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Analytical description of elastocapillary
membranes held by needles†

Jean Farago * and Wiebke Drenckhan-Andreatta

Fluid objects bounded by elastocapillary membranes display intriguing physical properties due to the

interplay of capillary and elastic stresses arising upon deformation. Increasingly exploited in foam or

emulsion science, the mechanical properties of elastocapillary membranes are commonly characterised

by the shape analysis of inflating/deflating bubbles or drops held by circular needles. These impose

complex constraints on the membrane deformation, requiring the shape analysis to be done using

elaborate numerical fitting procedures of the shape equations. While this approach has proven quite

reliable, it obscures insight into the underlying physics of the problem. We therefore propose here the

first fully theoretical approach to this problem using the elastic theory for a membrane with additive

contributions of capillary and Hookean-type elastic stresses. We exploit this theory to discuss some of

the key features of the predicted pressure-deformation relations. Interestingly, we highlight a breakdown

of the quadratic approximation at a well-defined value of the elastocapillary parameter depending on

the shape of the reference state, which is regularized by the non-quadratic terms. Additionally, we

provide an analytical relationship which allows experimentalists to obtain the elastocapillary properties of

a membrane by simple measurement of the height and the width of a deformed bubble (or a drop).

1 Introduction

The adsorption and cross-linking of polymers, proteins or
particles at liquid interfaces creates ‘‘membranes’’ whose defor-
mation energy combines a capillary-type response from the
interface with a solid-like elastic response from the adsorbed
layer.1,2 The coupling of these two energies leads to intriguing
properties of objects created from these ‘‘elastocapillary mem-
branes’’, whose reliable description is of interest from a scien-
tific point of view and for applications. For example, such
membranes can completely stop the ageing of foams or
emulsions,3 and they can play an important role in controlling
the response of micro-capsules.4 The properties of these mem-
branes can also teach us about the interactions of their
constituents.1,2,5

The theoretical description of elastocapillary membranes
evokes many fundamental questions, the first being how
exactly the capillary and elastic stresses are coupled within the
membrane.5–8 Often, a simple additive relation is assumed,
neglecting the likely coupling of both contributions in most
experimental systems. However, this simplifying assumption
has been proven to describe reasonably well a wide range of

experiments5–9 and provides an important first step to grasping
the properties of such membranes.

Due to their increasing importance, different experimental
techniques have been developed to characterise the often non-
linear visco-elastic properties of elastocapillary membranes.
One of the most commonly used approaches relies on the
analysis of the shape changes of a drop or bubble held by a
circular needle upon inflation/deflation,6,10–12 as sketched in
Fig. 1a and b. While this problem can be treated easily in the
Young–Laplace framework for interfaces with liquid-like elas-
ticity, the addition of a solid-like elasticity makes this problem
intrinsically non-linear due to the constraints imposed on the
deformation by the needle, acting like a non-deformable
inclusion.5–8,13 Due to the complexity of the resulting stress-
deformation relation, currently used approaches for the extrac-
tion of the visco-elastic properties of the interfacial membrane
require delicate numerical fitting by shape equations.6,9,14

While this has proven fairly successful from an experimental
point of view, it obscures the underlying physical picture and is
also prone to numerous experimental artefacts.

We therefore treat here for the first time in a fully theoretical
approach the simplest possible configuration of this problem:
as sketched in Fig. 1a and b, an initially spherical bubble (or
drop) of radius R0 is inflated/deflated on a circular needle of
radius Rn. The fact that we neglect gravity corresponds either to
experiments with density-matched liquids or to sufficiently
small systems in which the elasto-capillary stresses outweigh

Institut Charles Sadron, CNRS UPR-22, Université de Strasbourg, Strasbourg,
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those created by gravity. We consider a homogeneous, isotropic
and Hookean-type membrane of thickness t and bulk shear
modulus G. This membrane is assumed to have a non-zero and
constant interfacial tension g with the bubble (drop) and
negligible interfacial tension with the surrounding liquid. This
allows us to define an elastocapillary number

a ¼ 3Gt

g
; (1)

which compares the relative importance of elastic and capillary
contributions upon deformation. While this seems a crude
simplification, it allows to capture the most important features
of this elastocapillary problem.

Using quadratic theory, we predict analytically the full shapes
and the associated pressure-deformation relation of what we call
‘‘bubbloons’’ (elastocapillary bubbles) or ‘‘droploons’’ (elastoca-
pillary drops).13 We restrict the description to small deformations
which preserve the axial symmetry of the reference spherical cap,

and exclude any wrinkling of the structure which arises experi-
mentally when elastocapillary capsules are deflated.

Examples of shapes obtained by our theory for an overall
interfacial area increase of l = A/A0 = 1.2 for different elastoca-
pillary numbers a are shown in Fig. 1c together with

x ¼ DP
DP0
� 1; (2)

which is the the normalised change in the pressure difference
from the reference state value DP0 = 2g/R0, where the elastic
stresses are zero.

Two of the key properties of these systems are directly visible
in these examples:

(1) For the same magnitude of inflation, for a o 0.5, the
pressure jump DP̃ is negative, while for a Z 0.5 it is positive.

(2) While for a small elastocapillary number a the overall
shape remains spherical, for larger capillary numbers, the
bubbloon (droploon) expands increasingly in the vicinity of
the needle.

In the remaining article, we introduce the main theoretical
relations and results before discussing in detail some of the
specific features created by the interplay of elasticity and
capillarity.

The obtained theoretical relations do not only provide
important insights into the underlying – sometimes counter-
intuitive – physics of the problem but they also provide gui-
dance for reliable experiments together with analytical expres-
sions which can be fitted directly to experimental results to
extract the main properties of the elastocapillary membrane.
To this end, we provide a simple theoretical relation which
allows extracting the elastocapillary number of an in/deflated
balloon (droploon) simply by measuring its change in height
and width.

For simplicity, we will only talk about elastocapillary bub-
bles (i.e. bubbloons). However, all derived theory is equally
valid for elastocapillary drops, i.e. droploons.

2 Definitions
2.1 System definition

We consider the experimental setup sketched in Fig. 1: a
membrane is attached to the extremity of a circular needle of
radius Rn and acts as a boundary between an external chamber
at pressure Pext and an internal chamber at pressure Pint. Both
chambers may be filled with a liquid, or one of them may be a
gas. The separating membrane is of ‘‘elastocapillary type’’,
meaning that it displays both elastic and capillary properties:
as an elastic membrane, it has a reference state, for which its
elastic stresses are zero. We assume that this reference state is a
spherical cap of radius R0 as sketched in Fig. 1. Away from
this reference state, the interface stores an elastic energy Eel.
As a capillary interface, it has also a constant interfacial tension
g and an energy term Eg = gA, proportional to the interfacial
area A.

Fig. 1 Sketch of the investigated configuration and associated key quan-
tities. (a) The spherical cap shape of radius R0 corresponds to the reference
state of the elastocapillary membrane, when Pint,0 � Pext = DP0 = 2g/R0.
The needle radius Rn and the angle yn are related by sin yn = Rn/R0 (for
future reference, we indicate also cn the surface rotation angle at the
needle). (b) For DP a DP0, the internal volume is different due to the
motion of all surface elements from their position r to r̂ = r + u(r). The axial
symmetry of the deformation implies that |u| depends only on y and
the torsionless hypothesis implies that u > ej (with ej = er � ey).
(c) Predictions of typical bubbloon (droploon) shapes for different values
of the elastocapillary number a and an area stretch l = A/A0 = 1.2, noting
the associated normalised pressure change x = (DP � DP0)/DP0. Dashed
contour = (initial) reference shape; dotted contour = spherical shape
passing through the apex and the needle of the deformed bubbloon.
The actual shape of the bubbloon (droploon) is at the boundary between
the light and dark grey regions. Ha and Re are the height and the equatorial
radius of the bubbloon.
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An important feature of our model is to assume that the
interfacial and elastic energies sum up to define the membrane
free energy

Em = Eel + gA, (3)

an approach which has been successfully exploited in the
past.5–9 Microscopically, this kind of model may correspond
to an interface where a cross-linked and percolated network of a
polymer (with interfacial affinity) covers the whole surface but
with a small overall surface density, like a three-dimensional
fisherman’s net covering the interface. In this case, the
membrane displays both elastic and capillary properties, and
g will be approximately constant and close to that of the liquid.

2.1.1 Elastic energy. The elastic (stretching) energy Eel is
derived from Hooke’s law adapted for a thin incompressible
membrane15

Eel ’
quad:

4pGtR0
2

ðyn
0

dy sin y eyy2 þ eff2 þ eyyeff
� �

; (4)

where the elastic part of the membrane is modelled as a quasi-
two-dimensional, incompressible elastic medium of bulk shear
modulus G and thickness t. We neglect the bending energy
which is usually negligible for membranes with curved refer-
ence states in regimes where no wrinkles form. The quantities
eyy and eff are two diagonal elements of the strain tensor in
spherical coordinates. Assuming axisymmetric torsionless
deformations of the membrane, the displacement field is given
by u(y,f) = r̂� r = ur(y)er + uy(y)ey where r̂ is the current position
of a physical element of the membrane having been displaced
from the original position r = R0er(y,f) (see Fig. 1b and Fig. S1
in the ESI†). The strain tensor elements (eyy,eff) are expressed
in terms of the components of u: we define first their linear
components by

ef = [ur + uy cot y]/R0, (5)

ey ¼ ur þ u0y
� ��

R0; (6)

where u0 = du/dy. A pivotal quantity is c ¼ u0r � uy
� ��

R0 which –
in the limit |u|/R0 { 1 – is also the rotation angle of the
material element normal. The three quantities (ef,ey,c) enter
the definitions of

eyy ¼ ey þ
1

2
ey2 þ

1

2
c2; (7)

eff ¼ ef þ
1

2
ef2: (8)

The nonlinearities in eyy and eff (with respect to u) have
therefore a purely geometrical origin.15

2.1.2 Surface energy. The capillary energy term of the
elastocapillary membrane retains by assumption the usual
expression gA, with A being the interfacial area. A priori, any
parametrisation of the surface is possible, but the presence
of the elastic component gives the natural parametrisation

(y,f) / r + u and hence the expression

Eg ¼ gA ¼ 2pgR0
2

ðyn
0

dy sin y 1þ ef
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ eyð Þ2þc2

q
: (9)

2.1.3 Gibbs functional. The total free energy of the
membrane is Eel + gA, and its variation stems from the work
of pressure forces applied on each side of the membrane: dEel +
gdA = (DP)dVi. Here Vi is the interior volume of the bubbloon,
virtually closed horizontally at the orifice of the needle (gray
line in Fig. 1a).

As a result, the equilibrium shape of the bubbloon is given
by the minimisation of the Gibbs energy Eel + gA � (DP)Vi with
respect to the variations of the displacement field u(y), with the
constraint u(yn) = 0. The latter has a physical origin: the elastic
membrane is clamped at the needle orifice, prohibiting local
displacement. This problem has hence the structure of a
Lagrange minimisation which can be tackled using the techni-
ques of variational mechanics.‡ For this approach, it is con-
venient to use the strain tensor components (ey(y),ef(y)) instead
of the displacement field u(y) as the varying field, since it
happens to simplify greatly the equations. This is made possi-
ble by noting (see Section 3 in the ESI†) that the variations of Vi

are also those of

~Vi ¼
2pR0

3

3

ðyn
0

dy sin y 1þ ef
� �2

1þ 3

2
ey �

1

2
ef

� 	
; (10)

although Vi a Ṽi. We therefore define the Gibbs functional as
G[ey,ef] = Eel + gA � (DP)Ṽi. This is a functional of (ey(y),ef(y))
only, because c can be written as

c ¼ e0f � De cot y; (11)

De � ey � ef. (12)

For a clearer physical picture, it is relevant to switch from (ef,ey)
to the (equivalent) fields (ef,De). Combining eqn (4)–(10), we
define the Lagrangian L ef; e0f;De; y


 �
(note the absence of D0e

as a consequence of the Oz-translational invariance of the
energy) associated with G using the formula

G ¼ 2pgR0
2

ðyn
0

dyL ef; e0f;De; y

 �

; (13)

with

L

sin y
¼ 2a

3
eyy2 þ eff2 þ eyyeff
� �

þ 1þ ef
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2eyy
p

� 2

3
ð1þ xÞ 1þ ef

� �2
1þ ef þ

3

2
De

� 	
;

(14)

where a is the dimensionless elastocapillary number defined in
eqn (1) and x is the normalised pressure change defined in
eqn (2).

‡ With the minor difference that the variation of the profile occurs with nonzero
variation of the displacement field at y = 0, contrary to the usual scheme. But the
Lagrangian has a factor sin y which makes the discrepancy inconsequential.
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3 Results
3.1 Quadratic approximation

A quadratic expansion of the Lagrangian given using eqn (14)
with respect to the displacement field u and in the limit
x { 1 yields

Lquad

sin y
¼ 2a

3
De

2 þ ð2a� 1Þ ef2 þ Deef
� �

þ c2

2
� x 2ef þ De
� �

:

(15)

Notice that the last term assumes implicitly that |u| = O(x).
Even though it is well-known16 that this quadratic approxi-
mation predicts wrong results for purely elastic, clamped
membranes, due to a slightly singular behaviour of c in the
vicinity of the needle (namely c0(y) p |y � yn|�1/2), it will be
shown that the capillary energy term removes this singularity,
and allows a purely quadratic approach to the elastic limit.

To solve eqn (15), it is interesting to use the Routh method,17

which consists in performing only incompletely the Lagrangian
to Hamiltonian transformation. More precisely, the (quadratic
expansion of the) Routh Hamiltonian is defined by

Rquad ¼ pfe0f �Lquad ef; e0f;De; y

 �

, where pf ¼ @e0fLquad ¼
c sin y is the conjugate momentum. From eqn (15), one there-
fore obtains

Rquad

sin y
¼ 1

2
c2 þ ð1� 2aÞef2 þ 2xef

� 2a
3

De �
3

4a
W

� 2
þ 3

8a
W2;

(16)

W = c cot y + (1 � 2a)ef + x. (17)

The Routh equations of motion are the usual Hamiltonian
equations, supplemented by a Lagrange equation for De, which

gives readily De ¼
3

4a
W . Via a suitable canonical change of

variables (details given in Section 5 in the ESI†), we arrive at
a linear equation for c

c00 þ c0 cot y� 1

2
þ aþ cot2 y

� 	
c ¼ 0: (18)

Note that this equation is independent of x, so c is only globally
proportional to x (see eqn (19) and (22)), as a consequence
of the quadratic approximation. Its solution, regular (and
vanishing) at y = 0, is given in terms of the associated Legendre
function,18 namely

cðyÞ ¼ cn

P1
nðcos yÞ

P1
n cos ynð Þ; (19)

n ¼ �1
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
3

4
� a

r
; (20)

where cn = c(yn) is the rotation angle of the membrane at the

needle, as sketched in Fig. 1b. Note that n 2 �1
2
þ iR if a 4 3/4,

in which case the Legendre function (termed also Mehler or
conical function) is still real-valued, and the evolution of c(y)
with a is altogether smooth. ef is obtained once c is known
(cf. Section 5 in the ESI†)

ef ¼ �
x

1� 2a
þ Pnðcos yÞ

P1
nðcos yÞ

� 3 cot y
2a

� 	
cðyÞ

1þ 3

2a

; (21)

where Pn = P0
n. ey is obtained via the last Routh equation De ¼

3

4a
W and eqn (17). It can be verified (cf. Section 5 in the ESI†)

that De(0) = ey(0) � ef(0) = 0, as required by the rotation
symmetry at the apex y = 0. The problem is solved (at the level
of the strain tensor components) if one determines cn. This is
achieved using eqn (21) and the fact that ef(yn) = 0, imposed by
the clamping of the elastic membrane. From eqn (21) and the
general properties of the Legendre functions, we obtain

cn

x
¼

1þ 3

2a

� 	

1� 2a
Pn cos ynð Þ
P1
n cos ynð Þ �

3

2a
cot yn

� �1
: (22)

This normalised bending angle at the needle can be inter-
preted as a susceptibility coefficient, namely the ratio of the
response over excitation intensity upon inflation/deflation. In
Fig. 2a are plotted the values of the ratio |cn/x| for various
values of a and yn (we remind the reader that sin(yn) = Rn/R0).
In this graph, the dashed lines correspond to negative values of
|cn/x|. First, it can be noted that all curves tend to zero for yn -

1801 which is expected, because in this limit, the bubbloon
becomes a sphere and the tilt angle at the needle is necessarily
zero. Second, for very small values of a, the bubbloon behaves
almost like a bubble with a non-elastic interface and its
response to a pressure increase x depends on yn: for yn o 901
(lens-shaped membranes), the spherical cap experiences a low-
ering of its radius for x 4 0 which corresponds to an outward
rotation at the clamping, i.e. a negative cn (dashed curves).
Reciprocally, for yn 4 901 (horseshoe-shaped membranes) and
a { 1, the bubble deflates for x 4 0 in order to increase its
curvature and accommodate the Young–Laplace law, yielding
cn 4 0 (solid curves), as can be checked for instance in the
curve for a = 0.01 in Fig. 2a. At the transition between the two
behaviours – which arises at a critical angle y?n – the linear
regime is no longer defined: the normalised bending angle

|cn/x| diverges as / yn � y?n
�� ���1, since the bracketed term in

eqn (22) vanishes linearly at the transition. For the sake of
completeness, Fig. 2b shows the reciprocal behaviour of |cn/x|
when yn is fixed and a varied.

At or near the critical angle y?nðaÞ, the quadratic approxi-
mation is no longer valid, since the predicted value of cn/x
diverges. This region is theoretically investigated in Section 3.3.
In the inset of Fig. 2b is plotted y?nðaÞ, which shows that on
approaching a = 1/2, the critical angle converges toward 1801.
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3.2 Stress tensor elements and displacement fields

All other physically relevant quantities can be computed from
c(y). Of interest are the membrane (2D) excess stress tensor
elements sex

y,f = sy,f � g in the polar (y) and the azimuthal (f)
direction. These are represented in Fig. 3 for the example of yn =
1201 (horseshoe-shaped) and various values of a after normal-
isation by gx. They are calculated from the expressions

sexy
g
¼ 2a

3
2ey þ ef
� �

þ ef � ey; (23)

sexf
g
¼ 2a

3
2ef þ ey
� �

þ ey � ef: (24)

The limit of vanishing elasticity (a = 0) gives excess stresses
sex
y,f which are non constant but whose sum is zero, as the local

mechanical equilibrium only requires sy + sf = 2g everywhere
for a = 0. For a = 0.2, the main effect of the elastic component is
to shift the typical value of the total excess stress to a negative

value. This comes from the elastic response following the
surface decrease due to the contraction of the membrane.
In the example shown in Fig. 3, the critical value of a* defined
by y*(a*) = yn (see the inset of Fig. 2b) is a* B 0.32 and crossed
when passing from a = 0.2 to a = 0.5. This crossing explains the
inversion of roles of sex

y and sex
f in the blue curves of Fig. 3 at a =

0.5: at the needle, sex
y = (4a/3 � 1)ey(yn) whereas sex

f = (2a/3 +
1)ey(yn). For a o 0.5, the prefactor of ey(yn) in the former (resp.
latter) expression is negative (resp. positive). As a result, the
decreasing behaviour of sy(y) for a* o a o 0.5 is explained by
the fact that ey(yn) is here positive because the response of the
bubbloon to a pressure is ‘‘balloon-like’’, i.e. it inflates when
x 4 0. Notice that, for a 4 3, it can be checked that sex

y (yn) 4
sex
f (yn) 4 0, a reinversion which corresponds to what is

observed in the red curves in Fig. 3.
For a c 1, the stress fields are mainly influenced by the

elastic part of the energy. The present quadratic approximation
is therefore unable to describe satisfactorily these regimes,
because for the strict elastic case, the harmonic expansion fails

at describing the singularity caused by a nonanalytical /
ffiffiffiffiffiffiffi
DP
p

behaviour of cn, described by the Föppl–von Karman theory
(see Section 7 in the ESI†).

The displacement fields (ur(y),uy(y)) can be computed from
the knowledge of ey,f(y) and eqn (ESI S7†), which can then be
used to compute the bubbloon shapes. Some results are shown
in Fig. 1c for yn = 1201 and different values of the elastocapillary
number a. The higher the elastic modulus of the membrane,
the more strongly the shape deviates from a spherical cap for a
given deformation. To quantify this asphericity in the case of a
horseshoe-shaped bubbloon, we define a susceptibility

w ¼ @Re

@Ha

� 	
b

@Ha

@Re
¼

cos yn
cos yn � 1

Ha � R0

Re � R0
(25)

Fig. 2 (a) Magnitude of the normalised bending angle at the needle
|cn/x| = |c(yn)/x|, as a function of yn (in degrees), for various values of
the elastocapillary number a. The dashed branches correspond to negative
values, while the solid branches are positive. For a o 0.5, there is a critical
angle y?n where the limiting value of cn/x is not defined, due to the
vanishing of the bracket term in (22). The limiting case a = 0.5 (eqn (27))
is shown with black dots. Notice that for a Z 0.5, the positive domain of
cn/x no longer exists. (b) |cn/x| as a function of a/a* for various values of yn.
The dashed parts of the curves correspond again to negative branches.

Inset: y?nðaÞ (in degrees). The reciprocal function defines a*(yn).

Fig. 3 Normalised excess 2D stress tensor elements [sj� g]/gx in the polar
( j = y, dot-dashed line) and azimuthal directions ( j = f, dotted line), for
different values of a for a reference shape with yn = 1201. Left ordinate
(blue curves): a A {0,0.2,0.5}. Right ordinates (red curves): a A {10,50}.
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¼
P1
n cos ynð Þ � 2a

3
cot

yn
2

� 	
1� Pn cos ynð Þð Þ

P1
n cos ynð Þ þ 2a

3
tan ynð Þ Pnð0Þ � Pn cos ynð Þð Þ

; (26)

where qHa is the variation of the vertical distance of the apex from
the base of the bubbloon, and qRe is the variation of the equatorial
radius of the bubbloon (half the width of the bubbloon), as
sketched in Fig. 1c. w is normalized by (qRe/qHa)b = cos yn/(cos yn

� 1), the value of this ratio for pure bubbles (a = 0). These
quantities can be measured easily in experiments. If the bubbloon
retains a spherical shape, w = 1, whilst 0 o w o 1 if the needle
clamping imposes an oblate deformation away from a spherical
sector. The predicted variation of w with a is shown in Fig. 4 for
different yn. This curve allows using w to measure the value of a,
provided a is neither too large nor too small (notice in eqn (26)
that a is present explicitly and implicitly, via n). This susceptibility
has the experimental asset of being simple and not requiring the
measurement of the pressure difference. For large a, w tends to
cosyn/(cosyn� 1), accounting for an isotropic inflation of the sole
upper part of the membrane, coherent with what a purely elastic
Föppl–von Karmán approach would give (see Section 7 in the
ESI†). A precise quantitative study of the parameter range a c 1
building on a perturbation of the pure elastic theory is left for
future work. Notice however that the combined limits a - N,
yn - p do not commute: at fixed a, w tends smoothly to 1 for yn -

p, namely when the system becomes a sphere attached to a single
point. The not entirely elastic membrane is insensitive (in its
response) to this singularity. If now one considers first the elastic
limit a - N, and only afterwards the limit yn = p limit, one
realises that w - 1/2, showing that the singular attachment,
which imposes ef(p) = 0 (in contrast to the homogenous, nonzero
value of the strain tensor elements for a inflated ‘‘free’’ sphere),
has a profound, non local impact on the elastic response of the
sphere, a consequence of the long range of the elastic interac-
tions. The value 1/2 corresponds roughly to an object inflating
isotropically, but only in its upper half.

3.3 Nonanalytical response close to the critical angle
yn ’ y?n

The presence of a shifted critical angle yn ’ y?n is of theoretical
and experimental interest, since it realises indirectly a measure
of the elastocapillary number a. It is therefore interesting to
theoretically characterise the response of the bubbloon to a
nonzero small excess pressure x near this critical angle. In the
light of the arguments provided in the preceding paragraphs, one

expects that the displacement field scales as
ffiffiffi
x
p

, and the actual
response magnitude is fixed by the first non-quadratic order of
the Hamiltonian. Using the so-called Hamiltonian perturbation
method detailed in Section 8 in the ESI,† we extended the
quadratic theory to calculate the correct finite value of the
amplitude cn in the vicinity of y?n. Eqn (ESI S57) of the ESI†
creates a continuous matching between the quadratic result cn p

x, far from y?n, and the cn /
ffiffiffi
x
p

saturation in the vicinity of y?n. To
illustrate the difference between the purely quadratic result and
the Hamiltonian perturbative result, we plot in Fig. 5a both results
for |cn/x|, for different values of x, and a = 0.4.

It can be seen that for x - 0 the theory accounting for both

O(x) and O
ffiffiffiffiffi
jxj

p
 �
regimes merges to the quadratic diverging

theory (in black). The proper scaling representing the vicinity of
y?n is shown in the inset of Fig. 5a, namely a neat collapse of the

curves is observed for cn

� ffiffiffi
x
p

plotted against yn � y?n
� �� ffiffiffi

x
p

. This
comes from the fact that the leading term of cn in the vicinity of

y?n is proportional to �sþ sgnðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1
p� �

where s is a scaling

variable proportional to yn � y?n
� �� ffiffiffi

x
p

for yn � y?n. This leading

term predicts a strict sign reversal of cn

� ffiffiffi
x
p

on passing y?n,
which is not observed for x = 10�2 for instance. This is due to
the fact that the next-to-leading order O(x) is also taken into
account in eqn (ESI 57†), a term which is continuous at y?n and
not completely negligible at x = 10�2.

Another striking feature must be noted: while any sign of x is
possible in the quadratic regime, i.e. the membrane can be
probed in inflation and deflation, this is not the case in the
vicinity of the avoided singularity: as explained in more detail

in the ESI† (see eqn (ESI 54)–(ESI 57)), the proper O
ffiffiffiffiffi
jxj

p
 �
regime is possible only for x having the sign of a quantity
constructed with the cubic terms of the Gibbs energy. Note that
this restriction on the sign of x cannot be shown in Fig. 5a,
because only cn/x is plotted. For the parameters of Fig. 5a, only

positive values of x are allowed on this O
ffiffiffi
x
p� �

branch, but this

sign cannot be predicted a priori for other parameters, since it
depends on the integral of eqn (ESI 54†) whose sign cannot be
ascertained on general grounds. We checked that for at 0:27

negative x values are associated with this O
ffiffiffiffiffi
jxj

p
 �
regime, and

positive for higher a. This is coherent with the a - 0 limit,

where y?n � 90
�
, and for which only negative pressure differ-

ences are allowed, since the bubble is at its maximum curva-
ture. Note that for a a 0 a tiny regime of the opposite sign for x
does exist for yn distinct but close to y?n, with a maximal

accessible value for jxj / yn � y?n
� �2

, probably too narrow to
Fig. 4 Susceptibility parameter w (eqn (26)) as a function of a, for various
(horseshoe) bubble shapes. The plotted equations are given in (26).
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be observable. In contrast, the nature of the transition near
a B 0.27 is interesting and left for a future work.

Fig. 5b shows how, at constant yn, the leading order Oð
ffiffiffi
x
p
Þ

and the next order O(x) are mixed when yn is close to y?n and x is
varied. First, it must be stressed that at precisely y?n, the curve is
not constant, because a O(x) term is provided to the expression
(ESI 57†) by the next-to-leading order in the correspondence
between c and the canonical coordinates (see eqn (ESI 19) in
the ESI†). As a result, the common behaviour of all curves at
large x is affine (what the semilog representation hides some-
what), decreasing for the dashed curves, and increasing for the
solid ones. This splitting according to the sign of yn � y?n comes
from the fact that far from the immediate vicinity of y?n, cn is p

xsgn(xPn). By the way, another experimental signature of
whether an experiment takes place at yn � y?n 4 0 or the oppo-
site, beyond the sign of cn/x, is given by the monotony of the

curves shown in Fig. 5b: a non monotonous evolution of cn

� ffiffiffi
x
p

with
ffiffiffi
x
p

would be unambiguously associated with yn � y?n o 0.

Finally, one notices that when x - 0, cn

� ffiffiffi
x
p

is returning to

zero for all cases but yn ¼ y?n. These curves are the most relevant
from the experimental point of view, since in rising bubble (or
pendant drop) experiments, yn and a are both fixed by the
initial makeup of the bubbloon, and the control parameter of
the essays being indirectly x via the volume control.

3.4 The exceptional case a = 1/2

For a = 1/2, the quadratic theory simplifies somewhat, due to a
cancellation of the quadratic terms with respect to ef. As a
result, one obtains from eqn (16) and the boundary conditions

cðyÞ=x ¼ �2 tan y
2
; (27)

ef;yðyÞ
�
x ¼ ln cos

y
2
� 3

4
tan2

y
2
þ Cf; (28)

(the minus (resp. plus) for ef (resp. ey)), where Cf is such that
ef(yn) = 0. The limit yn - 1801 is clearly singular, as a result of
contradictory constraints imposed on the bubbloon: on the one
hand, this limit re-establishes the spherical symmetry, where
ey = ef = constant. On the other hand, the clamping boundary
conditions impose ef = 0 at y- p. Since they are fundamentally

incompatible, this entails a divergence of e0f ynð Þ
.
x for yn -

1801. As a result, according to eqn (11), two cases are possible:
either c ynð Þ=x ’ u0r xnð Þ

�
x diverges as well, or De ynð Þ cot yn ’

u0y ynð Þ cot yn compensates the divergence of e0f and c(yn). The

latter case always occurs except for a = 1/2. For a t 1/2, the
behaviour of cn is bubble-like (cn/x- 0+) whereas for a\ 1/2 it
is balloon-like (cn/x - 0�). This rather complicated and con-
voluted behaviour near (a = 1/2,yn = 1801) may complicate the
analysis of experiments carried out in this parameter range.
Interestingly, a = 0.5 is particularly relevant for foam and
emulsions science. Often called the ‘‘Gibbs criterion’’, it
assigns the critical value of the elastocapillary number beyond
which the interfacial elasticity is strong enough to counter-
balance interfacial tension and prohibit Ostwald ripening.19,20

4 Conclusion

We analysed the mechanical response of thin elastocapillary
membranes framing initially spherical caps clamped on circu-
lar needles with no internal elastic stresses in their reference
state. The energy of the membranes was assumed to be the sum
of a capillary term proportional to the deformed interfacial area
and an elastic term at its Hookean limit. It is important to
mention that this additivity together with a constant interfacial
tension is a simplified physical assumption which in actual
cases could have to be refined.

We considered the linear regime where only quadratic terms
can be kept in the effective Hamiltonian of the problem and
showed that this elastocapillary quadratic theory yields bona
fide solutions, in contrast with the purely elastic capsules where

Fig. 5 (a) |cn|/x versus yn for a = 0.4. The weakly non-quadratic theory
(WNQ) is plotted for several values of x. For comparison, the quadratic
theory is plotted in black, and corresponds to the limit x - 0 of the WNQ
theory. The divergence at the maximum for x - 0 arises because

cn y?n
� �

/
ffiffiffi
x
p

. Inset: cn

� ffiffiffi
x
p

versus yn �ð Þ � y?n
� �� ffiffiffi

x
p

for a = 0.4 (same color

code). (b) For a = 0.4, evolution of cnj j
� ffiffiffi

x
p

with x. The negative cn are

dashed. Notice that the sign of x cannot be negative in this critical region.
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the inclusion of non-quadratic terms is necessary (Föppl–von
Karman theory). However, we noticed for elastocapillary num-
bers a = 3Gt/g o 1/2 the systematic presence of ‘‘exceptional’’
horseshoe-shaped reference states around which the quadratic
theory fails. Despite a completely different origin, the response
of cn (rotation angle at the needle) is also proportional to the
square root of the excess pressure, very much like the purely
elastic capsules (of all shapes). We showed how to compute the
actual response of cn in these cases. It is interesting to note that

the actual value of cn

� ffiffiffi
x
p

at the singularity involves explicitly
an integral over the lowest-order non-quadratic term, which
could provide an experimental probe of the beyond-hookean
properties of elastocapillary membranes.

Where the quadratic theory is valid, we propose a very
simple susceptibility parameter w p dHa/dRe, defined as the
ratio of the response of the base-to-apex distance Ha to that of
the equatorial radius Re, normalised by the value of the pure
bubble. For all shapes of the initial bubbloons (i.e. all values of
yn), it offers a one-to-one correspondence with the elastocapil-
lary number and gives an efficient estimation of a without the
need of complex shape or pressure measurements (provided
the underlying physical assumptions are correct). Considering
the precision of modern experiments, this verification should
be reasonably straightforward. A similarly simple approach was
suggested by Hutlzer at al.21 to measure the surface tension of
purely liquid interfaces on a bubble or drop deformed by
gravity. It should be noted that for these measurements the
near-hemispherical horseshoe geometries are the most sensi-
tive (see Fig. 4) and that particular care needs to be taken to
start with a stress-free reference state.

Finally, the elastocapillary membranes for which a - N

should have a specific analytical treatment to match correctly
the Föppl–von Karman solution of the pure elastic membrane.
We showed that the susceptibility parameter w tends to the
correct elastic limit for a - N, but a detailed study of the
mechanical equilibrium of the near elastic elastocapillary cap-
sules still needs to be carried out.
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