

Numerical parametric study for different cold storage designs and strategies of a solar driven thermoacoustic cooler system

Maxime Perier-Muzet^a, Pascal Stouffs^a, Jean-Pierre Bédécarrats^a and Jean Castaing-Lasvignottes^b

^a Laboratoire de Thermique, Énergétique et Procédés (LaTEP), Université de Pau et des Pays de l'Adour, Pau, France.

^b Laboratoire de Physique Et Ingénierie Mathématique pour l'Energie et l'environnemeNT (PIMENT), Ile de la Réunion, France.

Presentation plan

- Context
- Prototype description
- model
- Simulation conditions
- Results and discussions
- Conclusions and perspectives

World refrigeration context

 The major part of the refrigeration production is provided by electrically driven vapor compression machines

 \geq 15% of the world electricity production is consumed for refrigeration

 \triangleright Increase in the number of units in operation over the coming years

To ensure the refrigerating production while responding to environmental challenges, the future cooling machines • should not be primary energy intensive

• should use environmentally friendly refrigerants

TACSOL ANR project

Numerous possible combinations between solar thermal collectors and heat driven cooling machines Solar cooling equipment seems to be an interesting alternative

The coupling of a solar concentrator with a heat driven thermoacoustic refrigerator is a promising technology : •no moving part

• environmentally friendly gas as working fluid

→ TACSOL project

Design and study of a solar driven thermoacoustic refrigerator Modelling – Simulation – Experimental test

Prototype description

1 kW scale solar thermodriven thermoacoustic refrigerator

solar dish concentrator

$$
A_{\text{useful apert conc}} = 10 \text{ m}^2
$$

 $P_{friigo\,max} \approx 1 \text{ kW}$

Thermoacoustic machine

• Tri-thermal machine:

Cold energy storage

Technology: Encapsulated PCM PCM: eutectic solution of H₂O-NaCl $T_{\text{melt}} = -21.3 \text{ °C}$ Tank volume = $0,2$ m³

Solar devices model

Collected solar flux:

$$
\dot{Q}_{sol_collect} = A_{collector_aperture} \cdot DNI
$$

DNI = Direct Normal Irradiation

Reflected solar flux:

$$
\dot{Q}_{sol_reflect} = A_{collector_useful} \cdot \chi . DNI
$$

 χ = mirror reflectivity

Modulated solar flux:

 \dot{S} *sol* _ mod ul $= \dot{Q}_{sol}$ _ reflect \dot{Q}_{sol_mod *ul* $=\dot{Q}_{s}$ $=$

mod ul _ aperture mod ul _ opened A A

Absorber cavity and generator hot exchanger model

Energy balance:

$$
\frac{dU_{cavity+hg}}{dt} = \dot{Q}_{sol_abs} + \dot{Q}_{loss_cavity} + \dot{Q}_{hel-wall_hg}
$$

With:

Absorbed solar power

$$
\dot{Q}_{sol_abs} = \dot{Q}_{sol_mod\,ul} \cdot \left(1 - \tau_{overflow}\right)
$$

Cavity thermal losses

Cavity thermal losses
\n
$$
\dot{Q}_{loss_cavity} = \dot{Q}_{loss_or} + \dot{Q}_{loss_lateral_wall} + \dot{Q}_{loss_back_wall}
$$

┤

Three other thermoacoustic heat exchanger model

Convective heat transfers between the heat exchanger walls and the fluids

Energy balance:

$$
\begin{cases}\n\frac{dU_{wall_exch}}{dt} = \dot{Q}_{fluid-wall_exch} + \dot{Q}_{hel-wall_exch} + \dot{Q}_{loss_exch} \\
\frac{dU_{fluid_exch}}{dt} = \dot{Q}_{wall-fluid_exch} + \dot{m}_{fluid_exch} \left(h_{fluid_input_exch} - h_{fluid_output_exch}\right) + \dot{Q}_{vis \, co_exch}\n\end{cases}
$$

With:

$$
\dot{Q}_{fluid-wall_exch} = \alpha_{fluid-wall} \cdot A_{fluid-wall} \left(T_{fluid} - T_{wall_exch} \right)
$$

$$
\dot{Q}_{visco_exch} = \Delta P_{exch} \frac{m_{fluid_exch}}{\rho_{fluid}}
$$

Viscous dissipation term

Cold energy storage

Assumptions

- − The flow in the tank is axial and incompressible;
- − Variation of temperature of the heat transfer fluid occurs only along the axial direction, the temperature is independent of the radial position;
- − Heat transfer by conduction is neglected in the heat transfer fluid;
- −Kinetic and potential energy changes are negligible;
- − The tank is divided in several control volumes according to the height ;
- − The nodules are considered as exchangers. The energy flux exchanged is proportional to the difference of temperature between the fluid and the interior of the spherical nodule;
- − The supercooling phenomenon is taken into account.
- − The pressure losses are considered for the flow inlet and outlet, the flow diffusers and the nodule bed thank to local coefficients of pressure drops.

Storage tank model

Simulation conditions

Main simulation parameters :

DE PAU ET DES PAYS DE L'ADOUR

Simulation conditions

Solar flux modulator regulation: $T_{cg} \leq 500^{\circ}C$

Loads regulation: $Q_{\text{loads}} = 350 \text{ W if } T_{\text{fluid}} < -18 \text{ °C}$ and $t > 30 \text{ h}$

Variation of the storage volume:

JNIVERSIT DE PAU ET DES

Variation of the melting temperature of the PCM:

DE PAU ET DES **AYS DE L'ADOUR**

Impact of the supercooling effect:

Temperature of the cold refrigerator heat exchanger

• Availability rate:

Conclusion & Perspectives

- A model of a solar driven thermoacoustic refrigerator coupled to a latent cold storage has been developed
- The impacts of the main design and control parameters of the cold storage have been studied

- A prototype has been designed and is under construction
- The experimental study will begin next September in Odeillo (France)

Thermoacoustic generator

Threshold mechanism

Hot HEX heating and Cold HEX at $T_{amb} \rightarrow T$ emperature gradient establishment in the porous medium

- Critical temperature gradient reached \rightarrow Thermoacoustic wave generation
- Hot heat flux increase \rightarrow Changes temperature gradient \rightarrow Higher acoustic wave intensity