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Holes confined in semiconductor nanostructures realize qubits where the quantum-mechanical spin is strongly
mixed with the quantum orbital angular momentum. The remarkable spin-orbit coupling allows for fast all
electrical manipulation of such qubits. We study an idealization of a CMOS device where the hole is strongly
confined in one direction (thin film geometry), while it is allowed to move more extensively along a one-
dimensional channel. Static electric bias and ac electrical driving are applied by metallic gates arranged along the
channel. In quantum devices based on materials with a bulk inversion symmetry, such as silicon or germanium,
there exist different possible spin-orbit coupling based mechanisms for qubit manipulation. One of them, the
g-tensor magnetic resonance, relies on the dependence of the effective g-factors on the electrical confinement.
In this configuration, the hole is driven by an ac field parallel to the static electric field and perpendicular to
the channel (transverse driving). Another mechanism, which we refer to here as iso-Zeeman electric dipole spin
resonance, is due to the Rashba spin-orbit coupling that leads to an effective time-dependent magnetic field
experienced by the pseudospin oscillating along the quantum channel (longitudinal driving). We compare these
two modes of operation, and we describe the conditions in which the magnitudes of the Rabi frequencies are
the largest. Different regimes can be attained by electrical tuning where the coupling to the ac electric field is
made either weak or strong. Spin-orbit coupling can also be tuned by strains, with, in particular, a transition
from a mostly heavy- to a mostly light-hole ground state for in-plane tensile strains. Although large strains
always reduce the Rabi frequency, they may increase the qubit lifetimes even faster, which calls for a careful
optimization of strains and electric fields in the devices. We also discuss the choice of channel material and
orientation. The study is relevant to the interpretation of the current experiments on the manipulation of hole
qubits and as a guide to the development of quantum devices based on silicon and germanium.

DOI: 10.1103/PhysRevB.103.045305

I. INTRODUCTION

Spins in semiconductor quantum dots are envisioned as
essential building blocks of future quantum processors and
other quantum technologies [1–5]. Their distinctive features
include the possibility to be assembled in dense arrays of
qubits, good coherence properties, and the ability to operate
at relatively high temperatures [1,6,7]. Spin qubits in het-
erostructures made of silicon and germanium are particularly
relevant because the materials can be isotopically purified. In
such environments with a negligible amount of nuclear spins,
the coherence time of the qubits is greatly enhanced, and it
is ultimately limited by the quasistationary charge noise [8].
Single and two-qubit operations of electronic spins in silicon
have actually been demonstrated [8–16] with fidelities ap-
proaching the values compatible with fault-tolerant quantum
computation.

Realizing qubits with holes instead of electrons can be
attractive since in semiconductors such as silicon and germa-
nium, the spin-orbit interaction is much stronger in the valence
than in the conduction band. This makes possible the all
electrical manipulation of hole pseudospins [17] without the
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need for micromagnets, and also the coupling of the effective
spin with other degrees of freedom such as microwave photon
modes in resonators [18]. Electrical manipulation of hole spin
qubits has been shown experimentally in silicon metal-oxide-
semiconductor (MOS) structures [19,20] and in germanium
[21,22]. Also in germanium, arrays of hole quantum dots have
been designed [23–25], and multiple qubit logic has been
demonstrated [26,27].

These advances motivate theoretical descriptions of the
hole spin manipulation in cubic diamond materials such as
silicon and germanium, which have an inversion symme-
try center in bulk. The Rashba spin-orbit interaction has
already been analyzed in nanowires [28,29] and in planar
(quasi-two-dimensional) geometries [30–33]. The hole g-
tensor modulation resonance (g-TMR) effect has also been
described in connection with one-dimensional MOS channels
on silicon-on-insulator (SOI) [34,35]. In these structures, the
time-dependent (ac) electric field that drags the hole is parallel
to the static electric field that breaks the inversion symmetry
of the dot. It modulates the g-factors of the dot and drives spin
rotations. Reference [35], in particular, includes analytical and
numerical calculations with the Luttinger-Kohn (LK) model
in an idealized setup (almost identical to the one studied here
but with a different confinement along the channel). The g-
TMR Rabi frequency was derived in a minimal basis set and
compared with the results of an exact diagonalization of the
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LK Hamiltonian in an extended basis. In Refs. [34,35], the
g-matrix formalism [36] has proven useful in the numerical
calculations of the Rabi frequency under electrical driving.

Following these works, we investigate here an alternative
way of manipulating the hole qubit with an ac electric field
perpendicular to the static electric field (and parallel to the
channel). This ac field drives the dot as a whole so that
the Rashba spin-orbit interaction gives rise to an effective
time-dependent magnetic field. This effect has been analyzed
theoretically in Refs. [37,38], and we refer to it as iso-Zeeman
electric-dipole spin resonance (IZ-EDSR [20]) because the
Zeeman splitting of the qubit remains unchanged during the
motion. We compare IZ-EDSR and g-TMR and we identify
the regimes of operation where the Rabi frequencies are the
largest. The spin-electric coupling can indeed be tuned by
the static electric field, and we show that the two effects are
maximized in different conditions. Furthermore, we study the
influence of biaxial strain that can strongly change the inter-
play between the two mechanisms with a hole that transitions
from a mostly heavy to a mostly light type at large enough
tensile strain. With the perspective of optimizing the design,
we then discuss the material dependence and the influence of
the device orientation.

The structure of the paper is as follows. In Sec. II, we cal-
culate the effective pseudospin Hamiltonian and the effective
g-factors based on perturbation of the four-band LK Hamil-
tonian. In Sec. III, we recompute the g-TMR Rabi frequency
with the g-matrix formalism, as an alternative derivation to
Ref. [35]. The latter, which is based on a power series ex-
pansion in a minimal basis set, includes some higher-order
contributions than the present work, but misses corrections
on the effective g-factors due to the vector potential that are
addressed here. We then discuss the conditions that optimize
the g-TMR. In Sec. IV, we analyze the IZ-EDSR starting
from an effective Rashba spin-orbit coupling model and we
also derive the conditions that maximize the Rabi frequency.
In Sec. V, we study the effect of strain and show how
the situation changes when the qubit has a dominant light-hole
character. In Sec. VI, we discuss the results and compare
the efficiency of g-TMR and IZ-EDSR. We also compare the
analytical and semianalytical results with numerical calcula-
tions based on the four-band LK model. Then we discuss the
material dependence and the impact of the crystallographic
orientation of the structure. We conclude in Sec. VII. In the
Appendixes we give details about the effective Hamiltoni-
ans (Appendix A), the corrections to the g-factors that arise
from the electromagnetic vector potential (Appendix B), the
derivation of the Rashba spin-orbit coupling model and the
calculation of IZ-EDSR in one dimension (Appendixes C, D,
and E), and we discuss additional figures in Appendix F.

II. EFFECTIVE ZEEMAN HAMILTONIAN AND g-TENSOR

Motivated by spin qubit realizations in CMOS devices
[19,20], we consider a hole strongly confined along z and
weakly confined in the (xy) plane. An idealization of the setup
is shown in Fig. 1. We assume a rectangular channel along x =
[110] with hard wall boundary conditions and dimensions Ly

along y = [110] and Lz � Ly along z = [001] (infinite square-
well potentials along y and z). A hole is confined along the

(a)

(b)

(c)

FIG. 1. (a) Three-dimensional perspective with a system of co-
ordinates and alignment with respect to the crystallographic axes.
The structure has the smallest length Lz along the direction of strong
confinement z = [001]. (b) Energy potential profiles along the x,
y, and z directions (see the main text). A static electric field Ey is
applied along y. ac electric fields are applied along y and x and
lead to the g-TMR and IZ-EDSR effects, respectively. (c) Color
maps of the probability densities in the (xy) and the (yz) planes
that follow from the fundamental envelope functions numerically
computed with the four-band LK model [39]. In this calculation,
Lz = 10 nm, Ly = 30 nm, the electric field is Ey = 0.5 mV/nm, and
x0 ≡ (π h̄)1/2/(m0K )1/4 = 10 nm [note that x0 is introduced here for
convenience as a mass-independent characteristic length; the actual
extent of the ground-state wave function of heavy and light holes
along x is given by Eq. (12)].

channel in a parabolic potential Vx(x) = − 1
2 Kx2 (this setup

differs slightly from Ref. [35] in order to allow for efficient
spin manipulation with an ac electric field along x). A static
electric field Ey [or equivalently a potential Vy(y) = eEyy, e >

0 being the elementary charge] is applied along y that breaks
the inversion symmetry of the channel and confines the hole
toward the left or right facets. Additionally, a time-dependent
(ac) electric field modulation is applied along y or x. Note that
we assume valence bands with negative dispersions, hence the
signs of Vx and Vy.

In this quasi-two-dimensional (quasi-2D) configuration
and in the absence of strain the ground state is expected
to have a dominant heavy-hole character with small mixing
with light-hole envelopes (see, for instance, Ref. [40] for a
summary of the properties of heavy-hole and light-hole states
in a quasi-2D setup). We first analyze heavy-hole-like ground
states, and we discuss the effects of strains and light-hole-like
ground states in Sec. V. Because the mixing between the
heavy-hole and the light-hole states is relatively small in the
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thin-film regime, we derive effective quasi-two-dimensional
(quasi-2D) Hamiltonians by perturbation of the four-band LK
model (defined in Ref. [35]). We describe the effective Hamil-
tonian method in Appendix A. This approach is different from
Ref. [35], which solved the equations in a minimal basis set
(and at higher order in perturbation) but missed some correc-
tions on the hole masses and g-factors discussed in this work.

As shown in Ref. [41], at leading order in the perturbation
theory, the heavy-hole/light-hole coupling leads to renormal-
ization of the in-plane heavy-hole effective mass to

mh
‖ = m0

γ1 + γ2 − γh,1
, (1)

where the correction γh,1 reads [41]

γh,1 = 6γ 2
3 h̄2

m0

∑
n

|〈ψh
1 |kz|ψ l

n〉|2

Eh
1 − El

n

. (2)

Here m0 is the bare electron mass, γ1, γ2, γ3 are the Luttinger
parameters characterizing the dispersion of the valence bands
[42], ψh/l

n are the envelopes of the heavy-hole/light-hole states
in the thin film, and kz = −i∂/∂z. For a heavy hole confined
in an unstrained silicon quantum well, the correction is eval-
uated to γh,1 ≈ 1.16, while in germanium γh,1 ≈ 3.56. As
a consequence, the in-plane envelope wave function of the
heavy hole satisfies the 2D Schrödinger equation with the
effective mass mh

‖. We show in Fig. 1(b) the sketches of the
envelope functions, and in Fig. 1(c) we show the color maps of
the envelopes numerically computed with the four-band k · p
(LK) model.

The heavy-hole/light-hole coupling furthermore affects the
g-tensor components. Without mixing between the heavy-
hole and light-hole states, the g-tensor of the heavy hole is
diagonal [34,35,43] in the {|J = 3/2, Jz = 3/2〉, |J = 3/2,

Jz = −3/2〉} basis in use [44]:

gh
0 = diag(0, 0,−6κ ). (3)

It was shown in Refs. [41,45] that at leading order in the
perturbation theory, the heavy-hole/light-hole coupling also
leads to a renormalization of the g-factor in the direction of
strong confinement:

gh
z = −6κ + 2γh,1. (4)

Moreover, in the perturbation theory the effective Zeeman
Hamiltonian acquires transverse components and reads (see
Appendix A)

Hh
Z =

(
1
2 gh

zμBBz
2
√

3〈R〉
�

κμB(Bx − iBy)
2
√

3〈R〉∗
�

κμB(Bx + iBy) − 1
2 gh

zμBBz

)
,

(5)
with [34,35,46]

R = h̄2

2m0

√
3
[− γ3

(
k2

x − k2
y

) + 2iγ2kxky
]
, (6)

which we average over the heavy-hole envelope function in
the (xy) plane, ka = −i∂/∂a (a = x, y), and � = Eh

1 − El
1 is

the energy gap between the topmost heavy-hole and light-hole
states. For a hole strongly confined within the infinite well of
width Lz of the thin film, this energy gap is, neglecting strains

and the influence of the split-off band,

� = 2π2γ2h̄2

m0L2
z

. (7)

Thus Eq. (5) gives the dependence of the effective g-factors
on in-plane confinement:

gh
x = gh

y = −6γ3κ h̄2

m0�

〈
k2

x − k2
y

〉
, (8a)

gh
xy = −gh

yx = 12γ2κ h̄2

m0�
〈kxky〉. (8b)

With the confinement considered here, the off-diagonal ele-
ment gxy vanishes [46].

The hole motion is separable in the (xy) plane; the eigen-
solutions along x are those of the 1D harmonic oscillator, and
we solve numerically the Schrödinger equation along y with
the method of Fourier series [35]. We introduce the scaling
function

F (α‖) =
〈
k2

y

〉
L2

y

π2
, (9)

where we take the average over the ground-state envelope
function. The parameter α‖ quantifies the relative importance
of structural and electric confinements:

α‖ = 2m‖eEyL3
y

π3h̄2 =
(

Ly

π	ey

)3

. (10)

In the above equation, m‖ can be the effective mass of a heavy
hole or a light hole (the latter case will be discussed in Sec. V).
Also 	Ey = [h̄2/(2m‖eEy)]1/3 is the characteristic length of
confinement by the electric field Ey. The asymptotics of the
scaling function (9) are

F (α‖) ≈
{

1 + c1α
2
‖ , α‖ � 1,

|a1|
3 α

2/3
‖ , α‖ 
 1,

(11)

with c1 ≈ 0.14 and a1 ≈ −2.34 is the first zero of the Airy
function Ai. Plots of F , its derivative, and comparison with the
asymptotics Eq. (11) are shown in Fig. 2. We note gh

‖ = gh
x =

gh
y, and we introduce the extent of the wave function along x,

	2
x = 2〈x2〉 = h̄

(m‖K )1/2
= 1

2
〈
k2

x

〉 , (12)

to obtain

gh
‖ = 6γ3κ h̄2

m0�

(
π2F (αh

‖ )

L2
y

− 1

2	x
2

)
. (13)

The effective in-plane g-factor hence depends on the in-plane
electric field. This can lead to spin-coherent oscillations under
ac electrical driving [34–36], as we show in the next section.

III. g-TENSOR MAGNETIC RESONANCE

The g-TMR mechanism was recently analyzed numerically
and analytically in Refs. [34,35]. The present setup, with the
ac electric field applied along y, is a paradigm of this mech-
anism. It is practically realized when the same gate partly
overlapping the channel is used to apply the static electric field
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FIG. 2. (a) The function F (α‖) = 〈k2
y 〉L2

y /π
2 and (b) its deriva-

tive F ′(α‖), where α‖ is the dimensionless parameter defined by
Eq. (10). The blue curve corresponds to the numerical calculation;
the orange and green curves correspond to the weak electric field
and the strong electric field asymptotics [Eq. (11)], respectively.

Ey and the ac modulation Eac
y . The Rabi oscillations then result

from the electrical modulation of the principal g-factors gh
‖

and gh
z in the anharmonic confinement potential Vy(y) shaped

by the structural confinement and transverse electric field Ey

[34]. Here we give an alternative analytical derivation of the
Rabi frequency based on the g-matrix formalism [34–36], and
we discuss additional corrections that come from the vector
potential terms derived in Appendix B. In this formalism, the
Rabi frequency is computed at linear order in the applied
magnetic field and in the ac gate voltage. Because the box
that contains the hole behaves as a parallel plate capacitor, we
can express the Rabi frequency in terms of the electric fields
instead of gate voltages:

fRg =
μBEac

y

∥∥(gB) × (
∂g
∂Ey

B
)∥∥

2h‖gB‖ , (14)

with h the Planck constant and Eac
y the amplitude of the

ac electric field along y: Eac
y (t ) = Eac

y sin(ωt ). The qubit is
resonantly driven at the average Larmor angular frequency
ωL = μB‖gB‖/h̄. With the g-matrix g = diag(gh

‖, gh
‖, gh

z ), the
Rabi frequency becomes

f h
Rg =

μBEac
y

∣∣ ∂gh
‖

∂Ey
gh

zB‖Bz

∣∣
2h

√
(gh

‖B‖)2 + (
gh

zBz
)2

, (15)

with B‖ =
√

B2
x + B2

y . In the thin-film regime, the Rabi fre-
quency has an approximate rotational symmetry with respect
to the magnetic field orientation in the (xy) plane [35]. On
the other hand, it depends strongly on the angle θ between
the magnetic field and the z axis [35,47], and it reaches a
maximum

f h
Rgmax =

μBBEac
y

∣∣ ∂gh
‖

∂Ey

∣∣
2h

(∣∣gh
‖
/

gh
z

∣∣ + 1
) (16)

at the angles θmax = π/2 ± arctan (
√

|gh
‖/gh

z |). Holes with

dominant heavy character fulfill gh
‖ � gh

z , and the optimal
angles are approximated as

θmax ≈ π/2 ±
√∣∣gh

‖
/

gh
z

∣∣. (17)

With Eqs. (9) and (10), the Rabi frequency of a heavy hole
develops as

f h
Rgmax ≈ 6γ3|κ|μBBeEac

y LyF ′(αh
‖ )

πh(m0/mh
‖ )�

, (18)

together with the asymptotics of the derivative:

F ′(αh
‖ ) ≈

⎧⎨
⎩

4c1mh
‖eEyL3

y

π3 h̄2 , Ly/π � 	Ey ,

2π |a1|	Ey

9Ly
, Ly/π 
 	Ey .

(19)

As a function of Ey, it reaches a maximum

f h
Rgmax ∗ ≈ 0.6γ3|κ|μBBeEac

y Ly

h(m0/mh
‖ )�

(20)

at eEy∗ ≈ 1.25π3h̄2/(mh
‖L3

y ), which is consistent with
Eqs. (42) and (43) of Ref. [35], given the different approx-
imations made here and in Ref. [35]. For a heavy-hole spin
qubit in silicon with B = 1 T, Eac

y Ly ∼ 1 mV, and � ∼ 5 meV
(Lz = 10 nm), this is evaluated as f h

Rgmax ∗ ∼ 250 MHz.
There are corrections beyond Eq. (13) that break the rota-

tional symmetry of the g-tensor in the (xy) plane (gh
x = gh

y).
In Ref. [35], such corrections arose in the perturbation series
at higher orders in the parameter Lz/Ly � 1. We derive in
Appendix B other anisotropic corrections due to the elec-
tromagnetic vector potential (whose action was neglected in
Ref. [35]). With the corrected g-factors, we compute the maxi-
mal Rabi frequencies semianalytically with Eq. (14). In Fig. 5,
we compare the semianalytical results with the fully numeri-
cal calculations based on the exact solution of the four-band
k · p model that follows from previously developed methods
[35,39]. We comment further on Fig. 5 in Sec. VI, where we
will also make a comparison with the IZ-EDSR effect that we
describe in the next section.

IV. ISO-ZEEMAN EDSR

The ac electric field may be aligned with the channel
(along x) rather than perpendicular to it (along y). As the
confinement is parabolic along x, such a modulation drags a
real-space oscillation of the dot as a whole with amplitude

δx = eEac
x

K
= eEac

x m‖	x
4

h̄2 , (21)
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FIG. 3. Inverse spin-orbit length as a function of the static elec-
tric field along y. We compare the semianalytical formula Eq. (C5)
of Appendix C (solid line) with the linear approximation Eq. (23)
(dashed line) for a silicon channel with dimensions Lz = 4 nm and
Ly = 30 nm.

where Eac
x is the amplitude of the oscillating electric field

Eac
x (t ) = Eac

x sin(ωt ). The qubit is resonantly driven so that
the angular frequency ω is set to the Larmor frequency of
the effective two-level system. Then the spin-orbit interaction
leads to an effective magnetic field that is position-dependent
[48,49] and the oscillating hole experiences an effective time-
dependent magnetic field that can lead to coherent oscillations
of the (pseudo)spin [37,38,50].

In the typical gate configuration of Refs. [19,20,34], the
effective Rashba spin-orbit coupling is mostly ruled by the
in-plane static electric field Ey because the electrical polariz-
ability is much weaker along z due to the strong confinement
(the effect of a static electric field Ez will be briefly discussed
in Sec. VI). With the method presented in Appendix A, we
derive the Rashba Hamiltonian (see details of the calculation
in Appendix C):

Hso‖ = h̄2

m‖	so‖
kxσz. (22)

The basis employed is as before, and we have used the
Pauli matrix notation in order to express the Hamiltonian in
a compact form. In the thin-film limit and for Ly/π < 	Ey ,
the inverse effective spin-orbit length given by Eq. (C5) of
Appendix C is well approximated by

	−1
so‖ ≈ 3γ2γ3eEy

(m0/m‖)2�
. (23)

In Fig. 3, we plot the inverse spin-orbit length computed with
Eq. (C5) and we compare it with the approximation Eq. (23).

The Rashba spin-orbit interaction Eq. (22) implies
the time-dependent effective Zeeman interaction [38] (see
Appendix D)

δHZ (t ) = δx

	so‖
sin(ωt )μB(gxBxσy − gyByσx ), (24)

where δx is given by Eq. (21). The time-dependent effective
magnetic field associated with Eq. (24) is perpendicular to the
external magnetic field [38] and immediately yields the Rabi
frequency

fRi‖ = δx

h	so‖
μB

√
g2

xB2
x + g2

yB2
y . (25)

The result does not depend on the character of the hole and
holds for a mostly heavy as well as a mostly light hole. The
light-hole case will be addressed in Sec. V. For the heavy
hole, the Rabi frequency Eq. (25) is approximately symmetric
with respect to the magnetic field orientation in the (xy) plane
and reaches a maximum when the magnetic field is in the
equatorial plane (Bz = 0):

f h
Ri‖max = δx

h	so‖
max

(∣∣gh
x

∣∣, ∣∣gh
y

∣∣)μBB, (26)

where gh
x and gh

y are given by Eq. (B9a).
When the electric field is so strong that 	Ey < Lz/π , but

still � < �so (�so being the spin-orbit energy gap between
the split-off bands and the heavy- and light-hole bands), the
Rashba spin-orbit coupling can be addressed in the quasi-two-
dimensional regime with strong confinement in the direction
of the electric field. We numerically find [see Fig. 7(a) of
Appendix F] that for a strong electric field, the Rabi frequency
decreases as E−1/3

y . Qualitatively, the energy separation be-
tween the confined states is now dominated by the electric
field (∝	−2

Ey
), and the matrix elements responsible for the spin-

orbit coupling are linear in the momentum in the direction
of the strong confinement (∝	−1

Ey
). Since the g-factors satu-

rate to constants for strong electric fields [see Fig. 7(b) of
Appendix F], the Rabi frequency must be asymptotically pro-
portional to 	Ey ∝ E−1/3

y according to Eq. (25).
The Rabi frequency is therefore maximum in the range

where the energies of confinement in the y and z directions
are comparable. This intermediate regime is in fact similar to
the nanowire (quasi-1D) configuration [29] where the Rashba
spin-orbit coupling remains of the form of Eq. (22) with an
inverse spin-orbit length that is expressed as

	−1
so‖ = C

eEy

�
, (27)

� being the energy splitting between the two relevant Kramers
pairs of the four-band LK model, and C is a dimensionless
factor that depends on the LK parameters. We have numer-
ically computed the maximum EDSR Rabi frequencies for
silicon and germanium. They are reached for a magnetic field
oriented in the y-direction since the component of the g-tensor
with the largest magnitude is gy in this regime [see Fig. 7(b) of
Appendix F]. For silicon with Lz = 10 nm and in the absence
of strain, the Rabi frequency tends to saturate when Ey∗ �
10 mV/mn and reaches a maximum fRi max ∗ ∼ 270 MHz at
Ey∗ ∼ 40 mV/nm. This large field is, however, practically be-
yond the operating range of CMOS qubits (and actually above
the breakdown field of bulk silicon).

In the present and previous sections, we have analyzed the
IZ-EDSR and the g-TMR as two distinct mechanisms. How-
ever, we remind the reader that IZ-EDSR can be accompanied
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by a g-TMR-like contribution if the confinement potential
along x is not strictly parabolic [20].

V. EFFECT OF BIAXIAL STRAIN, AND HOLES
WITH MAINLY LIGHT CHARACTER

The g-TMR and IZ-EDSR Rabi frequencies both depend
on the gap � that rules the mixing between heavy- and
light-hole states by lateral confinement and electric fields.
Rabi oscillations are indeed forbidden in the absence of such
mixing, as discussed in Refs. [29,35]. Biaxial strain in the
(xy) plane controls the magnitude of this gap, and it can even
switch the character of the ground state [35]. With strain, the
gap Eq. (7) indeed becomes

� →
∣∣∣∣∣2π2γ2h̄2

m0L2
z

− �BP

∣∣∣∣∣. (28)

Here �BP = −2(ν + 1)bvε‖ is the Bir-Pikus energy shift due
to biaxial strain [35,51], with ν = 2c12/c11 the biaxial Poisson
ratio, c11, c12 the elastic constants of the semiconductor, bv

the uniaxial valence-band deformation potential, and ε‖ the
in-plane strain. In the regime �BP 
 2π2γ2h̄2/(m0L2

z ), the
ground state has a dominant light-hole character. The transi-
tion from from a mostly heavy- to a mostly light-hole ground
state actually takes place at strain:

ε∗
‖ = π2γ2h̄2

(ν + 1)|bv|m0L2
z

. (29)

Note that ε∗
‖ can be very small in silicon (ε∗

‖ = 0.069% at
Lz = 10 nm), so that the transition to a light-hole ground state
may possibly result from unintentional process and cooldown
strains [34].

With the methods of Sec. II we calculate the g-tensor
corrections due to the coupling between the light-hole and
the heavy-hole states. The g-tensor of a light-hole state is
also diagonal, and, by including the dominant perturbative
corrections, its elements read

gl
x = −4κ + δgl

‖ + δgl
x, (30a)

gl
y = −4κ − δgl

‖ + δgl
y, (30b)

gl
z = −2κ − 2γl,1, (30c)

where δg‖ is defined as

δgl
‖ = 6γ3κ h̄2

m0�

(
π2F (αl

‖)

L2
y

− 1

2	x
2

)
, (31)

which is analogous to Eq. (31) but computed with the gap
Eq. (28) and the in-plane light-hole effective mass

ml
‖ = m0

γ1 − γ2 − γl,1
. (32)

The parameter γl,1 is

γl,1 = 6γ 2
3 h̄2

m0

∑
n

∣∣〈ψ l
1

∣∣kz

∣∣ψh
n

〉∣∣2

El
1 − Eh

n

, (33)

where the energy denominator includes the Bir-Pikus energy
shift. In an infinite square well potential along z, the matrix

elements of the numerator of Eq. (33) are the same as for
heavy holes [Eq. (2)].

We compute the g-TMR Rabi frequency with the g-matrix
formalism used in Sec. III. We first neglect the corrections
δgl

x and δgl
y that are due to the vector potential and are calcu-

lated in Appendix B. With the g-tensor elements given above,
we find that in strongly strained silicon and germanium, the
Rabi frequency is maximized for magnetic field components
(Bx, By, Bz ) = (± B√

2
,± B√

2
, 0) and reaches

f l
Rgmax ≈ 6γ3|κ|μBBeEac

y LyF ′(αl
‖)

πh(m0/ml
‖)�

. (34)

We also note that the IZ-EDSR frequency for the light
holes remains of the form of Eq. (25) with the corresponding
effective mass and effective g-factors [Eqs. (32) and (30)].
Then the maximal IZ-EDSR frequency is

f l
Ri‖max = δx

h	so‖
max

(∣∣gl
x

∣∣, ∣∣gl
y

∣∣)μBB. (35)

In Fig. 4, we plot the color maps of the g-TMR and IZ-
EDSR Rabi frequencies as functions of the parallel electric
field Ey and the in-plane strain. In Figs. 5 and 6, we show
the dependences of the Rabi frequencies on the electric field
and strain, respectively, and we compare the semianalytical
formulas (that include the anisotropic corrections δgx and δgy)
with the numerical calculations. We discuss these figures in
the next section.

VI. DISCUSSION

A. Comparison between g-TMR and IZ-EDSR

The similarities between the static electric field configu-
rations of Secs. III and IV allow for comparison between
g-tensor magnetic resonance and iso-Zeeman electric dipole
spin resonance effects. In the regime 	Ey 
 Ly/π , the ratio of
the Rabi frequencies that are linear in the static electric field
is (neglecting the corrections of Appendix B)

fRgmax

fRi‖max
≈ |κ|

γ2|g‖|
m0

m‖

Eac
y

Eac
x

(
Ly

π	x

)4

. (36)

With this it is clear that a key factor in the relative efficiency
of g-TMR and IZ-EDSR manipulations is the ratio between
the characteristic lengths of confinement along x and y. If
	x 
 Ly/π (with Eac

x and Eac
y of comparable magnitudes), then

IZ-EDSR can be faster than g-TMR oscillations, as illustrated
in Fig. 8 of Appendix F. For heavy holes, however, it turns
out that gh

‖ is quite small, which limits the IZ-EDSR Rabi
frequencies (gh

‖ ∝ L2
z so that f h

Ri‖max ∝ L4
z when Lz → 0). On

the contrary, we expect much more efficient IZ-EDSR manip-
ulation for light holes (see Figs. 5 and 6).

Alternatively, the static electric field may be applied along
z in order to lift this limitation on the g-factor of heavy holes;
however, polarizing the hole envelope in this direction is more
challenging because of the strong confinement. In fact, the
IZ-EDSR Rabi frequency f h

Ri⊥max of heavy holes for a static
electric field Ez perpendicular to the thin film remains of
the same (fourth) order with respect to Lz/ min(Ly, π	Ey ) �
1 (see Appendix E). For Ly/π < 	Ey we find [31–33] that
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FIG. 4. Maps of the Rabi frequency for the g-TMR effect [maps (a) and (b)] and the IZ-EDSR effect [maps (c) and (d)] as a function of
the lateral electric field Ey and biaxial strain ε‖. The maps are obtained from a numerical solution of the four-band k · p model [39] in silicon.
The lengths that characterize the lateral confinement are x0 ≡ (π h̄)1/2/(m0K )1/4 = 10 nm and Ly = 30 nm. The height of the semiconductor
channel is Lz = 4 nm for maps (a) and (c), and it is Lz = 10 nm for maps (b) and (d). The dashed black lines outline the constant strains and
electric field cuts shown in Figs. 5 and 6. The red dashed lines mark the critical strain ε∗

‖ that separates the mostly heavy-hole from the mostly
light-hole ground state.

f h
Ri‖max/ f h

Ri⊥max ∼ (γ1/γ2)(Ey/Ez ) when γ2 � γ1. In silicon,
the IZ-EDSR shall therefore be much more efficient when
the static electric field is parallel to the thin film (along y)
than when it is perpendicular (along z). We have numerically
verified (see Fig. 10 of Appendix F) that it is indeed the case
when Ey ∼ Ez. In germanium, however, the two configura-
tions show Rabi frequencies with comparable magnitudes for
electric fields in the few mV/nm range. For light holes, on
the other hand, f l

Ri‖max/ f l
Ri⊥max ∼ (γ1/γ3)(Ey/Ez )(〈k2

y 〉L2
z )−1

when the gap � including strain is of the order of the con-
finement gap at zero strain (ε‖ � 2ε∗

‖). This is typically large
since 〈k2

y 〉L2
z � 1. Applying the static electric field along

y, as done in this study, is therefore always much more
efficient.

Figure 4 represents the color maps of the numerically
computed Rabi frequencies as a function of the static electric
field and biaxial strain. Figures 4(a) and 4(b) show the g-TMR
Rabi frequency for Lz = 4 and 10 nm, while Figs. 4(c) and
4(d) show the IZ-EDSR Rabi frequency for Lz = 4 and 10 nm.
The g-TMR and IZ-EDSR Rabi frequencies vanish along the
line Ey = 0. Breaking the inversion symmetry of the channel
with a static electric field is indeed a prerequisite for both
mechanisms [29,34,35].

There is also a quasihorizontal dip visible in Fig. 4, near
(but not at) the strain ε∗

‖ where the heavy- and light-hole
ground states anticross (� = 0). This feature is also clearly
visible in Fig. 6, and it has already been identified in Ref. [35].
As it takes place near � = 0, it is not captured by the present
semianalytical models. It actually arises when the qubit states
and the excited states that are coupled by the static and ac
electric fields share very similar Bloch functions. Indeed, the
Zeeman Hamiltonian cannot couple such states (because their
envelopes are, by design, orthogonal), so that the real-space
motion induced by the ac electric field does not come along
with pseudospin rotations. In general, this condition is met
near � = 0, because the qubit states rapidly switch from
almost pure heavy- to almost pure light-hole states, and there-
fore they cross the composition of the relevant excited states.

In Fig. 5, we show the Rabi frequencies computed semian-
alytically with Eqs. (14), (B9a), (30), and (26) as a function
of the static electric field Ey, and we compare them with
the numerical calculations based on the four-band LK model.
Figures 5(a) and 5(b) are computed at zero strain, whereas
Figs. 5(c) and 5(d) are computed at ε‖ = 0.7%, where the
ground state is mostly light-hole. In the thin-film regime,
Lz � Ly, and for small electric fields such that 	Ey > Ly/π

we note a good correspondence between the analytics and
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FIG. 5. Comparison of the maximal g-TMR and the IZ-EDSR Rabi frequencies as given by Eq. (14), the g-factors Eqs. (B9), (B13), and
(25) (dashed lines), with numerical calculations based on the four-band k · p model [39] (full lines). The material is silicon and the parameters
are ε‖ = 0% for (a) and (b), ε‖ = 0.7% for (c) and (d), Lz = 4 nm for (a) and (c), Lz = 10 nm for (b) and (d), B = 1 T, Eac

x/y = (1/30) mV/nm,
Ly = 30 nm, and x0 = 10 nm.

the numerical calculations for both g-TMR and IZ-EDSR.
We also correctly predict the electric field optimum for the
g-TMR Rabi frequency at 	Ey ∼ Ly/π . For a stronger electric
field such that 	Ey < Ly/π , the analytical expressions can
significantly differ from the numerics. We attribute these dis-
crepancies to deviations from the applicability of the lowest
order of the perturbation theory, because the thin-film condi-
tion may not be strictly fulfilled.

We note that the g-TMR Rabi frequency shows a maxi-
mum at rather weak electric field while the IZ-EDSR Rabi
frequency increases continuously over a wide range of electric
field (see Fig. 3). The g-TMR Rabi frequency indeed de-
creases rapidly once the hole is squeezed by the static electric
field Ey and cannot be dragged efficiently anymore by the ac
electric field along y. On the contrary, the motion along x
is little hampered, and the direct Rashba spin-orbit coupling
responsible for the IZ-EDSR oscillations is enhanced over a
wide range of Ey. For heavy holes in silicon, however, g-TMR
remains more efficient than IZ-EDSR over the practical range
of fields reached at low inversion density in CMOS devices
typical of Refs. [19,20]. g-TMR shows, nonetheless, a more
complex dependence on the magnetic field orientation [the
optimal orientation showing, in particular, dot-to-dot vari-
ability, as suggested by Eq. (17)]. For light holes in silicon,
IZ-EDSR can be more efficient than g-TMR at moderate
electric fields. IZ-EDSR requires, on the other hand, at least
two gates (for confinement and manipulation), whereas g-
TMR can be achieved with one single gate both confining

the hole and shaking the dot [34]. As discussed above, an-
other way to promote IZ-EDSR over g-TMR (even for heavy
holes) is to make the potential softer along x (	x 
 Ly/π )
in order to enhance the motion of the dot, at the possible
expense of an increased sensitivity to disorder along the
channel.

Figure 6 shows the Rabi frequencies as a function of strain
at a fixed electric field. The g-TMR and IZ-EDSR Rabi fre-
quencies show a complex dependence on strain near ε‖ = ε∗

‖ ,
characterized by a broad peak (due to the enhanced heavy- and
light-hole mixing) split by the dip discussed above. The Rabi
frequencies do decrease at large positive (tensile) and negative
(compressive) strains as the heavy- and light-hole mixing gets
inhibited by the increasing |�|.

The spin-orbit coupling strength in the devices can, there-
fore, be tuned by strains and then further modulated by the
static electric field. This not only controls the Rabi frequency,
but also the relaxation and coherence times of the qubits [52].
Compressive strains, for example (as encountered in epitaxial
germanium layers [23–27]), stabilize an almost pure heavy
hole, which can increase T1 and T2 even faster than it decreases
the Rabi frequency ( fR being proportional to a dipole matrix
element, and the electrical contributions to 1/T1 and 1/T ∗

2 be-
ing proportional to a dipole matrix element squared, except for
quasistatic 1/ f noise [53]). This might also ease the manage-
ment and reduce variability in exchange interactions. Strains
and electric fields must, therefore, be carefully engineered in
order to optimize the overall performances of the devices.
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FIG. 6. g-TMR [(a) and (b)] and IZ-EDSR [(c) and (d)] Rabi frequency dependence on biaxial strain. We compare the numerics [39]
(full line with symbols) with the semianalytical formulas (dashed lines). The dashed vertical lines in magenta mark the critical strain ε∗

‖ that
separates the heavy- and light-hole ground states. The material is silicon and the parameters are Lz = 4 nm for (a) and (c), Lz = 10 nm for
(b) and (d), B = 1 T, Eac

x/y = (1/30) mV/nm, Ly = 30 nm, and x0 = 10 nm.

B. Dependence on material and channel orientation

The Rabi frequencies depend on the host material through
the Luttinger parameters γ1, γ2, γ3 and through the Zeeman
parameter κ . To compare channel materials and orientations,
we have extracted the material-dependent prefactors of the g-
TMR and IZ-EDSR Rabi frequencies of heavy (h) and light
(l) holes. In the small electric field regime 	Ey > Ly/π , the
maximal Rabi frequencies are proportional to

ζ
g-TMR,h
[110] = γ3 max(|κ − 2γ3ηh,1|, |κ − 2γ2ηh,1|)

γ2(γ1 + γ2 − γh,1)2
, (37a)

ζ IZ-EDSR,h
[110] = γ 2

3 max(|κ − 2γ3ηh,1|, |κ − 2γ2ηh,1|)
γ2(γ1 + γ2 − γh,1)2

, (37b)

ζ
g-TMR,l
[110] = γ3|κ + (γ3 − γ2)ηl,1|

(γ1 − γ2 − γl,1)2
, (37c)

ζ IZ-EDSR,l
[110] = γ2γ3|κ|

(γ1 − γ2 − γl,1)2
. (37d)

The g-factor corrections calculated in Appendix B (η terms)
are included in these prefactors. The ζ[110]’s of heavy holes
are computed at zero strain, where the gap � is set by vertical
confinement. Those of light holes are computed at the same
� that we assume is controlled by strains. The values of the
ζ[110]’s in silicon and germanium are collected in Table I.
We emphasize that the ζ[110]’s are intended for a comparison
between different materials for a given mechanism, but not for
a comparison between different mechanisms.

In Table I, we note clear differences between silicon and
germanium. As a main trend, electrically driving a heavy hole
is expected to be more efficient in silicon than in germanium
(for a given dot size). Indeed, the Rabi frequency at given
static electric and magnetic fields is inversely proportional to
a Luttinger parameter (IZ-EDSR) or to a Luttinger parameter
squared (g-TMR), because heavier particles respond stronger
to the electric field Ey [35]. Also, heavy holes benefit from
the strong anisotropy of the valence band of silicon (large
γ3/γ2 ratio). As a consequence of this anisotropy, the cou-
pling between heavy and light holes by lateral confinement
(driven by γ3) is strong with respect to their splitting �

(∝γ2), which enhances the heavy- and light-hole mixing in the
qubit states and low-lying excitations, a prerequisite for Rabi
oscillations [29,35]. The advantage of silicon is even greater if
the Rabi frequencies are compared at the same Zeeman split-
ting rather than the same magnetic field, as in a first approxi-
mation the ζ[110]’s must be rescaled by a factor �1/κ . On the
contrary, driving a light hole is expected to be more efficient
in germanium, especially for IZ-EDSR, which is almost two
orders of magnitude stronger in germanium than in silicon.
As a matter of fact, the gap � of light-hole qubits is primarily
controlled by strains, so that silicon loses the benefits of its
valence-band anisotropy (γ2 disappears from the denominator
of the ζ[110]’s). Therefore, dealing with light holes in germa-
nium may be interesting, but it will require complex strain
engineering. We would like, finally, to emphasize that the dots
may be made larger in germanium than in silicon thanks to the

045305-9



MICHAL, VENITUCCI, AND NIQUET PHYSICAL REVIEW B 103, 045305 (2021)

TABLE I. Rabi frequency dependence on the materials and com-
parison between silicon and germanium. The scaling factors ζ[110]

are those of Eqs. (37). We evaluate the heavy-hole parameter γh,1 as
well as ζ

g-TMR,h
[110] and ζ IZ-EDSR,h

[110] at zero strain. For the light-hole case,
we take the large strain limit such that the energy gap between the
light-hole and the heavy-hole states is dominated by the strain instead
of the structural confinement, and the parameters γl,1 � γ1 − γ2

and ηl,1 ≈ 1. We emphasize that the numbers here illustrate the
differences between silicon and germanium through their material-
dependent parameters; however, they are not meant for a comparison
between g-TMR and IZ-EDSR, nor for a comparison between the
heavy-hole and light-hole cases. The Luttinger and strain parameters
are borrowed from Ref. [35].

Material parameters Si Ge

γ1 4.29 13.38
γ2 0.34 4.24
γ3 1.45 5.69
κ −0.42 3.41
γh,1 1.16 3.56
ηh,1 0.08 0.20
bv (eV) −2.10 −2.86
ν = 2c12/c11 0.77 0.73

ζ
g-TMR,h
[110] 0.23 0.012

ζ IZ-EDSR,h
[110] 0.34 0.067

ζ
g-TMR,l
[110] 0.064 0.33

ζ IZ-EDSR,l
[110] 0.013 0.98

lighter hole masses (reduced sensitivity to disorder), which
can enhance the Rabi frequency of both heavy- and light-hole
qubits. In particular, germanium hole qubits systematically
perform better than silicon qubits if compared at the same
vertical and lateral confinement energies [i.e., the same γ2/L2

z ,
(γ1 ± γ2 − γh/l,1)/L2

y and (γ1 ± γ2 − γh/l,1)/	x
2, which sup-

presses the denominators of Eqs. (37)].
We also highlight the importance of the choice of the de-

vice orientation that is expressed through the two parameters
γ2 and γ3. Indeed, if the orientation of the channel (x axis)
is changed from [110] to [100] (and the y axis from [−110]
to [010]), then γ2 and γ3 must be exchanged in the term R
[Eq. (6)]:

R → h̄2

2m0

√
3
[− γ2

(
k2

x − k2
y

) + 2iγ3kxky
]
. (38)

With this transformation, the material-dependent prefactors
become

ζ
g-TMR,h
[100] = max

(|γ2(κ − 2γ3ηh,1)|, ∣∣γ2κ − 2γ 2
3 ηh,1

∣∣)
γ2(γ1 + γ2 − γh,1)2

,

(39a)

ζ IZ-EDSR,h
[100] = γ3 max

(|γ2(κ − 2γ3ηh,1)|, ∣∣γ2κ − 2γ 2
3 ηh,1

∣∣)
γ2(γ1 + γ2 − γh,1)2

,

(39b)

ζ
g-TMR,l
[100] = |γ2κ + γ3(γ2 − γ3)ηl,1|

(γ1 − γ2 − γl,1)2
, (39c)

ζ IZ-EDSR,l
[100] = γ2γ3|κ|

(γ1 − γ2 − γl,1)2
. (39d)

TABLE II. Rabi frequency material-dependent prefactors and
comparison between silicon and germanium for a channel oriented
along [100].

Material parameters Si Ge

ζ
g-TMR,h
[100] 0.12 0.0058

ζ IZ-EDSR,h
[100] 0.17 0.033

ζ
g-TMR,l
[100] 0.11 0.074

ζ IZ-EDSR,l
[100] 0.013 0.98

We give in Table II the values of the ζ[100]’s for silicon and
germanium. For a heavy hole, the ζ[100]’s are smaller than
the ζ[110]’s for both g-TMR and IZ-EDSR, so that the [110]
orientation is optimal in this case. This largely results for
silicon from the loss of the ∼γ3/γ2 enhancement factor related
to the valence-band anisotropy [35] (both the gap � and the
coupling between heavy and light holes being controlled by
γ2 in the [100] orientation). For the g-TMR of a light hole,
ζ

g-TMR,l
[100] > ζ

g-TMR,l
[110] for silicon and ζ

g-TMR,l
[100] < ζ

g-TMR,l
[110] for ger-

manium. For the IZ-EDSR of a light hole, the prefactors are
essentially the same for the two orientations.

Therefore, regarding silicon in the present configuration,
the choice of the [110] orientation is optimal, at least for a
heavy hole.

VII. CONCLUSION

We have examined the electrical manipulation of hole
qubits in a 1D channel that resemble the MOS setup of
Refs. [19,20] where the structural confinement is strong in
one direction (z) and the most relevant static electric field is
perpendicular to that direction (y). This configuration allows
for stronger electrical polarizability than a static electric field
along z. We have compared two mechanisms of electrical
manipulation—the g-tensor magnetic resonance (g-TMR, ac
electric field also parallel to y), and the iso-Zeeman electric
dipole spin resonance (IZ-EDSR, ac electric field along the
channel direction x)—and we have evaluated their efficiencies
as given by the magnitudes of the Rabi frequencies. In the
regime of weak mixing between the heavy-hole and the light-
hole states, we thoroughly analyze the spin-orbit interactions
responsible for the two effects. In particular, we derive the
effective Rashba Hamiltonian, Eq. (22), that leads to the IZ-
EDSR effect with Rabi frequency given by Eq. (25). The two
mechanisms can be controlled by the electric bias and by the
strains, as highlighted in Fig. 4. The g-TMR Rabi frequency is
maximal at only moderate electric fields [Eq. (20)], while IZ-
EDSR is optimal at stronger electric fields such that the energy
of electrical confinement (along y) is comparable to the energy
of the strong structural confinement (along z). For such strong
electric fields, IZ-EDSR can be the most efficient mechanism
as shown in Fig. 5. In addition, the IZ-EDSR Rabi frequency
strongly depends on the extent of the envelope function along
the driving ac field (x), as shown by Eq. (36). Furthermore,
we have discussed the effect of strains, which can notably
switch the dominant character of the hole (Sec. V). Moving
from a heavy-hole to a light-hole qubit actually strengthens
the IZ-EDSR due to the dependence of the Rabi frequency on
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the in-plane g-factors in Eq. (26). The behavior of the Rabi
frequencies with biaxial strain is illustrated in Fig. 6, which
highlights particular values of ε‖ near the heavy- to light-hole
transition where the frequencies essentially vanish. The Rabi
frequencies also decrease at large compressive and tensile
strains because of the reduced heavy- and light-hole mixing;
this may, however, strongly increase lifetimes and reduce vari-
ability. Strains and electric fields must, therefore, be carefully
engineered in order to optimize the overall performances of
the qubits. Then we have discussed the choice of the host
material, and we have compared, in particular, electrical ma-
nipulation in silicon and in germanium. According to Table I,
both g-TMR and IZ-EDSR are more efficient in silicon than
in germanium quantum dots with the same size, in the weak
electric field regime and in the absence of strains, due to
the larger hole effective masses. However, when the qubit
acquires a dominant light-hole character under tensile strain,
germanium can be more efficient than silicon, especially in the
IZ-EDSR configuration. Moreover, germanium systematically
outperforms silicon if the dots are compared at different sizes
but the same vertical and lateral confinement energies. Tables I
and II also show the influence of the crystallographic orienta-
tion of the channel. We find that for heavy holes the [110]
orientation is optimal as it takes the best advantage of the
anisotropy of the valence band of silicon. These conclusions
provide guidelines for the design and optimization of hole
spin-orbit qubits embedded in one-dimensional channels.
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APPENDIX A: EFFECTIVE HAMILTONIANS

We compute the Hamiltonians (5) and (22) perturba-
tively with the effective Hamiltonian method as presented in
Ref. [54], for instance. The approach is justified when the
eigenstates of the unperturbed Hamiltonian can be sorted into
two groups, α and β, with well-separated energies. The effec-
tive Hamiltonian then describes the dynamics of the states of
group α and gathers corrections due to the coupling with the
states of group β. The second-order term of the perturbation
series for the effective Hamiltonian is

〈iα|H (2)
eff,α| jα〉 = 1

2

∑
k,β =α

〈iα|H ′|kβ〉〈kβ|H ′| jα〉

×
(

1

Eα
i − Eβ

k

+ 1

Eα
j − Eβ

k

)
, (A1)

where H ′ represents the coupling between the states of α and
those of β. Here, α are the qubit states (the topmost Kramers
pair at zero magnetic field) and β collects all the excited states.

Here we compute the effective Hamiltonians for qubit
states that can be of heavy- or light-hole type. We take
as a starting point the four-band LK Hamiltonian defined
in Ref. [35], and we neglect the split-off states because
we assume that the spin-orbit gap is always larger than

the gap due to the confinement [Eq. (7)]. With the nota-
tion of, e.g., Ref. [35], the corrections at leading order in
Lz/ min(	x, Ly/π, 	Ey ) appear at second order in the term

S =
√

3h̄2

m0
γ3(kx − iky)kz, (A2)

and they renormalize the effective mass Eq. (1) and the trans-
verse g-factor Eq. (4) (Ref. [41]). Furthermore, the Hamilto-
nian (5) includes the contributions from the term R and from
the off-diagonal elements of the Zeeman Hamiltonian (D3)
in Ref. [35]. The corrections to the g-factors that come from
the electromagnetic vector potential (Appendix B) include
the cross terms of R and S. The Rashba spin-orbit Hamil-
tonian (22) derived in Appendix C collects the cross terms
given by the first and the second parts of R. The spin-orbit
coupling of Appendix E includes the cross terms of R and S.

APPENDIX B: CORRECTIONS TO THE g-TENSOR EQ. (8a)
DUE TO THE ELECTROMAGNETIC VECTOR POTENTIAL

We calculate a correction to Eq. (8a) that arises from the
vector potential in the perturbation theory. In the thin-film
regime, the canonical momenta couple the in-plane compo-
nents of the magnetic field with the orbit of the hole [55]:

k̃x = kx + eBy

h̄
z, (B1a)

k̃y = ky − eBx

h̄
z. (B1b)

These terms are also known to give rise to an anisotropy in the
in-plane effective g-factor for quasi-2D electrons in the pres-
ence of Dresselhaus spin-orbit coupling; see Refs. [56–59].
The effective magnetic Hamiltonian collects the cross terms
of R and S at second order in the coupling between the heavy-
hole and the light-hole states:

H (2)
eff,h =

∑
n

〈
ψh

1

∣∣R∣∣ψ l
n

〉〈
ψ l

n

∣∣S∣∣ψh
1

〉 − 〈
ψh

1

∣∣S∣∣ψ l
n

〉〈
ψ l

n

∣∣R∣∣ψh
1

〉
Eh

1 − El
n

σ+

+ H.c. (B2)

In the above effective Hamiltonian, the vector potential
has no influence on the term S at first order in the magnetic
field because of the cancellation of the symmetrized prod-
uct: 〈ψh

1 |zkz + kzz|ψh
1 〉 = 0. However, it enters in the term R

through the products

k̃2
x = k2

x + 2eBy

h̄
zkx + O

(
B2

y

)
, (B3a)

k̃2
y = k2

y − 2eBx

h̄
zky + O

(
B2

x

)
, (B3b)

k̃x k̃y = kxky + eBy

h̄
zky − eBx

h̄
zkx + O(BxBy). (B3c)

Collecting the terms that are linear in the magnetic field, and
considering as before that 〈kxky〉 = 0, we obtain the following
correction to the Zeeman Hamiltonian of heavy holes:

δHh
Z = 6γ3ηh,1h̄2μB

m0�

[(
γ2

〈
k2

x

〉 − γ3
〈
k2

y

〉)
Bxσx

+(
γ3

〈
k2

x

〉 − γ2
〈
k2

y

〉)
Byσy

]
, (B4)
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where � is given by Eq. (28). We define the dimensionless
parameter

ηh,1 = �
∑
n>1

2 Im
(〈
ψh

1

∣∣z∣∣ψ l
n

〉〈
ψ l

n

∣∣kz

∣∣ψh
1

〉)
Eh

1 − El
n

, (B5)

where, for n > 1,

Im
(〈
ψh

1

∣∣z∣∣ψ l
n

〉〈
ψ l

n

∣∣kz

∣∣ψh
1

〉) = 8n2[(−1)n+1 − 1]2

π2(n2 − 1)3
, (B6)

and the energy separations between the states of the dot are

Eh
1 − El

n = −�BP + π2h̄2

m0L2
z

(
γ2(n2 + 1) + γ1

2
(n2 − 1)

)
.

(B7)
With Eq. (B4) we get the corrections to the diagonal elements
of the g-tensor:

δgh
x = 12γ3ηh,1h̄2

m0�

(
γ2

〈
k2

x

〉 − γ3
〈
k2

y

〉)
, (B8a)

δgh
y = 12γ3ηh,1h̄2

m0�

(
γ3

〈
k2

x

〉 − γ2
〈
k2

y

〉)
. (B8b)

Together with Eq. (8a), the corrected g-factors read

gh
x = 6γ3h̄2

m0�

[
(κ − 2γ3ηh,1)

〈
k2

y

〉 − (κ − 2γ2ηh,1)
〈
k2

x

〉]
, (B9a)

gh
y = 6γ3h̄2

m0�

[
(κ − 2γ2ηh,1)

〈
k2

y

〉 − (κ − 2γ3ηh,1)
〈
k2

x

〉]
. (B9b)

These corrections break the rotational symmetry of the
g-tensor in the (xy) plane. The new terms feature the di-
mensionless parameter ηh,1 that in the absence of strain is
ηh,1 ≈ 0.08 for silicon and ηh,1 ≈ 0.20 for germanium, given
the Luttinger parameters of Table I. Thus the corrections (B8a)
have negative signs for a confinement much stronger in the y
direction than in the x direction because γ2 and γ3 are positive
for both silicon and germanium. Comparing with Eq. (8a),
we see that for silicon, whose parameter κ is negative, the
correction (B8a) enhances the Rabi frequency. On the contrary
for germanium, which has positive κ , the correction reduces
the Rabi frequency. These trends have been already observed
in previous numerical calculations [35]. For silicon and ger-
manium the correction (B8a) changes the g-factors and the
Rabi frequencies by a factor of order 1. In the calculation
of the silicon and germanium Rabi frequency in Figs. 5 and
6 and in Appendix F, we have included this correction and
verified the improved agreement between the analytics and the
numerics in the thin-film regime.

On the other hand, for the light-hole ground state we have

H (2)
eff,l =

∑
n

〈
ψ l

1

∣∣R∣∣ψh
n

〉〈
ψh

n

∣∣S∗∣∣ψ l
1

〉 − 〈
ψ l

1

∣∣S∗∣∣ψh
n

〉〈
ψh

n

∣∣R∣∣ψ l
1

〉
El

1 − Eh
n

σ+

+ H.c. (B10)

Taking the same steps as for the heavy-hole case, we define
the dimensionless parameter

ηl,1 = �
∑
n>1

2 Im
(〈
ψ l

1

∣∣z∣∣ψh
n

〉〈
ψh

n

∣∣kz

∣∣ψ l
1

〉)
El

1 − Eh
n

, (B11)

where � is given by Eq. (28), and we get the corrections

δgl
x = 12γ3ηl,1h̄2

m0�

(
γ2

〈
k2

x

〉 + γ3
〈
k2

y

〉)
, (B12a)

δgl
y = 12γ3ηl,1h̄2

m0�

(
γ3

〈
k2

x

〉 + γ2
〈
k2

y

〉)
. (B12b)

Thus at leading order of perturbation, the in-plane light-hole
g-factors read [see Eq. (30)]

gl
x = −4κ + 6γ3h̄2

m0�

[
(κ + 2γ3ηl,1)

〈
k2

y

〉 − (κ − 2γ2ηl,1)
〈
k2

x

〉]
,

(B13a)

gl
y = −4κ + 6γ3h̄2

m0�

[
(−κ + 2γ2ηl,1)

〈
k2

y

〉 + (κ + 2γ3ηl,1)
〈
k2

x

〉]
.

(B13b)

These corrections have also been included in Figs. 5 and 6
and in Appendix F.

APPENDIX C: DERIVATION OF THE RASHBA
SPIN-ORBIT HAMILTONIAN EQ. (22)

We derive the effective Rashba spin-orbit Hamiltonian
Eq. (22) in the simple thin-film limit with an electric field ori-
ented in the plane of the film. With the effective Hamiltonian
method described in Appendix A, the cross terms of R yield

Hso‖ = −3ih̄4γ2γ3

2m2
0

∑
n

×
〈
χα

1

∣∣k2
y

∣∣χβ
n

〉〈
χβ

n

∣∣ky

∣∣χα
1

〉 − 〈
χα

1

∣∣ky

∣∣χβ
n

〉〈
χβ

n

∣∣k2
y

∣∣χα
1

〉
� + Eα

y,1 − Eβ
y,n

kxσz.

(C1)

Here χα/β
n are the envelope functions describing the motion of

heavy and light holes along y (the indices α and β are unspec-
ified and they can represent either light-hole or heavy-hole
states), and we introduce the Pauli matrix σz because the sign
of the matrix elements depends on the pseudospin state of the
hole. It is positive for Jz = 3/2 and negative for Jz = −3/2.
We can simplify Eq. (C1) very much in the small electric
field limit. Indeed, in this limit the sum in Eq. (C1) converges
rapidly and the energy denominator depends weakly on the
indices of the relevant excited states, so that we approximate

Hso‖ = −3ih̄4γ2γ3

2m2
0�

∑
n

(〈
χα

1

∣∣k2
y

∣∣χβ
n

〉〈
χβ

n

∣∣ky

∣∣χα
1

〉
− 〈

χα
1

∣∣ky

∣∣χβ
n

〉〈
χβ

n

∣∣k2
y

∣∣χα
1

〉)
kxσz. (C2)

Let us note that on its domain of support, the envelope func-
tion of the hole satisfies(

− h̄2k2
y

2mα
‖

+ eEyy

)∣∣χα
1

〉 = Eα
y,1

∣∣χα
1

〉
. (C3)

We substitute Eq. (C3) in Eq. (C2) and then we remove the
sum over the intermediate states, since they constitute a com-
plete basis in the subspace of the light-hole envelopes. We
obtain

Hso‖ = −3ih̄2γ2γ3mα
‖ eEy

m2
0�

〈
χα

1

∣∣(yky − kyy)
∣∣χα

1

〉
kxσz. (C4)

045305-12



LONGITUDINAL AND TRANSVERSE ELECTRIC FIELD … PHYSICAL REVIEW B 103, 045305 (2021)

With the commutation relation [y, ky] = yky − kyy = i, we ar-
rive at Eq. (22) with the inverse spin-orbit length defined by
Eq. (23).

Beyond the approximation given by Eq. (C4) that is linear
with the static electric field, the inverse spin-orbit length that
follows from Eqs. (C1) and (22) reads

	−1
so‖ = −3ih̄2γ2γ3mα

‖
2m2

0

∑
n

×
〈
χα

1

∣∣k2
y

∣∣χβ
n

〉〈
χβ

n

∣∣ky

∣∣χα
1

〉 − 〈
χα

1

∣∣ky

∣∣χβ
n

〉〈
χβ

n

∣∣k2
y

∣∣χα
1

〉
� + Eα

y,1 − Eβ
y,n

.

(C5)

In Fig. 3, we compare Eqs. (C5) and (23) for the inverse spin-
orbit length, and we use Eq. (C5) in the calculation of the
IZ-EDSR Rabi frequency in Figs. 5 and 6.

APPENDIX D: HOLE IZ-EDSR IN ONE DIMENSION

We transform the IZ-EDSR Hamiltonian with spin-orbit
coupling Eq. (22), and we obtain the time-dependent Zee-
man coupling Eq. (24). Essentially we do the calculation of
Ref. [38] in the special one-dimensional case. For holes, the
EDSR Hamiltonian reads

H = − h̄2k2
x

2m‖
− 1

2
Kx2 + eEac

x (t )x

+ μB

2
(gB)aσa + h̄2

m‖	so‖
kxσz. (D1)

In the Zeeman term, the summation over the repeated index
a is implicit. We make the unitary transformation [38] H̃ =
eOHe−O that cancels the spin-orbit coupling term to first order
in 	−1

so‖. We directly check that the operator

O = −i
x

	so‖
σz + i

μB

K	so‖
kxεabz(gB)aσb (D2)

does this, where ε is the Levi-Civita antisymmetric symbol.
As a result,

H̃ = − h̄2k2
x

2m‖
− 1

2
Kx2 + eEac

x (t )x

+ μB

2
(gB)aσa + δHZ (t ), (D3)

with

δHZ (t ) = [
O, eEac

x (t )x
]

= eEac
x (t )

K	so‖
μBεabz(gB)aσb

= δx(t )

	so‖
μB[(gB)xσy − (gB)yσx]. (D4)

If the g-tensor is diagonal, this equals (24).

APPENDIX E: IZ-EDSR IN A PERPENDICULAR
STATIC ELECTRIC FIELD

Let us now consider the IZ-EDSR effect for a static electric
field Ez in the direction of the strong confinement. By pertur-

bation of the LK model (Appendix A), we obtain the quasi-2D
effective Rashba Hamiltonian [32]:

H (2D)
so⊥ = A

[
γ3

(
k3

y σx + k3
x σy

)
− (γ3 + 2γ2)(kxkykxσx + kykxkyσy)

]
. (E1)

The prefactor of the above equation is

A = 3h̄4γ3

m2
0

∑
n

Im
(〈
ψh

1

∣∣ψ l
n

〉〈
ψ l

n

∣∣kz

∣∣ψh
1

〉)
Eh

1 − El
n

, (E2)

which is evaluated as A ≈ 3h̄4γ3(αh
⊥ − αl

⊥)/(2m2
0Lz�), with

α
h/l
⊥ = 2mh/l

⊥ eEzL3
z

h̄2π3
� 1, (E3)

where mh/l
⊥ = m0/(γ1 ∓ 2γ2) are the vertical confinement

masses of heavy and light holes, respectively.
When the parabolic confinement along x is weak compared

with the confinement along y, Eq. (E1) reduces to the quasi-
1D Rashba Hamiltonian:

Hso⊥ = −A(γ3 + 2γ2)
〈
k2

y

〉
kxσy. (E4)

This yields the inverse spin-orbit length of a heavy hole,

	−1
so⊥ = (γ3 + 2γ2)|A|〈k2

y

〉
mh

‖
h̄2

≈ 3γ3(γ3 + 2γ2)

4γ2(m0/mh
‖ )

(αh
⊥ − αl

⊥)
〈
k2

y

〉
Lz, (E5)

and then the Rabi frequency,

f h
Ri⊥ = δx

h	so⊥
μB

√(
gh

zBz
)2 + (

gh
xBx

)2
. (E6)

Since for a heavy hole in the thin-film regime gh
x � gh

z , the
maximal frequency is achieved for a magnetic field perpen-
dicular to the thin film and equals

f h
Ri⊥ max = δx

h	so⊥

∣∣gh
z

∣∣μBB. (E7)

Note that both f h
Ri‖max and f h

Ri⊥ max are ∝L4
z when Lz → 0. In

the former case, this results from the ∝L2
z behavior of 	−1

so‖
and of the in-plane g-factors. In the latter case, this results
from the ∝L4

z dependence of 	−1
so⊥, due to the reduced electrical

polarizability along z.
Equation (E6) remains valid for light holes. When the gap

due to strain is of the order of the gap due to the structural
confinement (ε‖ � 2ε∗

‖), the inverse spin-orbit length is esti-
mated as

	−1
so⊥ ∼ γ3(γ3 + 2γ2)(αh

⊥ − αl
⊥)

h̄2
〈
k2

y

〉
(
m2

0/ml
‖
)
Lz�

, (E8)
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FIG. 7. (a) Double logarithmic plot of the IZ-EDSR Rabi frequency as a function of the static electric field Ey along y. (b) Dependence of
the g-factors on the logarithm of the electric field Ey. The data are obtained from the numerical solution of the four-band k · p model [39]. The
material is silicon and the relevant lengths are x0 = 10 nm, Ly = 30 nm, and Lz = 10 nm.

with ml
‖ the light-hole effective mass [Eq. (32)]. The light-hole

g-factors gl
x and gl

z can have comparable magnitudes, and the
maximal Rabi frequency

f l
Ri⊥ max = δx

h	so⊥
max

(∣∣gl
z

∣∣, ∣∣gl
x

∣∣)μBB (E9)

is parametrically smaller than Eq. (35). Indeed, 	−1
so⊥ ∝ L4

z due
to the reduced polarizability along z, while 	−1

so‖ ∝ L2
z increases

much faster with small film thickness.

APPENDIX F: ADDITIONAL FIGURES

We show in Fig. 7 the numerically computed IZ-EDSR
Rabi frequency in the strong electric field regime with a
highlight on the asymptotic behavior at large field, and the
dependence of the g-factors on the electric field. In Fig. 8
we plot the Rabi frequencies of a silicon quantum dot with
an increased length of confinement in the direction x of the
channel as a support of Sec. VI. In Fig. 9 we plot the Rabi
frequencies of a germanium quantum dot, also as a support
of Sec. VI. Figure 10 shows a comparison between the IZ-
EDSR Rabi frequencies for static electric fields parallel and
perpendicular to the thin film in silicon and germanium.
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