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Hole spin manipulation in inhomogeneous and nonseparable electric fields
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The usual models for electrical spin manipulation in semiconductor quantum dots assume that the confinement
potential is separable in the three spatial dimensions and that the ac drive field is homogeneous. However,
the electric field induced by the gates in quantum dot devices is not fully separable and displays significant
inhomogeneities. Here we address the electrical manipulation of hole spins in semiconductor heterostructures
subject to inhomogeneous vertical electric fields and/or in-plane ac electric fields. We consider Ge quantum
dots electrically confined in a Ge/GeSi quantum well as an illustration. We show that the lack of separability
between the vertical and in-plane motions gives rise to an additional spin-orbit coupling mechanism (beyond the
usual linear and cubic in momentum Rashba terms) that modulates the principal axes of the hole gyromagnetic
g matrix. This nonseparability mechanism can be of the same order of magnitude as Rashba-type interactions,
and enables spin manipulation when the magnetic field is applied in the plane of the heterostructure even if the
dot is symmetric (disk shaped). More generally, we show that Rabi oscillations in strongly patterned electric
fields harness a variety of g-factor modulations. We discuss the implications for the design, modeling, and
understanding of hole spin qubit devices.

DOI: 10.1103/PhysRevB.106.235426

I. INTRODUCTION

Hole spin qubits in semiconductor quantum dots afford
the unique advantage of an efficient electrical control [1].
This control is enabled by the strong spin-orbit interaction
(SOI) in the valence band of semiconductors, which cou-
ples the spin to the real-space motion of the hole in the
applied electric fields [2–4]. Rabi (spin rotation) frequencies
in the tens of MHz range are thus routinely achieved in hole
spin qubit devices [5–11]. This electrical spin susceptibility,
however, comes at the expense of a stronger sensitivity to
charge noise and disorder [12]. Yet considerable progress
has been made recently with the theoretical and experimental
demonstration of operational sweet spots where the hole spins
decouple from longitudinal (dephasing) noise and, therefore,
show long coherence times while remaining electrically ad-
dressable [13–16]. The versatile interactions between hole
spins and electric fields also hold promises for strong spin-
photon coupling, opening opportunities for circuit quantum
electrodynamics applications such as long-range spin-spin in-
teractions [16–19].

The early demonstrations of hole spin qubits in Si/SiO2

devices have been recently outmatched by epitaxial Ge/GeSi
heterostructures [8,20–22]. In such heterostructures, a thin Ge
quantum well hosting the holes is buried 20−50 nm below the
surface on which the gates shaping and controlling the dots are
deposited. This mitigates the impact of electrical and charge
noise from the gate stack. Moreover, the holes are lighter in
Ge than in Si, hence the characteristic confinement lengths are
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larger, which relaxes the constraints on dot size and gate pitch.
A four spin qubit processor in a Ge/GeSi heterostructure has
thus been demonstrated recently [22], and charge control has
been achieved in a 16-dot array [23].

Such qubits can be manipulated by “shaking” the dot as
a whole with an in-plane, time-dependent (ac) electric field
resonant with the Zeeman spin splitting in a finite magnetic
field B. The SOI experienced by the hole indeed translates
into an effective time-dependent magnetic field in the frame of
the moving dot, which drives spin rotations [24,25]. This SOI
involves different heavy-hole (HH)/light-hole (LH) mixing
terms depending on the symmetries of the dot. It is usually
discussed with respect to paradigmatic situations where the
motion of the hole in the xy plane of the heterostructure is
separable from the motion along the growth axis z—namely,
the potential can be split as V (x, y, z) ≡ V‖(x, y) + V⊥(z). In
highly symmetric (disk-shaped) quantum dots, the vertical
electric field gives rise to a Rashba SOI that is cubic in the
in-plane momentum components px and py [13,26,27]. How-
ever, this interaction only harnesses the small anisotropy of the
valence band of germanium. Structural asymmetries brought
by the Si/Ge interfaces [28,29] or enforced by squeezing the
dots laterally [30,31] result in a Rashba SOI that is linear in px,
py and can easily outweigh the cubic term. The deformations
of the moving dot may also modulate the gyromagnetic g
factors of the hole and make a so-called g-tensor modula-
tion resonance (g-TMR) contribution to the Rabi frequency
[6,12,32,33].

In the experiment reported in Ref. [22], the static mag-
netic field is applied in-plane to minimize dephasing noise
due to the hyperfine interactions with Ge isotopes carry-
ing nuclear spins [34–36]. However, the cubic Rashba SOI
does not allow for spin manipulation in this setup as the
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FIG. 1. The hole spin qubit device. The Ge quantum well (red) is
embedded between Ge0.8Si0.2 barriers (light blue). The difference of
potential between the central front gate (C) and the grounded side
gates (L/R/T/B) shapes a hole quantum dot in this well. Unless
otherwise specified, the Ge well is LW = 16 nm thick, the upper
barrier LB = 50 nm thick, the diameter of the C gate is d = 100
nm, and the gap with the side gates is s = 20 nm. All gates are
embedded in Al2O3, and are insulated from the heterostructure by
5 nm of this material. The substrate below the 150-nm-thick lower
barrier acts as an effective back gate, used to independently tune the
depth of the quantum dot and the vertical electric field. We assume,
as in Ref. [37], that the Ge0.8Si0.2 barriers are not fully relaxed, and
experience residual in-plane strain εxx = εyy = ε‖ = 0.26% and out-
of-plane strain εzz = ε⊥ = −0.19%. Consequently, the strains in the
Ge well are ε‖ = −0.63% and ε⊥ = +0.47%. The yellow contour
is the isodensity surface that encloses 90% of the ground-state hole
charge at VC = −40 mV and Vbg = 0 V.

resulting Rabi frequency is proportional to the vertical mag-
netic field Bz [26,27]. Here, we show that the Rabi frequency
of circular and mildly (but realistically) squeezed dots can
indeed be dominated by a sharp in-plane feature. The latter
results, in particular, from the nonseparability (NS) of the
in-plane and out-of-plane motions of the hole [V (x, y, z) �≡
V‖(x, y) + V⊥(z)]. This g-TMR-like contribution is enhanced
in Ge/GeSi heterostructures by the large depth of the well
that promotes an electrostatic tip effect from the gates and
has been overlooked up to now. It is, however, not material
specific and shall be ubiquitous in a large variety of devices.
We show, more generally, that Rabi oscillations in the highly
patterned electric fields encountered in such devices harness
a variety of g-TMR mechanisms that depend on the layout
of the gates used to drive the dot. We discuss the practical
consequences for the design, modeling, and understanding of
spin qubit devices in planar heterostructures.

II. RABI OSCILLATIONS
IN A NONSEPARABLE POTENTIAL

We highlight the relevance of NS on the device of Fig. 1.
The latter can be viewed as the elementary tile of a 2D array of

FIG. 2. (a) Map of the Rabi frequency fR as a function of
the magnetic field angles θ and ϕ defined in Fig. 1, for opposite
drives δVL = −δVR = (Vac/2) cos ωLt (VC = −40 mV, Vbg = 0 V,
Vac = 1 mV and B = 1 T). (b) Cut along the dashed gray line in
(a) at constant magnetic field B = 1 T (green) and at constant Larmor
frequency fL = ωL/(2π ) = 5 GHz (orange).

hole spin qubits in a strained Ge/GeSi heterostructure similar
to Ref. [22]. A single hole is confined under the central gate
C by the difference of potential with the grounded side gates.
The spin of the hole is electrically manipulated by opposite
ac modulations δVL = −δVR = (Vac/2) cos ωLt on the L and
R gates. These modulations aim to shake the dot as a whole
along the x axis as in the usual arrangements proposed to
leverage Rashba SOI [13,26,27,31]. We compute the static
and ac potentials by solving Poisson’s equation with a finite
volume method, then the ground-state wave functions with a
finite-difference implementation of the four-band Luttinger-
Kohn (LK) Hamiltonian [38,39] accounting for the effects of
the magnetic field on the orbital and spin degrees of freedom
(see Appendix A). Finally, we extract the spin Rabi frequency
from the dependence of the gyromagnetic g matrix of the hole
on the gate voltages [40].

In such a device, the ground state has a strong HH character
owing to the vertical confinement and to the compressive
lattice-mismatch strains in the well [37]. This is evidenced
by highly anisotropic principal g factors gz ≈ 13.25 and
|gx| = |gy| = g‖ ranging from 0.05 to 0.15. The in-plane g
factors are actually strongly dependent on the dot radius r‖ =√

〈x2〉 + 〈y2〉 (see Appendix A), being minimal in the smallest
dots (large VC 	 0, r‖ 
 15 nm) and maximal in the largest
ones (VC � 0, r‖ 
 30 nm). This is consistent with the trends
shown in Ref. [41], given that the dots are slightly smaller
here. The Rabi frequency computed at VC = −40 mV and
Vbg = 0 V is plotted as a function of the orientation of the
magnetic field B in Fig. 2. The Rabi frequencies, proportional
to the magnetic field strength B and ac drive Vac, are normal-
ized to B = 1 T and Vac = 1 mV. Note that the ac electric field
in the dot, Eac,x ≈ 1.7 µV/nm at Vac = 1 mV, is much smaller
than in typical Si/SiO2 devices [30,40] owing to the pitch of
the gates and the depth of the well. Strikingly, this map shows
the ∝ Bz ∝ sin θ background expected for cubic Rashba SOI
[13,27], yet outweighed by an extra, prominent in-plane fea-
ture (θ = 90◦). The Rabi frequency is actually maximal when
the magnetic field is along x, where it reaches fR = 1.5
MHz/mV/T. The sharp in-plane peak stands out even more
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if the Rabi frequencies are plotted at constant Larmor fre-
quency fL = ωL/2π = μB

√
g2

xB2
x + g2

yB2
y + g2

zB
2
z /h (with μB

the Bohr magneton), given the large gz/|gx,y| ratio.
This feature results from the coupling between the in-plane

and out-of-plane motions of the hole in the strongly patterned
electric field of the gates. To evidence this, we start from
the usual paradigm where the confinement and ac potentials
are separable [42]. In the absence of HH/LH mixing, the
vertical confinement gives rise to pure heavy (|nz,± 3

2 〉) and
light (|nz,± 1

2 〉) hole subbands. These are mixed by the so-
called R and S terms of the LK Hamiltonian [38] and by
the off-diagonal elements of the hole Zeeman Hamiltonian
HZ = 2μB(κB · J + qB · J3), where J is the spin 3

2 operator,
J3 ≡ (J3

x , J3
y , J3

z ), and κ , q are the isotropic and cubic Zeeman
parameters (see Appendix A) [43]. R ∝ px py, p2

x − p2
y couples

the in-plane motion of the HHs and LHs, while S ∝ γ3(px pz −
ipy pz ) couples their in-plane and out-of-plane motions (here
p is the hole momentum and the γ ’s are the Luttinger param-
eters). The effective Hamiltonian H for the in-plane motion
in the lowest HH subband nz = 0 can then be obtained
by a Schrieffer-Wolff transformation integrating out the LH
subbands. For simplicity, we discard the coupling with the
farther-lying nz > 0 LH subbands, and find:

Hhh′ ≈ − 1


LH

∑
l

〈0, h|Hc|0, l〉〈0, l|H ′
c|0, h′〉. (1)

Here h, h′ = ± 3
2 , l = ± 1

2 , 
LH is the splitting between the
ground HH and LH subbands, and Hc, H ′

c ∈ {R, S, HZ} are
the HH/LH mixing terms. Setting Hc = S, H ′

c = R (or vice
versa) yields the cubic Rashba SOI in symmetric dots [26] and
the linear Rashba SOI in squeezed dots [31]. Setting otherwise
Hc = S, H ′

c = HZ (or vice versa) couples h = + 3
2 to h′ = + 3

2
through virtual l = + 1

2 excitations, and h = − 3
2 to h′ = − 3

2
through l = − 1

2 . This gives rise to an effective interaction
Hhh′ ≈ β(κγ3/
LH)(Bx py − By px )δhh′ , where β depends on
the vertical confinement potential. This interaction has no
action on the HH spin and can not, therefore, lead to Rabi
oscillations.

The situation is, however, different when the in-plane and
vertical confinement and/or ac potentials are not separable. In
that case, the dot deforms when shaken along x or y owing to
the coupling between the in-plane and out-of-plane motions.
This gives rise to ac modulations of the HH/LH mixings by
S, hence to ac modulations of the Zeeman interaction by HZ

and to a ∝ B contribution to the Rabi frequency. A Schrieffer-
Wolff transformation including the ac drive δV (t ) = δVL(t ) −
δVR(t ) along with the S and HZ terms yields the minimal
Hamiltonian that accounts for this effect in the ground-state
HH doublet (see Appendices B and C),

H = 1
2μBσ · gB + 1

2μBδV (t )(λxBx + λyBy)σz, (2)

where σ is the vector of Pauli matrices, g ≈
diag(gx = g‖, gy = −g‖, gz ) is the gyromagnetic g matrix of
the dot, and the coupling constants λx,y ∝ γ3κ/
LH depend
on the static and ac potentials. The ∝ δV (t )Bx,yσz form of the
drive Hamiltonian is generic (irrespective of these potentials)
because S and the in-plane magnetic field in HZ only connect
h = h′ states through virtual LH excitations; yet, as hinted

above, the coupling constants λx and λy are zero if the
confinement and ac potentials are both separable. Note that
gy = −gx is actually negative in our {| 3

2 〉, | − 3
2 〉} basis set

(see Appendix A).
The ∝ δV (t ) term can be cast as Hac(t ) =

1
2Vac cos(ωLt )μBσ · g′B, where g′ = ∂g/∂ (VL − VR) with
g′

zx = λx and g′
zy = λy; this g′ matrix gives rise to Rabi

oscillations with frequency [40]:

fR = μBBVac

2hg∗ |gb × g′b| (3a)

= μBBVac

2hg∗ |g′
zxbx + g′

zyby|
√

g2
xb2

x + g2
yb2

y, (3b)

where g∗ =
√

g2
xb2

x + g2
yb2

y + g2
zb

2
z is the effective g-factor of

the dot and b = (bx, by, bz ) is the unit vector along B. The
Rabi frequency is, therefore, strongly peaked for in-plane
magnetic fields owing, again, to the large gz/|gx,y| ratio. When
the Rabi oscillations are driven with opposite modulations on
the L and R gates of Fig. 1, g′

zy = 0 so fR is maximal when
B ‖ x and zero when B ‖ y. At variance with conventional
g-TMR mechanisms also involving an interplay with the Zee-
man and LK Hamiltonians [30,44], the drive does not directly
modulate the principal g factors gx, gy and gz, but the principal
axes of the g matrix.

The NS of the electrical confinement potential V (r) in
the present device is highlighted in Figs. 3(a)–3(c) The ver-
tical electric field Ez = −∂V/∂z does, in particular, show a
significant dependence on x. The NS is promoted by the
thick top barrier where the electric field lines connecting
the gates engulf. The ac potential Vac(r) is also nonsepa-
rable, which makes an additional contribution to g′

zx (see
Appendix C); however, the Rabi frequencies calculated for the
homogeneous, average ac electric field Eac,x ≈ 1.7 µV/nm are
comparable to Fig. 2, which suggests that the Rabi oscillations
are dominated by the NS of the confinement potential in the
present device.

The Rabi frequencies fR(B ‖ x) (NS mechanism) and
fR(B ‖ z) (cubic Rashba SOI) are plotted as a function of the
front gate voltage VC and back gate voltage Vbg in Fig. 4. The
NS mechanism prevails over cubic Rashba SOI at almost any
bias. Increasingly negative VC enhances both radial and verti-
cal electric fields, which reduces the radius r‖ as well as the
vertical extension �z =

√
〈z2〉 − 〈z〉2 of the dot. Increasingly

positive Vbg mostly enhances the vertical electric field and de-
creases �z (and, to a much lesser extent than the front gate, r‖).
The maximum vertical electric field is, however, limited by the
formation of a triangular well at the top SiGe/Al2O3 interface,
which captures the hole [45] in the gate voltage space outlined
by the white areas. The strength of the cubic Rashba SOI is
proportional to small vertical electric fields but saturates then
decreases at large ones [13], and the resulting Rabi frequency
is expected to scale as r2

‖ [27]. Therefore, fR(B ‖ z) is optimal
at moderate Vbg and decreases with increasing VC < 0. On
the contrary, the NS mechanism responsible for fR(B ‖ x)
subsides with increasing Vbg > 0 (decreasing �z) but shows
little correlations with r‖. In the standard situation where the
confinement is much stronger along z than in the xy plane,
the nonseparable motion of the hole is, indeed, mostly limited
by the electrical polarizability along z, hence by the ∝ 1/�2

z
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FIG. 3. (a) Map of the electrical confinement potential V (x, z)
in the xz symmetry plane at y = 0, computed at VC = −40 mV
and Vbg = 0 V. (b), (c) Components of the electric field Ex =
−∂V (x, z)/∂x and Ez = −∂V (x, z)/∂z (close up on the dot area).
(d) Map of the ac potential Vac(x, z) in the xz plane at y = 0,
computed for a VL = −1 mV pulse on the L gate. (e), (f) Com-
ponents of the ac electric field Eac,x = −∂Vac(x, z)/∂x and Eac,z =
−∂Vac(x, z)/∂z (close-up on the dot area). The blue lines delineate
the different materials. The origin of coordinates is at the middle of
the well along the C gate symmetry axis.

gap between HH states. Moreover, the HH/LH gap 
LH ≈
(2π2h̄2γ2)/(m0L2

W) + 2(ν + 1)bvε‖ is the sum of a ∝ 1/L2
W

structural confinement energy in the well and a ∝ ε‖ strain-
induced splitting (with bv the uniaxial deformation potential
of the valence band, ν the Poisson ratio of Ge and ε‖ the
in-plane strain in the well). This gap thus also tends to increase
with vertical field (due to the decrease of the effective width of
the well Leff

W ∝ �z), which is, however, concealed here by the
large contribution of strains (ε‖ = −0.63%). Finally, the NS
becomes less relevant when the dot thins down, so fR(B ‖ x)
scales altogether as �4

z at constant magnetic field (see Ap-
pendix B). This �4

z scaling is prominent in Fig. 5(a) when
increasing Vbg > 0. When increasing VC < 0, it is superseded
by the front-gate voltage dependence of the nonseparable

FIG. 4. (a) Map of the Rabi frequency fR(B ‖ x) at constant
magnetic field B = 1 T as a function of VC and Vbg (opposite drives
on the L and R gates). (b) Same for fR(B ‖ z). Note the different
scales in (a) and (b). The hole is pulled by the electric field from the
well to the top SiGe/Al2O3 interface in the white areas.

electric field patterns within the dot. At constant Larmor
frequency, fR(B ‖ x) may also increase with increasingly

FIG. 5. (a) Correlations between the Rabi frequency fR(B ‖ x) at
constant magnetic field and the dot size �z, collected from the map
of Fig. 4(a) (opposite drives on the L and R gates, NS mechanism).
Dotted black lines connect points at the same VC, while symbol colors
label points at the same Vbg. The dashed orange line is a guide to the
eye with slope s = 4. (b) Same for fR(B ‖ x + y) versus dot size r‖
and a drive on the L gate only, collected from Fig. 7 (conventional
g-TMR plus NS mechanism). The dashed orange line is a guide to
the eye with slope s = 2.
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FIG. 6. Rabi frequency for an in-plane magnetic field (θ = 90◦)
as a function of ϕ for constant fL = 5 GHz and different VC’s (Vbg =
0 V). The hole is driven with opposite modulations δVL = −δVR =
(Vac/2) cos ωLt on the L and R gates. (b) Same for a hole driven by a
modulation δVL = Vac cos ωLt on the L gate only.

negative VC due to the concomitant decrease of gx, as shown
in Fig. 6(a).

III. RABI OSCILLATIONS WITH
AN ASYMMETRIC DRIVE

We may, alternatively, drive the hole with a single gate
(as is practically done in most experiments [8,20–22]). We
emphasize, though, that direct manipulation with the C gate
is particularly inefficient with an in-plane magnetic field for
symmetry reasons (see Appendix D) [40]. The Rabi frequency
resulting from a modulation δVL = Vac cos ωLt on the L gate
only is plotted as a function of the angle ϕ of an in-plane
magnetic field in Fig. 6(b) (at constant fL = 5 GHz). The NS
mechanism is still responsible for the Rabi oscillations when
B ‖ x (ϕ = 0). It is, however, superseded by two prominent
peaks at ϕ = ±45◦. The latter arise from direct modulations
of the principal g factors gx and gy (conventional g-TMR) by
the inhomogeneous ac field of the L gate that squeezes the dot
dynamically. This is highlighted in Figs. 3(e) and 3(f), which
shows how the ac field acts on the left side while being ineffi-
cient on the right side of the dot. When the dot is driven with
opposite modulations on the L and R gates as in the previous
section, the ac field is actually more homogeneous, but above
all too symmetric to modulate the principal g factors [40]. As
shown in Appendix C, conventional g-TMR results, at lowest
order in 1/
LH, from the interplay between the drive, R and
HZ, or R and S, in contrast with the NS mechanism (which
involves S and HZ). According to Eq. (3a), the resulting
contribution to the Rabi frequency is ∝ (g′

x+g′
y)bxby for an

in-plane magnetic field and therefore vanishes when B ‖ x or
B ‖ y. The complete dependence of the Rabi frequency on the
magnetic field orientation, and the map of fR(B ‖ x + y) as
a function of VC and Vbg are plotted in Fig. 7. At constant
magnetic field, conventional g-TMR is in fact optimal when
B makes a finite angle with the xy plane [30,44]; at constant
Larmor frequency, it is, however, optimal for B ‖ x ± y owing
to the large gz/|gx,y| ratio. The Rabi frequency shows a strong
dependence on the front gate voltage VC, which results from an
intrinsic ∝ r2

‖ scaling [see Fig. 5(b) and Appendix C]. There
is little dependence on the back gate voltage Vbg (hence on �z).

FIG. 7. (a) Map of the Rabi frequency fR as a function of the
magnetic field angles θ and ϕ defined in Fig. 1, for a drive δVL =
Vac cos ωLt on the L gate only (VC = −40 mV, Vbg = 0 V, Vac = 1 mV
and B = 1 T). (b) Cut along the dashed gray line in (a), at constant
magnetic field B = 1 T (green), and at constant Larmor frequency
fL = ωL/(2π ) = 5 GHz (orange). (c) Map of the Rabi frequency
fR(B ‖ x + y) at constant magnetic field B = 1 T as a function of VC

and Vbg (drive on the L gate only). The hole is pulled by the electric
field from the well to the top SiGe/Al2O3 interface in the white areas.

IV. DISCUSSION

We would first like to emphasize that the NS mechanism
essentially results in the present device from the NS of the
confinement potential while conventional g-TMR results from
the inhomogeneity and asymmetry of the drive. We also un-
derline that the confinement potential would be separable
if harmonic [Vconf (x, y, z) ≈ m‖ω2

‖ (x2 + y2)/2 + m⊥ω2
⊥(z −

z0)2/2 given the symmetries of the device]. Therefore, NS
implies significant anharmonicity within the dot (but anhar-
monicity does not conversely imply NS of the confinement
potential). Anharmonicity had already been identified as an-
other possible enabler of conventional g-TMR [40,44,46];
anharmonicity and/or drive inhomogeneity therefore appear
as general ingredients of g-TMR-like mechanisms.

The Rabi frequencies tend to increase with decreasing up-
per barrier thickness LB as a result, in part, of the enhancement
of the ac electric field from the closer lateral gates. At small
enough LB, however, the electric field is screened by the C
gate and the Rabi frequencies decrease again. Therefore, the
Rabi frequencies are typically optimal around LB 
 20 nm
(see Fig. 8).

The above conventional g-TMR and NS mechanisms are
quantitatively but not qualitatively affected if the dot is shifted

235426-5
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FIG. 8. (a) Rabi frequency fR(B ‖ x) at constant fL = 5 GHz
as a function of the upper barrier thickness LB for different VC’s
and Vbg = 0 V (opposite drives on L and R gates, NS mechanism).
(b) Same for fR(B ‖ x + y) (drive on the L gate only, conventional
g-TMR plus NS mechanism).

from the center of the C gate by a static positive bias on one
of the side gates. The resulting mild symmetry breaking may
lift the exact zeros of Fig. 6 at ϕ = ±90◦; |gx| and |gy| also
become different, which mostly impacts the anisotropy of the
Rabi frequency at constant fL. Moreover, g′

x and g′
y can now

be nonzero for opposite drives on the L and R gates, so the
map of Fig. 2(a) acquires a similar g-TMR background as
Fig. 7(a). Another interesting operating mode would be to
squeeze the dot laterally with positive voltages on, e.g., both
B and T gates, and drive with opposite modulations on the L
and R gates to leverage the strong linear Rashba SOI emerging
in the limit �x � �y ∼ �z [31]. It is, however, practically dif-
ficult to achieve �y/�z � 4 with the setup of Fig. 1 because
the electrical in-plane confinement is much softer than the
structural vertical confinement (even with oval-shaped gates)
and because the hole tends to be pulled out from the well to
the surface as the action of the repulsive B and T gates is
screened there by the C gate. Moreover, the emerging linear
Rashba SOI interferes destructively with the NS mechanism
when the magnetic field lies in plane, which further hinders
its exploitation.

A linear Rashba SOI may also emerge from symmetry
breaking at the Ge/GeSi interface [28,29]. This interaction is
not described by the present LK Hamiltonian and can only be
captured by atomistic methods. It increases with increasing
vertical electric field, and the resulting Rabi frequency scales
as r4

‖ . According to the estimates of Ref. [29] (however, drawn
in Ge/Si rather than Ge/GeSi superlattices), this Rabi fre-
quency shall be of the order of 4.3 MHz/mV at fL = 5 GHz
(B ‖ x) in a vertical electric field Ez = 30 kV/cm (above
which the hole is pulled out from the well) for a dot radius
r‖ = 27 nm (consistent with the wave function of Fig. 1) [47].
It is, therefore, of the same order of magnitude as the g-TMR
Rabi frequencies discussed in this paper. The actual strength
of this interaction for a disordered GeSi barrier (which may,
moreover, slightly interdiffuse with the Ge well) remains,
however, to be assessed accurately. Additional research is
hence needed to make the most of the different flavors of SOI

appearing in semiconductor heterostructure hole spin qubit
devices.

V. CONCLUSIONS

To conclude, we have discussed the manipulation of HH
spin qubits in planar semiconductor heterostructures (consid-
ering Ge/SiGe as an illustration). We have shown that for
realistic yet highly patterned electric field distributions, the
Rabi oscillations can be dominated by g-TMR-like mecha-
nisms resulting from modulations of the shape of the dot
rather than by Rashba SOI. In particular, the coupling be-
tween the in-plane and out-of-plane motions of the hole in
the nonseparable potential of the gates can give rise to sizable
Rabi frequencies. This NS mechanism, which has been over-
looked in previous studies, is prevalent for in-plane magnetic
fields and for small vertical electric fields where the hole can
best move out of plane. Since the in-plane g factors of HHs
are small, it can outweigh cubic Rashba SOI by orders of
magnitude at a given Larmor frequency. The NS mechanism
can be superseded by direct modulations of the principal g
factors when the driving electric field is sufficiently asymmet-
ric, as is usually the case when the hole is manipulated with
a single nearby gate. This collection of g-TMR mechanisms
shall therefore play a role in the experiments of Refs. [21,22].
Their fingerprints could actually be revealed in a complete
experimental map of the Rabi frequencies as a function of
the orientation of the magnetic field [6]. In general, g-TMR
provides opportunities for spin manipulation with in-plane
magnetic fields where HHs best decouple from hyperfine
noise. The NS mechanism is, in particular, purely transverse
for such in-plane magnetic fields, and thus does not enhance
the sensitivity of the hole to electrical dephasing noise. A reli-
able exploitation may, however, call for a careful engineering
of the g factors of the dots (through, e.g., strain optimization
[48]), as the constraints on magnetic-field alignment are the
more stringent as the g-factor anisotropy is large. This paper
also highlights that a comprehensive understanding of hole
spin qubits in semiconductor heterostructures calls for a de-
tailed modeling of these systems going beyond simple models
and assumptions. The design and optimization of spin qubit
devices shall therefore benefit from microscopic modeling
able to cope with their complexity.
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APPENDIX A: HAMILTONIAN AND g FACTORS
OF A HEAVY-HOLE DOUBLET

In this Appendix, we discuss the Hamiltonian of the holes
as well as the g factors of the ground-state HH doublet.

We consider a hole moving in a potential V (r) and in a
homogeneous magnetic field B. We apply hard-wall boundary
conditions outside a quantum well with thickness LW [V (r) =
+∞ if |z| � LW/2]. The motion of the hole can be solved
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with the four-band Luttinger-Kohn (LK) Hamiltonian [38,39].
The latter describes the coupled dynamics of the HH and LH
components of the wave function, mapped, respectively, onto
the the Jz = ± 3

2 and Jz = ± 1
2 components of a J = 3

2 spin. In
the {| 3

2 , 3
2 〉, | 3

2 , 1
2 〉, | 3

2 ,− 1
2 〉, | 3

2 ,− 3
2 〉} basis set, the kinetic LK

Hamiltonian reads

HLK =

⎛
⎜⎜⎝

P + Q −S R 0
−S† P − Q 0 R
R† 0 P − Q S
0 R† S† P + Q

⎞
⎟⎟⎠, (A1)

where

P = 1

2m0
γ1

(
p2

x + p2
y + p2

z

)
, (A2a)

Q = 1

2m0
γ2

(
p2

x + p2
y − 2p2

z

)
, (A2b)

R = 1

2m0

√
3
[ − γ2

(
p2

x − p2
y

) + 2iγ3 px py
]
, (A2c)

S = 1

2m0
2
√

3γ3(px − ipy)pz, (A2d)

with p the momentum and γ ’s the Luttinger parameters that
characterize the mass of the hole. Note that we assume here
holes with positive (electronlike) dispersion. At finite mag-
netic field B, the HH and LH components are also split and
mixed by the Zeeman Hamiltonian,

HZ = 2μB(κB · J + qB · J3), (A3)

where J is the spin 3
2 operator, J3 ≡ (J3

x , J3
y , J3

z ), and κ , q are
the isotropic and cubic Zeeman parameters. The J matrices
consistent with the basis set of Eq. (A1) read

Jx = 1

2

⎛
⎜⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎞
⎟⎟⎟⎠, (A4a)

Jy = i

2

⎛
⎜⎜⎜⎝

0 −√
3 0 0√

3 0 −2 0
0 2 0 −√

3
0 0

√
3 0

⎞
⎟⎟⎟⎠, (A4b)

Jz = 1

2

⎛
⎜⎜⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟⎟⎠. (A4c)

The action of the magnetic field on the orbital motion
of the hole is described by the substitution p → −ih̄∇ +
eA, where A = B × r/2 is the vector potential [49]. Finally,
biaxial strains in the well may further split the HHs and LHs
by an energy 
BP = 2(ν + 1)bvε‖, where ε‖ is the in-plane
strain, ν the Poisson ratio, and bv the uniaxial valence band
deformation potential of the host material. The total Hamilto-
nian is therefore

H0 = HLK + HZ + V (r) − (ν + 1)bvε‖J2
z , (A5)

with hard-wall boundary conditions at z = ±LW/2.

In the absence of HH/LH mixing (R = S = 0), the eigen-
states of H0 at B = 0 are pure HH (Jz = ± 3

2 ) and pure
LH (Jz = ± 1

2 ) doublets. They are separated by (at least) the
HH/LH band gap


LH = 2π2h̄2γ2

m0L2
W

+ 2(ν + 1)bvε‖, (A6)

where the first term is the splitting between the ground-state
HH and LH subbands due to the vertical confinement in
the quantum well, and the second term is the splitting due
to the biaxial strains [30]. These doublets are further split at
finite magnetic field by the Zeeman Hamiltonian HZ; each can
be characterized by an effective Hamiltonian H = 1

2μBσ · gB,
where g is the gyromagnetic g matrix of the doublet. For
HHs, g is diagonal in the {| 3

2 〉, | − 3
2 〉} basis set with elements

gx = 3q, gy = −3q and gz = 6κ + 27q/2.
The R and S terms of the LK Hamiltonian actually admix

HHs and LHs. The renormalized g matrices can be obtained by
a Schrieffer-Wolff transformation that integrates out the LH
degrees of freedom [30]; assuming for now a fully separable
potential V (x, y, z), the principal g factors of the ground-state
HH doublet read, to order 1/
LH:

gx = +3q + 6

m0
LH

[
κγ2

(〈
p2

x

〉 − 〈
p2

y

〉)
−2ηhγ3

(
γ3

〈
p2

x

〉 − γ2
〈
p2

y

〉)]
, (A7a)

gy = −3q− 6

m0
LH

[
κγ2

(〈
p2

y

〉 − 〈
p2

x

〉)
−2ηhγ3

(
γ3

〈
p2

y

〉 − γ2
〈
p2

x

〉)]
, (A7b)

gz = 6κ + 27

2
q − 2γh + δgz, (A7c)

where γh, ηh are dimensionless parameters that depend on
vertical confinement, defined in Ref. [30]. In unstrained Ge
films with hard wall boundary conditions, γh ≈ 3.56 and ηh ≈
0.20 whatever LW; in the present biaxial strains γh ≈ 2.59
and ηh ≈ 0.42 for LW = 16 nm. The expectations values of
px and py are calculated for the ground-state HH envelope
of the quantum dot at B = 0, and δgz collects corrections
of order 〈p2

x〉/(m0
LH) and 〈p2
y〉/(m0
LH) [50]. The ∝ κγ2

contributions to gx and gy result from the interplay between
the Zeeman Hamiltonian HZ and the R term of the LK Hamil-
tonian, while the ∝ ηh terms result from the action of the
magnetic field on the orbital motion of the holes through the
substitution p → −ih̄∇ + eA in R and the interplay with S.

In a circular quantum dot, 〈p2
x〉 = 〈p2

y〉, so gx = −gy 	
gz. The deviations from gx = −gy = 3q, moreover, scale as
〈p2

x,y〉 ∝ ηh/r2
‖ [41], where r‖ =

√
〈x2 + y2〉 is the radius of

the dot. They arise from the orbital motion of the hole in the
magnetic vector potential.

APPENDIX B: HEAVY-HOLE HAMILTONIAN
IN A NON-SEPARABLE CONFINEMENT POTENTIAL

In this Appendix, we discuss the effective low-energy
Hamiltonian of a HH in a heterostructure with nonseparable
confinements in the xy plane and along the growth direction
z. We show that the NS of the confinement potential gives rise
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to a specific g-TMR mechanism. The effects of the NS of the
ac electric field will be discussed in Appendix C.

We consider as in Appendix A a quantum well with thick-
ness LW subject to the model confinement potential:

Vconf (x, y, z) = 1
2 m0ω

2
0(x2 + y2)ζ (z)2. (B1)

This potential is harmonic with respect to x and y, with a
characteristic in-plane confinement energy h̄ω0 modulated by
the function ζ (z). It accounts for the main features of the
g-TMR mechanism discussed here. In particular, we do not
need to introduce an extra, static vertical electric field in the
model to leverage the SOI. We neglect in the following the
action of the magnetic vector potential on the orbital motion
of the holes (it is accounted for in the numerical simulations
but is not central to our argument).

We start the analysis from the uncoupled HH and LH states
(R = S = 0) and deal with the HH/LH mixings in perturba-
tion. The HH and LH energies and wave functions cannot,
however, be solved exactly for an arbitrary function ζ (z). In
the following, we therefore make a reasonable ansatz for these
wave functions based on a minimal modification of the solu-
tions of the separable harmonic potential problem. For that
purpose, it is convenient to introduce the harmonic lengths
�h,l =

√
h̄/(mh,l

‖ ωh,l ) of the HHs and LHs, where ωh,l/ω0 =√
m0/mh,l

‖ , and mh,l
‖ = m0/(γ1 ± γ2) are the in-plane hole

masses. The effect of the NS function ζ (z) is then accounted
for by the substitution �h,l → �h,l (z) = �h,l/

√
ζ (z) in the in-

plane harmonic oscillator wave functions,

ψh,l
n (ri, z) = 1

2nn!
4

√
1

π�2
h,l (z)

× exp

(
− r2

i

2�2
h,l (z)

)
Hn

(
ri

�h,l (z)

)
, (B2)

where ri ∈ {x, y} is an in-plane coordinate, n � 0 is a quantum
number, and Hn is the associated Hermite polynomial. We
hence write the total HH and LH wave functions as

�h,l
nx,ny,nz

(x, y, z) = ψh,l
nx

(x, z)ψh,l
ny

(y, z)Znz (z), (B3)

where

Znz (z) =
√

2

LW
sin

(
(nz + 1)π (LW/2 + z)

LW

)
. (B4)

Despite the dependence of the harmonic lengths on z, the
above wave functions remain normalized and fulfill the ex-
pected orthogonality relations. This ansatz should be a good
approximation to the exact wave functions as long as ζ (z)
does not deviate much from 1 in the well [51]. For simplicity,
we introduce the ket notation for the spinor wave functions:∣∣nx, ny, nz, Jz = ± 3

2

〉 = ∣∣�h
nx,ny,nz

〉 ⊗ ∣∣ 3
2 , Jz = ± 3

2

〉
, (B5a)∣∣nx, ny, nz, Jz = ± 1

2

〉 = ∣∣� l
nx,ny,nz

〉 ⊗ ∣∣ 3
2 , Jz = ± 1

2

〉
. (B5b)

We next add an ac electric field Fac(t ) to drive the hole
spin. We set Fac(t ) = F cos(ωdt ), where F = (Fx, Fy, 0) lies
in plane. The driving Hamiltonian is therefore Hd(t ) = −eF ·
r cos(ωdt ). We find that such a separable drive is sufficient
to achieve g-TMR in a nonseparable confinement potential

Vconf . Intuitively, the displacement of the hole under the drive
depends on how tight the lateral confinement is. The harmonic
confinement strength, ∝ m0ω

2
0 in the separable case, is here

modulated along z by the function ζ (z)2. In striking contrast
with the separable case, the dot is therefore inhomogeneously
displaced (sheared) by the drive.

Since we are only interested in the effect of the drive on the
HH ground-state subspace |0, 0, 0,± 3

2 〉, we can make use of a
Schrieffer-Wolff transformation to integrate out the couplings
with the excited states. We find that the drive induces a spin-
dependent response at third order in the perturbation series.
The third-order correction to the HH Hamiltonian is [2]

H (3)
m,m′ = − 1

2

∑
l,m′′

[
H ′

ml H
′
lm′′H ′

m′′m′

(Em′ − El )(Em′′ − El )

+ H ′
mm′′H ′

m′′lH
′
lm′

(Em − El )(Em′′ − El )

]

+ 1

2

∑
l,l ′

H ′
ml H

′
ll ′H

′
l ′m′

[
1

(Em − El )(Em − E ′
l )

+ 1

(E ′
m − El )(E ′

m − E ′
l )

]
, (B6)

where m, m′, and m′′ run over the HH ground-state subspace,
l and l ′ run over the HH and LH excitations [Eqs. (B5)], Ei

are the bare energies, and H ′ is the Hamiltonian coupling both
subspaces. In the present case, H ′ collects the off-diagonal
terms of the LK and Zeeman Hamiltonians for LH excita-
tions [Eqs. (A1) and (A3)] and the ∝ F · r drive field for
HH excitations. Hence, the relevant drive contributions to
the effective ground-state Hamiltonian, are, to order 1/
LH,
proportional to

〈m|F · r|l〉〈l|HZ|l ′〉〈l ′|S|m′〉,
〈m|F · r|l〉〈l|S|l ′〉〈l ′|HZ|m′〉. (B7)

Here the in-plane electric field F couples the HH ground
state |m〉 = |0, 0, 0,±3/2〉 to HH excited states with the same
Jz, |l〉 = |1, 0, nz,±3/2〉 (F ‖ x) or |l〉 = |0, 1, nz,±3/2〉 (F ‖
y). Note that the nonseparable wave functions, Eq. (B2), al-
low for a change of vertical quantum number nz even for
an in-plane electric field. The S term of HLK as well as the
in-plane magnetic field B‖ in HZ couple HH Jz = + 3

2 to LH
Jz = + 1

2 states, and HH Jz = − 3
2 to LH Jz = − 1

2 states; since
HHs and LHs have different effective masses, hence different
envelopes, HZ and HLK can couple different quantum numbers
nx, ny, and nz, so most generally |l ′〉 ≡ |nx, ny, n′

z,±1/2〉. Fi-
nally, given the above chain of HH/LH couplings, states |m〉
and |m′〉 must share the same Jz, so Eqs. (B7) give rise to a
∝ FB‖σz correction. After some algebra, the effective drive
Hamiltonian in the HH ground-state subspace actually reads

H eff
d = (μxFxBx + μyFyBy) cos(ωdt )σz, (B8)

with

μx = 3h̄2eγ3κμB

m0

∑
nx,ny,nz,n′

z

I1(nz, 0)


LH
nx,ny,n′

z

HH

1,0,nz

[I2(nx, ny, n′
z, 0, 0, 0)

×(
√

2I3(nx, ny, n′
z, 2, 0, nz ) − I3(nx, ny, n′

z, 0, 0, nz ))
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+I2(nx, ny, n′
z, 1, 0, nz )I3(nx, ny, n′

z, 1, 0, 0)], (B9a)

μy = 3h̄2eγ3κμB

m0

∑
nx,ny,nz,n′

z

I1(nz, 0)


LH
nx,ny,n′

z

HH

0,1,nz

[I2(nx, ny, n′
z, 0, 0, 0)

×(
√

2I3(nx, ny, n′
z, 0, 2, nz ) − I3(nx, ny, n′

z, 0, 0, nz ))

+I2(nx, ny, n′
z, 0, 1, nz )I3(nx, ny, n′

z, 0, 1, 0)], (B9b)

where we have introduced the splitting 
HH
nx,ny,nz

between the

HH ground state |0, 0, 0, Jz = ± 3
2 〉 and the HH excited states

|nx, ny, nz, Jz = ± 3
2 〉, the splitting 
LH

nx,ny,nz
between the HH

ground state and the LH states |nx, ny, nz, Jz = ± 1
2 〉, and the

integrals:

I1(n′
z, nz ) = 〈Zn′

z
|ζ (z)−1/2|Znz 〉, (B10a)

I2(n′
x, n′

y, n′
z, nx, ny, nz ) = 〈

� l
n′

x,n
′
y,n

′
z

∣∣�h
nx,ny,nz

〉
, (B10b)

I3(n′
x, n′

y, n′
z, nx, ny, nz ) = 〈

� l
n′

x,n
′
y,n

′
z

∣∣ ∂

∂z
ζ (z)1/2

∣∣�h
nx,ny,nz

〉
.

(B10c)

Equation (B8) accounts for the Rabi oscillations in a nonsep-
arable confinement potential with an in-plane magnetic field.
In particular, μx = μy = 0 if ζ (z) = 1 because the I3 integrals
are all zero. Indeed, in such a separable potential, the in-plane
electric field F and the Zeeman Hamiltonian HZ can only
couple the HH ground state |m〉 = |0, 0, 0,±3/2〉 to excited
states |l〉 and |l ′〉 with the same nz = 0, while S can only
couple |m′〉 ≡ |m〉 to states |l ′〉 with nz �= 0. Hence there are
no matching |l ′〉 and no Rabi oscillations. The fact that F can
couple nonseparable HH wave functions with different nz’s is
therefore the key condition to achieve finite Rabi frequencies.

The effective Hamiltonian of the ground-state HH doublet
can therefore be approximated as

H ≈ 1
2μBσ · gB + 1

2μBVac(λxBx + λyBy) cos(ωdt )σz, (B11)

where λx, λy relate μx and μy to the gate voltage drive Vac. We
find that the corrections to Eqs. (A7) for the g matrix resulting
from the NS of the confinement potential are usually negligi-
ble. Strikingly, the last term can be cast as a time-dependent,
off-diagonal g-matrix component leading to Eq. (3b) of the
main text for the Rabi frequency [40].

The above conclusions have been supported by numerical
calculations with separable and nonseparable test potentials.
These calculations confirm that there are no Rabi oscillations
for in-plane magnetic fields and homogeneous ac electric
fields unless the confinement potential is nonseparable.

The scaling of the Rabi frequency with the size of the dot
is pretty complex. The structure of Eq. (B9) suggests that the
Rabi frequency scales as r2

‖ if the contribution from the nz = 0
term is dominant, owing to the 
HH

1,0,0 and 
HH
0,1,0 denominators

(i.e., the Rabi oscillations are limited by the in-plane motion).
On the other hand, 
HH

1,0,nz>0 and 
HH
0,1,nz>0 are ∝ 1/L2

W due
to the strong vertical confinement. Assuming ζ (z) ≈ 1 + αz
with α 	 1/LW, I1(nz > 0, 0) and the relevant I3’s are then
essentially dipole matrix elements that scale, respectively, as
αLW and α2LW. If 
LH is ruled by strains, the nz > 0 terms
hence make a ∝ α3L4

W contribution to the sum over states. In
the nonseparable confinement potential of the device of the

TABLE I. Constraints on the shape of g′ set by the mirror planes
σyz and σxz of the device of Fig. 1, depending on whether the ac
electric field Eac = −∇Vac is even [Eac(σαβ (r)) = σαβ (Eac(r))], odd
[Eac(σαβ (r)) = −σαβ (Eac(r))], or does not show any relevant parity
under that mirror transformation. The black dots are the nonzero
matrix elements [40].

σyz σxz

Eac even

⎛
⎝• 0 0

0 • •
0 • •

⎞
⎠

⎛
⎝• 0 •

0 • 0
• 0 •

⎞
⎠

Eac odd

⎛
⎝0 • •

• 0 0
• 0 0

⎞
⎠

⎛
⎝0 • 0

• 0 •
0 • 0

⎞
⎠

Other

⎛
⎝• • •

• • •
• • •

⎞
⎠

⎛
⎝• • •

• • •
• • •

⎞
⎠

main text, we find a weak dependence of fR on r‖ but a quasi
∝ �4

z behavior [see Fig. 5(a)], which suggests (as expected)
that the Rabi frequency is more limited by the vertical than by
the in-plane motion.

APPENDIX C: g-TMR IN A NON-HOMOGENEOUS
AC ELECTRIC FIELD

In this Appendix, we discuss Rabi oscillations in a nonho-
mogeneous ac electric field.

First, the NS of the ac drive potential can also contribute to
g′

zx and g′
zy, as does the NS of the confinement potential. This

is best evidenced by Eqs. (B7). As discussed in Appendix B, a
homogeneous ac electric field F cannot couple states with dif-
ferent nz’s if the confinement potential and wave functions are
separable [ζ (z) = 1], which prevents connections between the
HH ground states |m〉 ≡ |m′〉. If the homogeneous ac electric
field is replaced by an arbitrary Vac(r, t ) = VacD(r) cos ωdt ,
then −eF · r → VacD(r) [52]; if nonseparable, D(r) can gen-
erally couple the HH ground-state |m〉 = |0, 0, 0,±3/2〉 to
HH excited states |l〉 = |nx, ny, nz,±3/2〉 with nz �= 0 even
if ζ (z) = 1, which restores the connections between |m〉 and
|m′〉 in Eqs. (B7). As discussed in the main text, the NS
mechanism, however, appears dominated in the present device
by the NS of the confinement potential.

Next, the principal g factors gx, gy, and gz of a circular
dot cannot be modulated (to first order) by a homogeneous
in-plane ac electric field (even if the static confinement po-
tential is anharmonic) [40]. This follows from symmetries
(see Tables I and II) and is consistent with the shape of the
g′ matrix for opposite L/R drives, whose diagonal is indeed
zero. The principal g factors can, however, be modulated by a
nonhomogeneous ac electric field that breaks parity, as is the
case when the dot is driven by the L gate only.

Given the structure of Eqs. (A7), this conventional g-TMR
results from the interplay between the drive, the R term of the
LK Hamiltonian, and HZ (or S for the ∝ ηh contributions from
the orbital motion in the magnetic field). Let us write the equa-
tions for the derivatives g′

x = ∂gx/∂VL and g′
y = ∂gy/∂VL.
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TABLE II. Shape of g′ imposed by symmetries for the different
drives considered in this paper: Homogeneous ac electric field Eac ‖
x, opposite drives on the L and R gates, drive on the L gate only,
and on the C gate only (Appendix D). The second and third columns
are the parities of Eac with respect to the σyz and σxz mirrors. The
last column is the shape of the g′ constructed from the intersection
of the relevant patterns of Table I. The diagonal elements describe
conventional g-TMR; g′

zx describes the NS mechanism, and g′
xz the

cubic Rashba SOI.

Parity of Eac Parity of Eac

Drive wrt σyz wrt σxz g′

Homog. Eac ‖ x Odd Even

⎛
⎝0 0 •

0 0 0
• 0 0

⎞
⎠

Opposite L/R Odd Even

⎛
⎝0 0 •

0 0 0
• 0 0

⎞
⎠

L None Even

⎛
⎝• 0 •

0 • 0
• 0 •

⎞
⎠

C Even Even

⎛
⎝• 0 0

0 • 0
0 0 •

⎞
⎠

First, the derivative of the ground-state HH wave function is

∣∣�h′
0

〉 = ∂
∣∣�h

0

〉
∂VL

=
∑
n>0

〈
�h

n

∣∣D∣∣�h
0

〉
Eh

0 − Eh
n

∣∣�h
n

〉
, (C1)

where �h
n and Eh

n are the HH wave functions and energies,
and D(r) = ∂V (r)/∂VL is the derivative of the total potential
V (r) with respect to VL. The latter may be expanded around
the origin (the center of the dot) as

D(r) = D0 + D1 · r + 1
2 r · D2r + O(r2), (C2)

where D1 is the ac electric field (per unit δVL) and D2 is the
Hessian matrix of D(r) at the origin. As discussed above, a
homogeneous electric field cannot modulate the principal g
factors of a circular dot, so D0 and D1 [and actually all odd
powers in Eq. (C2)] do not contribute to g′

x and g′
y [53]. If the

dot moves essentially in plane, the relevant matrix elements of
D2 shall scale as r2

‖ , while the energy denominators in Eq. (C1)
shall scale as 1/r2

‖ . Therefore, |�h′
0 〉 is expected to scale as r4

‖ ,
so ∂〈p2

i 〉/∂VL = 〈�h
0 |p2

i |�h′
0 〉 + c.c. scales as r2

‖ .
Hence g′

x and g′
y also scale as r2

‖ , and so does the Rabi
frequency for an in-plane magnetic field [Eq. (3a)]:

fR = μBBVac

2h
|g′

x+g′
y||bxby|. (C3)

This expression is maximal when bx = by = ±1/
√

2 [54]:

fR(B ‖ ±x ± y) = μBBVac

4h
|g′

x+g′
y|. (C4)

FIG. 9. (a) Map of the Rabi frequency fR as a function of the
magnetic field angles θ and ϕ defined in Fig. 1 for a drive δVC =
Vac cos ωLt on the C gate (VC = −40 mV, Vbg = 0 V, Vac = 1 mV,
and B = 1 T). (b) Cut along the dashed gray line in (a) at constant
magnetic field B = 1 T (green) and at constant Larmor frequency
fL = ωL/(2π ) = 5 GHz (orange).

The conventional g-TMR is, however, optimal (at constant
magnetic field) when B lies in the xz plane, where

fR = μBBVac

2h
|gzg

′
x − g′

zgx| |bxbz|√
g2

xb2
x + g2

zb
2
z

. (C5)

The above Rabi frequency peaks when the magnetic field
makes an angle θ± = π/2 ± arctan

√
gx/gz with the z axis

[see Fig. 7(a)] [30,44], where, assuming gz � gx:

f max
R ≈ μBBVac

2h
|g′

x|. (C6)

This expression is slightly larger than Eq. (C4) because |g′
x| �

|g′
y| owing to the strong contribution of the ∝ ηh terms in

the derivatives of gx,y [Eqs. (A7)]. This underlines the role
of the orbital motion in the magnetic vector potential. At
constant Larmor frequency, the fastest Rabi oscillations are,
nonetheless, achieved with an in-plane magnetic field in the
device of Fig. 1 owing to the large gz/|gx,y| ratio (g∗ = g‖ at
θ = π/2 and g∗ = √

g‖gz at θ = θ±).

APPENDIX D: MANIPULATION WITH THE
CENTRAL GATE

In this Appendix, we briefly address manipulation with the
central gate C. The Rabi frequency is plotted as a function of
the magnetic field angles θ and ϕ in Fig. 9 for a drive δVC =
Vac cos ωLt on the C gate. It is significantly smaller than for
a drive with the L gate (Fig. 7) and is, moreover, zero for in-
plane magnetic fields.

The drive on the C gate does not break any symmetry
and can, therefore, only modulate the principal g factors gx,
gy and gz (owing to the breathing of the dot ruled by D2 in
Eq. (C1), see also Table II). Defining g‖ = gx = −gy, and
g′

‖ = ∂gx/∂VC = −∂gy/∂VC, the Rabi frequency [Eq. (3a)]
reads for an arbitrary magnetic field orientation

fR = μBBVac

2h
|gzg

′
‖ − g‖g′

z|
|bzb‖|√

g2
‖b2

‖ + g2
zb

2
z

, (D1)
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where b‖ =
√

b2
x + b2

y. It is therefore independent on the polar
angle ϕ, and is expected to be zero when the magnetic field
lies in-plane or along z. Slight symmetry breakings (if the
dot is not perfectly centered below the C gate, for example)
might give rise to finite yet slow Rabi oscillations for in-plane

magnetic fields. As in Appendix C, the Rabi frequency is
maximum when θ = θ± = π/2 ± arctan

√
g‖/gz and reaches

(assuming gz � g‖)

f max
R ≈ μBBVac

2h
|g′

‖|. (D2)
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