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Categories and Subject Descriptors
Measurement [Metrics]: Performance—we define the “per-
colation rate” to measure the performance of density-based
clustering algorithms; Theory [Methodologies]: Analyti-
cal modeling techniques and model validation—Analysis of
the mathematical phenomenon behind these algorithms: the
percolation
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1. INTRODUCTION
Many of clustering algorithms for a point cloud Xn ⊂ Rd

in the Euclidean space are based on density estimates [1].
In fact, the density function f of point generation contains
the relevant information. It is quite natural to try to extract
what Hartigan called ‘high-density clusters’ [2].

One elegant solution to do this task consists in construct-
ing a graph whose nodes are the points of the cloud and
whose edges connect nearby points. We want the connected
components of this graph to reflect the high-density clusters.

Some very classical algorithms such as (Robust) Single-
Linkage [3] or (H)DBSCAN [4, 5] work in this way. It is
particularly helpful because its connected components cor-
respond exactly to the high-density clusters of the estimator
f̂1-Nearest Neighbor.

An example of the Single-Linkage will show us the math-
ematical phenomenon at the heart of these algorithms: the
percolation [6, 7].

We define and measure the percolation rate to evaluate
the performance of such algorithms.

By way of example, we look at the Robust Single-Linkage
algorithm and calculate its percolation rate. This will show
theoretically why it is actually preferable to use K-Nearest
Neighbours rather than 1-NN. However, convergence in K
towards a perfect estimator is very slow, so this analysis
explains why in practice K = 10 is often a good trade-off.

2. MATHEMATICAL MODEL
Let Xn := {x1, . . . , xn} be a cloud of n points all plot-

ted IID according to a probability measure with density
f : Rd → R+. With the very intuitive idea that the different
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classes of the point cloud are represented by the “peaks”
of the density function f , Hartigan [2] defines the high-
density clusters of level r as the different connected compo-
nents of the level set Lr :=

{
x ∈ Rd : f(x) ≥ r

}
.

By varying the level r, we can obtain an hierarchical clus-
tering representable by a tree, the dendrogram.

Figure 1: Hierarchical clustering obtained via den-
sity level sets. © Images taken from [5].

3. SINGLE-LINKAGE AND PERCOLATION
The Single-Linkage algorithm constructs a hierarchical

clustering as follows: It starts with the trivial initial cluster-
ing (n points for n clusters) C0 =

{
C0

1 , . . . , C
0
n

}
with C0

i =
{xi}. At each step, we merge the two clusters that are clos-
est for the distance: dClust(C,C

′) = minx∈C,y∈C′ ||x− y||.
At step t, the resulting clustering Ct =

{
Ct

1, C
t
2, . . . , C

t
n−t

}
corresponds to the connected components of a geometric
graph G(Xn, rt) built on Xn [7]. Therefore, Single-Linkage
performs persistent analysis on geometric graphs G(Xn, r).
Furthermore, the connected components of G(Xn, r) match
exactly with the high-density clusters of the 1-Nearest Neigh-
bor density estimator f̂1-NN.

Figure 2: From left to right: 1) X300 2) Dendogram
of Single-Linkage 3) Geometric graph G(X300, 0.07).

See Fig. 2 for an illustration. The density is constant on
each half-rectangle (left and right), and is larger on left-hand
side. We observe on the dendrogram the first percolation
phase (on left). Suddenly, for r ≲ 0.07, plenty of clusters
merge. The associated geometric graph G(X300, 0.07) has
a giant component almost corresponding to the left high-
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density cluster. This sudden appearance of a giant con-
nected component is called percolation [6, 7].

4. PERCOLATION RATE
Hartigan [2] showed that the Single-Linkage algorithm is

a consistent estimator of high-density clusters in dimension
d = 1, but only fractionnally consistent in dimension d ≥ 2.

How can we measure this recoverable ‘fraction’? This
led us to define a percolation rate in [8]. Percolation is a
‘fast’ phenomenon. Once it appears for a critical radius rc,
the proportion p∞(r) of points within the giant component
grows quickly to 1. From a certain radius rmin, the giant
component contains ε ← 5% of the point and becomes de-
tectable. For another larger radius rmax > rmin, the giant
component encompass almost all the points (a proportion
1 − ε): the cluster is recovered. Namely, let rmin := p−1

∞ (ε)
and rmax := p−1

∞ (1 − ε). The quantity of interest – we call
the percolation rate v – is:

v :=
rmin

rmax
.

Note that v ≤ 1. This percolation rate depends on the

Figure 3: Estim. of p∞(r) in R2 on random geometric
graphs [7]. ε← 0.05 =⇒ rmin = 1.15, rmax = 1.30.

kind of objects one ‘percolates’ and the associated notion of
‘connected components’. For example, in order to increase v,
it would be a good idea to consider hypergraphs rather than
classical graphs [9]. A percolation rate v = 1 is synonymous
of an almost perfect clustering.

5. PERCOLATION RATE OF DISCRETIZED
ROBUST SINGLE-LINKAGE

To gain in robustness, a robust version of the Single-
Linkage was proposed [3], inspired by the consistency of the
K-NN density estimator [10].

The main difference is that in the K-Robust version, a
point x ∈ Xn must have at least K − 1 other points in his
r-neighbourhood to appear in the geometric graph.

Let us consider the grid Zd rather than Rd. A cell s ∈ Zd

– a site in the jargon of percolation – is activated (=open)
once it contains K points of an homogeneous Poisson point
process X ⊂ Rd. Then, we look at the clusters formed by

Figure 4: Discretization of the Robust Single-
Linkage (RSL) on Zd: we look at site-percolation.

the open sites: this is the discretized Robust Single-Linkage.
On the grid Zd, we are now able to compute the exact per-

colation rate vK of the K-discretized Robust Single-Linkage.
In fact, the probability of a site to be open is p = P [P ≥ K]
where P ∼ Poisson(λ), λ being the intensity of the Poisson
point process. We define as previously λK

min and λK
max and

vK :=
λK
min

λK
max

.

Theorem. Discretized RSL is asymptotically almost in-

stantaneous: vK = 1 − O
(

1√
K

)
. The constant for 1√

k
de-

pends on ε and the dimension d.
Since vK increases slowly towards 1 (in 1/

√
K), it is easy

to understand why the choice of K ← 10 is often a good
trade-off in practice.

Figure 5: Theoretical bound and exact value of the
discretized RSL percolation rate in dimension d = 2.
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