assuming 2-, 4-, 8-, or 10-fold reductions in transmission or acquisition

probabilities, respectively (S5 Fig), or when targeting 20 or 100 individuals instead of 60

(S7 Fig).

Targeting supercontactors is also an effective strategy for other nosocomial

pathogens

Although the epidemiological parameters we used in the previous sections were directly esti-

mated using data on MRSA, our model can be applied to any nosocomial pathogen for which

Fig 6. Comparison of contact precautions or vaccination for 60 staff or patients, targeting either duration-based supercontactors (SC), frequency-based

SC, a mix of duration and frequency-based SC, or random individuals, and varying either the baseline transmission rate or carriage duration. (a) Halved

transmission rate; (b) doubled transmission rate; (c) halved carriage duration; (d) doubled carriage duration. We assume the interventions lead to a 6-fold

reduction in transmission probabilities. For each strategy, the bar indicates the median relative reduction in cumulative incidence obtained for 500 simulations.

Error bars indicate the 95% confidence interval, calculated with Wilcoxon tests to assess if the relative reduction is significantly different from 0. All relative

reductions were significantly different from 0 (p< 0.001). (e) Absolute cumulative incidence without intervention using estimated parameter values, higher/

lower transmission, or higher/lower carriage duration. Points indicate the mean, and lines mean +/− standard deviation, obtained for 500 simulations.

https://doi.org/10.1371/journal.pmed.1004433.g006
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CPIs are the main vector of transmission, as opposed to other environmental routes of trans-

mission such fomites. Naturally, the epidemiology of such pathogens would likely vary com-

pared to MRSA, with different transmission rates and carriage/infectiousness durations

compared to the values we estimated. To investigate the applicability of our results to other

pathogens, we repeated our analysis above, doubling or halving either the transmission rates

or the carriage/infectiousness durations. Our qualitative results on the value of targeting super-

contactors to improve intervention effectiveness remained valid (Fig 6A–6D), even with differ-

ent baseline incidences due to the parameter changes (Fig 6E). Interestingly, we see that in a

few scenarios targeting patients or staff randomly could be slightly more effective than target-

ing frequency-based patient supercontactors (Fig 6A–6D). This is due to the high effectiveness

of targeting duration-based supercontactors in such instances, combined with the nonoverlap-

ping identities of duration- and frequency-based supercontactors. Inevitably, by exclusively

targeting frequency-based supercontactors we exclude duration-based supercontactors, while

random targeting may still incidentally include these individuals. The reverse is observed for

staff contact precautions at halved carriage duration, where random targeting is more effective

than targeting duration-based supercontactors (Fig 6C).

Discussion

In this study, we present how the dynamic interindividual contact network of a healthcare

institution can be analysed to implement efficient interventions aimed at reducing pathogen

transmission. We first applied an IBM to a French LTCF and confirmed that it reproduced

well both the recorded network and MRSA dynamics. We then evaluated and compared sev-

eral network-based control strategies, demonstrating that while hospital staff reallocation can

help reduce MRSA transmission overall, staff contact precautions and hypothetical vaccination

could be as or more effective than reallocation. Interestingly, the efficacy varied depending on

which staff category was targeted by the intervention. We identified “supercontactors” in the

contact network with more or longer contacts and found that these were heterogeneously dis-

tributed among staff and patient categories. The effectiveness of contact precautions and vacci-

nation was further increased by targeting these supercontactors in the LTCF, compared to

randomly targeting individuals. Our conclusions remained valid when varying epidemiologi-

cal parameters, suggesting that targeting supercontactors is also an effective strategy for other

nosocomial pathogens transmitted via CPIs. Importantly, our work shows that while contact

precautions and vaccination both act by reducing transmission probabilities, their impact can

differ since the specific probabilities and contact types they affect may not be the same. There-

fore, understanding the relative importance of these elements and their contribution to the

overall contact network dynamics is crucial to implement efficient interventions against patho-

gen spread.

Here, we demonstrated that staff reallocation is an effective strategy to reduce transmission

risk. Moreover, reallocation strategies involving healthcare assistants were the most effective.

Our simulation results are consistent with previous work on this topic, showing the best staff

reallocation strategies were those significantly lowering the degree of the hospital worker-to-

patient subgraph [12,16,18–23]. In particular, our results are in agreement with those of

Mietchen and colleagues, who used a compartmental model to show that assigning each nurse

to a specific group of patients (similar to our staff reallocation intervention) reduced MRSA

acquisition by 50% compared to when patients and staff interacted randomly [24]. In a previ-

ous study, we examined the potential of different hospital staff categories to spread nosocomial

pathogens and to play a role of super-spreader, showing the importance of adherence to con-

tact precautions in “peripatetic” hospital staff. These later were defined as hospital staff
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members with relatively short contacts, but with many patients, a definition similar to the “fre-

quency-based supercontactors” here [8].

Since transmission was modelled through the contact network, supercontactors can mecha-

nistically play the role of super-spreaders, but also be themselves more at risk of acquiring the

bacteria during a contact with a colonised individual. These factors explain why targeting

supercontactors for interventions led to a substantial reduction in colonisation incidence. The

most appropriate supercontactor type to target (duration-based or frequency-based) surpris-

ingly differed between patients and hospital staff: while targeting a mix of duration- and fre-

quency-based supercontactors was more relevant for hospital staff, duration-based

supercontactors were selected for patients. We also predicted that the most effective interven-

tion to reduce the overall incidence of colonisation was to vaccinate a mix frequency- and

duration-based supercontactors among staff with a hypothetical vaccine, which here we

assume protects against acquisition. These conclusions may be related to the relative impor-

tance of the within-group transmission probabilities (patient-to-patient and staff-to-staff), as

well as the high proportion of total contact time supercontactors spend in contact with individ-

uals of the same group they belong to which we observed in the i-Bird data (S6 Fig). Since vac-

cination limits within-group transmission, while contact precautions only affect between-

group transmission, this partly explains why vaccination was more effective. These results may

be specific to the type of hospital investigated here. In LTCF, the frequency and duration of

patient–patient interactions are much higher than in acute care facilities. Our results highlight

the necessity of involving patients in intervention implementation in LTCF.

It is important to note that the hospital followed up during the i-Bird study included neu-

rology care wards hosting patients in PVS. These patients in PVS accounted for one fifth of the

individuals classified as duration-based supercontactors (Fig 3). While they may be considered

similar to sedated and ventilated patients in intensive care units, the presence of this type of

patients with particularly long contacts and specific behaviours is not universal across all types

of LTCF. To improve the generalisability of our results to other LTCF, we performed an addi-

tional analysis in which patients in PVS were excluded when identifying supercontactors: this

hypothesis did not affect our conclusions (S8 Fig).

The results presented here should be interpreted in the light of the following limits. Firstly,

we only considered here that MRSA transmission occurred through interindividual contacts

among participants, with a risk of transmission saturating after 1 h. This assumption was

based on previous analysis of the same data, suggesting that the proximity network was the

main transmission route for MRSA acquisition in this setting [13]. In this study, while partici-

pation was high (95% of staff and patients agreed to wear the sensors), it was also estimated

that 25% of MRSA acquisitions were not explained by the contact network, and may instead

be mediated by other acquisition mechanisms not included in our model, such as environmen-

tal contamination, or bacterial evolution within the host leading to the emergence of resis-

tance. Importations of new colonisations, through for example hospital visitors or patient’s

permissions outside the hospital were also not included in the model, while they could also

have been sources of MRSA acquisition during the i-Bird study. This may explain why model

simulations slightly underestimated the incidence point on the fifth week, as illustrated in Fig

1B.

Secondly, we did not account for the infection status of patients in the model. Over the

study, several infections occurred in participating patients (eschar, cutaneous infection, gastro-

stomy, colostomy, tracheotomy, ulcer, etc.). When an infection occurs, bacterial load is usually

much higher, which could potentially increase the risk of bacterial dissemination in the envi-

ronment or transmission to contacts. Infections could also impact the dynamic of contacts and

of nurse scheduling, as infected patients are bound to have a higher care load, thus requiring
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more contacts. Interestingly, this higher care load could reclassify infected patients as super-

contactors and, as we have shown here, identify them as key targets for interventions to reduce

spread. For these reasons, future work taking into consideration infected patients may further

improve our ability to implement effective interventions.

Thirdly, the epidemiological parameters of the model, which included transmission proba-

bility and carriage duration, were directly estimated for MRSA from the admission, schedule,

swab, and contact data [13,14]. While this allows us to be confident that our model reproduces

well the characteristics of the LTCF in which the i-Bird study was conducted, these parameters

can vary depending on the estimation period (e.g., holidays versus term-time), setting (e.g.,

long term versus acute care), population (e.g., older versus younger), and circulating bacterial

or viral pathogen in the hospital. For example, the probability of MRSA transmission that we

estimated is slightly lower than in other studies (e.g., 0.000030 per 30 s of contact on average

for hospital staff-to-hospital staff and 0.000722 for hospital staff-to-patient in our study with

the real RFID network, compared to a probability between 0.0005 and 0.0050 per 30 s of con-

tact in the study by Hornbeck and colleagues [25]). The durations of MRSA colonisation that

we estimated from the data (28 days for patients, 18 days for hospital staff) are also either

shorter or longer than previously reported estimates, but these values can be clone or setting

specific [26,27]. Among other pathogens transmitted by CPI, Klebsiella pneumoniae has char-

acteristics within the range we explored in our analysis (transmission probability of 0.0005 per

30 s of contact, carriage duration of 3 weeks) [28]. SARS-CoV-2 is another example with a sim-

ilar transmission probability, although the infectious period (equivalent to the carriage dura-

tion) is lower (9 days) [29]. As we have shown, our conclusions on the value of interventions

strategies targeting supercontactors were not impacted by changes in parameters to reflect the

epidemiology of these other pathogens instead of MRSA. However, these conclusions would

likely not be directly applicable to pathogens for which CPIs are not the main route of trans-

mission. For ESBL-producing E. coli, previous work has shown that the contact network mea-

sured in the i-Bird study could not accurately capture transmission, by opposition to

methicillin-susceptible and -resistant S. aureus and ESBL-producing K. pneumoniae [13,28].

More generally, our use of the i-Bird study data here is both a strength and limitation of our

approach. By aiming to reproduce the specific incidence in this setting using data to directly

calculate relevant parameters, we were able to rely on minimal parameter assumptions. We are

therefore confident that our model is representative of the real situation in the LTCF, adding

more credibility to our conclusions on the potential impact of interventions in this setting.

However, we also recognise that the characteristics of one LTCF may not be representative of

all LTCFs, and that these characteristics may even change within a single LTCF over time. As

mentioned in previous paragraphs, we tried to account for this by showing that our conclu-

sions remain valid even by changing several key characteristics, such as the presence of patients

in PVS or the estimated epidemiological parameters. That said, there are some elements we

have not explored such as different care organisation which may be found in other countries

and settings. We expect that our overall conclusions pertaining to “supercontactors” would

still hold under different conditions, since contacts will always follow a similar heterogeneous

distribution, with some individuals being in contact with more individuals or spending more

cumulative time in contact than others. To the best of our knowledge however, no study has

yet compared such distributions across settings.

Lastly, in this analysis we explored a wide range of possible intervention efficacies rather

than focus on single “likely” values. In the case of contact precautions, efficacy may indeed

vary depending on the setting characteristics and individual compliance to the intervention

[10]. For vaccination, here we focused on a hypothetical vaccine since no vaccine is currently

publicly available against S. aureus. However, due to the high burden of this pathogen and the
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number of vaccines in clinical development [9], we believe it is still worthwhile to investigate

the potential impact of this intervention and clarify its value compared to existing ones such as

contact precautions, over a range of possible efficacies. For further generalisability, we exam-

ined which intervention strategy targeting either staff or patients is the most effective when the

efficacies of contact precautions and vaccination are allowed to vary independently of each

other (S9 Fig). This does not affect our conclusions and vaccination remains the most effective

intervention in most cases (targeting duration-based supercontactors for patients, and a mix

of duration- and frequency-based supercontactors for staff), except if the efficacy of vaccina-

tion is assumed to be extremely low (i.e., 2-fold reduction in transmission probabilities or less)

while the efficacy of contact precautions is greater (at least 4-fold reduction) (S9 Fig).

Despite their limitations, mathematical models are powerful tools to inform the efficacy of

control strategies in hospital settings [30], when they are based on a good understanding of

pathogen transmission routes and heterogeneity in human interactions [31,32]. Over the last

decades, different approaches have been used to acquire knowledge on interindividual con-

tacts, such as observational studies, diaries, interviews, and more recently wearable sensors

[33–41]. While several IBMs of pathogen spread within hospitals [31,42–50] have been devel-

oped to assess measures such as hygiene compliance [25] or antiviral prophylaxis impact on

influenza [51], few models have actually attempted to directly integrate such rich empiric data.

To our knowledge, only 2 published IBMs simulated transmission along an RFID-based con-

tact network [13,25], one of which studied MRSA spread [25]. In that work, Hornbeck and col-

leagues showed that the number of colonised patients increased when the most connected

nurses did not comply with infection control recommendations, which is consistent with our

results.

We must consider the feasibility, cost, and social acceptability when deciding which control

strategies should be implemented. For example, we suggest that the best strategy would be to

implement contact precautions or vaccination focusing on supercontactors, but identifying

and targeting supercontactors, in particular among patients, may not be as socially acceptable

as broadly targeting hospital staff categories. The benefit of patient vaccination, which we iden-

tified as the best strategy in the LTCF, may also be reduced in acute care settings, due to

shorter patient lengths of stay and to the likely delay required for immunity to develop follow-

ing vaccination. In addition, here we chose to simulate the impact of the hypothetical vaccine

as a reduction in the probability of colonisation since, although no vaccine is currently publicly

available, this type of vaccine is being studied [52–54]. However, we acknowledge that future

vaccines may only reduce the risk of infection rather than colonisation [9]. Nonetheless, there

are precedents for bacterial vaccines which reduce both infection and colonisation rates, with

the most well-known examples being S. pneumoniae vaccines [55]. Our analysis could be

extended to allow the vaccine to impact different transmission probabilities, such as reducing

the risk of transmission from vaccinated individuals compared to non-vaccinated ones. How-

ever, since we have shown here that, when targeting the same individuals, vaccination may

have a greater impact than contact precautions to reduce overall MRSA colonisation incidence

despite only reducing acquisition probability, further reductions in other transmission proba-

bilities would only further reinforce this conclusion.

In any case, achieving a 10-fold reduction in transmission probabilities with either contact

precautions or vaccination might not actually be feasible, depending on the baseline level of

pathogen transmission, which is why we explored a range of reductions as previous studies

have done [56]. On the other hand, reallocation requires greater logistical efforts and may not

always be feasible depending on the economic context of the healthcare institution and the

care load. Finally, the most effective reallocation strategies may not be the most “cost-effec-

tive.” For example, when considering the relative reduction in incidence per staff reallocated,
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targeting only rehabilitation staff ranked higher than targeting all staff (Fig 2B). These factors

will also be affected by the choice of outcome evaluated. Here, we examined the reduction in

all acquisitions generated by the interventions, but arguably reducing patient acquisition may

weigh more from a public health perspective than reducing staff acquisition, due to the subse-

quent risk of nosocomial infections.

In conclusion, this work sheds light on the importance of targeting control and prevention

measures in an LTCF towards specific hospital staff categories, but also of involving patients in

such efforts as they may too play an important role in the transmission network. Patients need

to be actors of their own prevention especially when their length of stay is long. More impor-

tantly, we underline how monitoring contacts can be helpful to design highly effective control

strategies aimed at “supercontactor” individuals.

Supporting information

S1 Fig. Distributions of (a) colonisation durations and (b) swabs per day. The observed dis-

tributions in pink are the smoothed densities of observations in the i-Bird study data, while the

simulated distributions in blue are the smoothed densities generated by Lognormal (for colo-

nisation durations, a)) or Normal (for number of swabs, b)) distributions informed by the

mean and variance of the data.

(TIF)

S2 Fig. Model outline. (a) Baseline model description and disease natural history. (b) Mode of

action of the 3 different interventions examined in the model.

(TIF)

S3 Fig. Relative reduction in cumulative incidence of MRSA colonisation for different hos-

pital staff reallocation scenarios, shown per scenario (a), or per scenario divided by num-

ber of staff reallocated in that scenario (b). Top: Each bar depicts, for a given scenario, the

median relative reduction between 500 model simulations with no intervention, and 500 simu-

lations with staff reallocation, along with the 95% confidence interval. A negative reduction

indicates that the intervention led to an increase in cumulative incidence. Bottom: In each sce-

nario, staff categories coloured are those reallocated. In scenario 64, the contact network is

random. In each plot, the scenarios are ranked from most to least effective.

(TIF)

S4 Fig. Number of unique patients in contact with each staff member in the baseline net-

work, compared to reallocation scenarios involving either one staff category at a time, all

staff, or a random allocation.

(TIF)

S5 Fig. Comparison of contact precautions or vaccination targeting 60 individuals, either

selected randomly among staff or patients, or different groups of supercontactors, assum-

ing a fold-reduction in transmission probability of (a) 2 or (b) 10. For each strategy, the bar

indicates the median relative reduction in cumulative incidence, with 95% confidence interval,

obtained for 500 simulations.

(TIF)

S6 Fig. Intervention effectiveness depends on between- and within-group contact rates and

transmission probabilities. (a) Most of the cumulative contact time of patient supercontac-

tors is with other patients, while staff supercontactors spend approximately the same amount

of time in contact with either patients or staff. (b) Contact precautions and vaccination do not

reduce the same transmission probabilities. For example, for patients, vaccination may be
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more effective than contact precautions since it reduces the largest per-contact transmission

probability (staff-to-patient) and reduces the probability for the most dominant type of contact

(patient-to-patient).

(TIF)

S7 Fig. Comparison of contact precautions or vaccination targeting (a) 20 or (b) 100 indi-

viduals, either selected randomly among staff or patients, or different groups of supercon-

tactors, assuming a 6-fold reduction in transmission probabilities. For each strategy, the

bar indicates the median relative reduction in cumulative incidence, with 95% confidence

interval, obtained for 500 simulations.

(TIF)

S8 Fig. Comparison of contact precautions or vaccination targeting 60 individuals, either

selected randomly among staff or patients, or different groups of supercontactors exclud-

ing persistent vegetative state patients, assuming a 6-fold reduction in transmission proba-

bilities. For each strategy, the bar indicates the median relative reduction in cumulative

incidence, with 95% confidence interval, obtained for 500 simulations.

(TIF)

S9 Fig. Most effective intervention strategy depending on type of individual targeted

(patients or staff) and assumed efficacy of each intervention to reduce the relevant trans-

mission probabilities. For each combination of assumed vaccine efficacy (x-axis) and contact

precautions efficacy (y-axis), the colour of the square indicates which type of supercontactor

should be targeted to achieve the highest reduction in MRSA colonisation, and the letter indi-

cates which intervention should be used for this purpose. For example, if we are targeting staff

(right panel) with either vaccination leading to a 4-fold reduction in transmission probabilities

(x = 4) or contact precautions leading to a 10-fold reduction (y = 10), the best intervention is

to vaccinate (V) a mix of duration- and frequency-based supercontactors (purple).

(TIF)

S1 Text. Detailed CTCmodeler description.

(PDF)
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12. Valdano E, Poletto C, Boëlle P-Y, Colizza V. Reorganization of nurse scheduling reduces the risk of

healthcare associated infections. Sci Rep. 2021; 11:7393. https://doi.org/10.1038/s41598-021-86637-w

PMID: 33795708

13. Obadia T, Silhol R, Opatowski L, Temime L, Legrand J, Thiébaut ACM, et al. Detailed Contact Data and
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23. Pelat C, Kardaś-Słoma L, Birgand G, Ruppé E, Schwarzinger M, Andremont A, et al. Hand Hygiene,

Cohorting, or Antibiotic Restriction to Control Outbreaks of Multidrug-Resistant Enterobacteriaceae.

Infect Control Hosp Epidemiol. 2016; 37:272–280. https://doi.org/10.1017/ice.2015.284 PMID:

26708383

24. Mietchen MS, Short CT, Samore M, Lofgren ET, Program (MInD-Healthcare) CMID in H. Examining the

impact of ICU population interaction structure on modeled colonization dynamics of Staphylococcus

aureus. PLoS Comput Biol. 2022; 18:e1010352. https://doi.org/10.1371/journal.pcbi.1010352 PMID:

35877686

25. Hornbeck T, Naylor D, Segre AM, Thomas G, Herman T, Polgreen PM. Using sensor networks to study

the effect of peripatetic healthcare workers on the spread of hospital-associated infections. J Infect Dis.

2012; 206:1549–1557. https://doi.org/10.1093/infdis/jis542 PMID: 23045621

26. Cluzet VC, Gerber JS, Nachamkin I, Metlay JP, Zaoutis TE, Davis MF, et al. Duration of Colonization

and Determinants of Earlier Clearance of Colonization With Methicillin-Resistant Staphylococcus

aureus. Clin Infect Dis. 2015; 60:1489–1496. https://doi.org/10.1093/cid/civ075 PMID: 25648237

27. Robicsek A, Beaumont JL, Peterson LR. Duration of Colonization with Methicillin-Resistant Staphylo-

coccus aureus. Clin Infect Dis. 2009; 48:910–913. https://doi.org/10.1086/597296 PMID: 19231982
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