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Key Points:7
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Abstract13

This paper introduces a unified model for layered rotating shallow-water (RSW) and quasi-14

geostrophic (QG) equations, based on the intrinsic relationship between these two sets of15

equations. We propose a novel formulation of the QG equations as a projection of the16

RSW equations. This formulation uses the same prognostic variables as RSW, namely17

velocity and layer thickness, thereby restoring the proximity of these two sets of equations.18

It provides direct access to the ageostrophic velocities embedded within the geostrophic19

velocities resolved by the QG equations. This approach facilitates the study of differences20

between QG and RSW using a consistent numerical discretization. We demonstrate the21

effectiveness of this formulation through examples including vortex shear instability, double-22

gyre circulation, and a simplified North Atlantic configuration.23

Plain Language Summary24

In this paper, we present a straightforward way to connect two important sets of ocean25

equations: the layered rotating shallow-water (RSW) equations and the quasi-geostrophic26

(QG) equations. We consider a unified method to formulate the QG equations as a projection27

of the RSW equations. This method uses the same variables as the RSW equations, making28

it easier to understand how these two sets of equations relate to each other. Our approach29

also provides direct access to important velocity information that is usually hidden in the30

QG equations. This allows us to study the differences between the QG and RSW equations31

using the same numerical techniques. We show the benefits of our model with two examples:32

a vortex shear instability and a double-gyre configuration. This work provides a useful tool33

for the understanding of ocean dynamics. Developing a unified numerical framework for34

nested models can greatly simplify oceanographic modeling and enhance accuracy.35

1 Introduction36

Large-scale ocean models offer a natural trade-off between complexity and realism. On37

one side, the primitive equations (PE) are sufficiently realistic for climate simulations and38

real-world data assimilation. However, they are quite complex as they describe the coupling39

between the equations of motion (mass and momentum) and the conservation of tracers40

via the equation of state following thermodynamic laws. On the other side, the barotropic41

planetary geostrophic equations can be efficiently solved with a single prognostic variable42

(the thickness), yet they ignore thermodynamics and vertical variations.43

Between these extremes, there exist approximate models of the PE, such as the multi-44

layer rotating shallow-water (RSW) and the multi-layer quasi-geostrophic (QG) models. The45

latter can be either derived from the former using an asymptotic approach (Pedlosky, 2013;46

Vallis, 2017) or considered as a vertical discretization of the continuously stratified QGmodel47

derived from the PE. These layered models describe the dynamics of vertically stratified flow48

in isentropic (or isopycnal) coordinates and only require solving the horizontal momentum49

and mass equations. For instance, the multi-layer RSWmodel can fairly reproduce the ocean50

dynamics in the Gulf Stream region with only five vertical levels (Hurlburt & Hogan, 2000).51

The multi-layer QG equations are widely adopted for the development of deterministic52

mesoscale eddy parameterizations (Marshall et al., 2012; Jansen & Held, 2014; Bachman et53

al., 2017; Uchida et al., 2022) as well as stochastic ones (Berloff, 2005; Grooms et al., 2015;54

Zanna et al., 2017; Bauer et al., 2020; Li et al., 2023). These two sets of equations can55

be used as research tools since their numerical integration is light enough to run on laptop56

computers.57

Although the multi-layer QG equations are formally derived from the multi-layer RSW58

equations, their relationship is still not clear from a numerical point of view. Indeed, they59

are usually written with different prognostic variables. The prognostic variables of the RSW60

system are the horizontal velocity (u,v) and the layer thickness h, whereas the QG system61
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is typically formulated with potential vorticity q as the single prognostic variable, from62

which one can diagnose the streamfunction ψ and the pressure p. This difference breaks63

the conceptual continuity between these two equation sets in the ocean model hierarchy and64

brings some undesirable consequences in practice. For instance, many eddy parameteriza-65

tions (e.g., Bachman, 2019; Li et al., 2023) yield different formulations and/or discretizations66

when applied to the RSW model using the horizontal velocity (u,v,h) and layer thickness67

as the prognostic variables, or to the QG model using potential vorticity q as the prognostic68

variable. Moreover, from a practical point of view, it is not straightforward to use the same69

discrete schemes for these two different models in order to compare them under the same70

configuration.71

In this work, we propose to reformulate the multi-layer QG model using horizontal72

velocity and layer thickness (u,v,h) as prognostic variables. This unified reformulation is73

achieved by expressing the QG equations as a projection of the RSW equations. We also74

present a numerical algorithm to integrate the QG equations corresponding to the proposed75

formulation. This projection approach allows for the construction of a QG discretization76

on top of any RSW discretization. Moreover, this formulation provides direct access to the77

ageostrophic velocity, which is hidden in the standard QG model formulation but contributes78

to QG dynamics.79

Similarly, the QG dynamics can be understood as a projection in the space of normal-80

mode variables, as already proposed by Leith (1980); Salmon (1998); Saujani and Shepherd81

(2006). This projection reveals that the slow modes correspond to the linearized potential82

vorticity of the RSW model, while the fast modes are associated with the ageostrophic curl83

and divergence components. However, this formal analysis relies on Fourier transformation,84

which assumes periodic solutions and thereby limits numerical development. In our for-85

mulation, the QG equations are considered as a projection of the RSW model in physical86

space. This approach is independent of the model configuration, such as the shape of the87

boundary. It provides a consistent framework for developing the corresponding numerical88

scheme in realistic basins.89

For the numerical experiments, we adopt the RSW discretization proposed by Roullet90

and Gaillard (2022), which relies on the vector invariant formulation and an advanced91

high-order WENO advection scheme. The discretized QG model uses the same dynamical92

core as the multi-layer RSW model, with the only modification being the addition of the93

projection operator. We developed a compact, efficient, and CPU/GPU portable Python94

code using the PyTorch library (Paszke et al., 2019). We first use a simple test case of vortex95

shear instability to investigate the similarities and differences of the QG and RSW solutions96

according to different Rossby numbers. We then study the solutions produced by QG and97

RSW in an idealized wind-driven double-gyre configuration. This final configuration is98

also implemented in the North Atlantic basin with simplified lateral and vertical boundary99

conditions.100

This paper is organized as follows. In Section 2, we briefly recall the derivation of the101

multi-layer RSW and QG equations. In Section 3, we present our projected QG formulation.102

In Section 4, we numerically test our formulation on different configurations. We conclude103

and discuss further perspectives in Section 5.104

2 Multi-layer RSW and QG equations105

In this section, we first review the governing equations of the RSW system. We then106

briefly explain the QG scaling of the RSW equations and present the standard multi-layer107

QG equations, using potential vorticity q as the prognostic variable.108
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2.1 Multi-layer RSW equations109

The stratification of a multi-layer RSW model consists of a stack of n isopycnal layers,110

as illustrated in Figure 1 with n = 3 layers. By convention, we index the layers from i = 1111

for the top layer to i = n for the bottom layer. These layers have a uniform reference112

thickness Hi and a density ρi. As shown in Figure 1, the total thickness of a layer i is the113

sum of the reference thickness Hi and the thickness anomaly hi(x, y). The vertical interface114

displacement ηi(x, y) and the hydrostatic pressure pi(x, y) are given by115

ηi =

n∑
j=i

hj , pi = ρ1

i∑
j=1

g′jηj . (1)116

For i > 1, the reduced gravities are g′i = g(ρi − ρi−1)/ρ1, and for the top layer g′1 = g.117

Using the following vector notation118

H = (H1, . . . , Hn) , (2a)119

h = (h1(x, y), . . . , hn(x, y)) , (2b)120

η = (η1(x, y) , . . . , ηn(x, y)) , (2c)121

p = (p1(x, y), . . . , pn(x, y)) , (2d)122

we can rewrite the linear relations between h,η and p in a compact form123

h = diag(H)Ap , (3a)124

η = Ch , (3b)125

p = Mh , (3c)126

with the matrices127

A = 1
ρ1


1

H1g′
1
+ 1

H1g′
2

−1
H1g′

2
. .

−1
H2g′

2

1
H2

(
1
g′
2
+ 1

g′
3

)
−1

H2g′
3

.

. . . . . . . . . .

. . −1
Hng′

n

1
Hng′

n

 , (3d)128

B = ρ1


g′1 0 0 . . . 0
g′1 g′2 0 . . . 0
. . . . .
g′1 g′2 g′3 . . . g′n

 , C =


1 1 . . . 1 1
0 1 . . . 1 1
. . . . .
0 0 . . . 0 1

 , (3e)129

and M = BC. We then introduce the velocity components (u,v), the kinetic energy k, and130

the relative vorticity ω:131

u = (u1(x, y), . . . , un(x, y)) , (4a)132

v = (v1(x, y), . . . , vn(x, y)) , (4b)133

k = (u2 + v2)/2 , (4c)134

ω = ∂xv − ∂yu . (4d)135

With these variables, the multi-layer RSW equations read136

∂t u = (ω + f)v − ∂x(p+ k) , (5a)137

∂t v = −(ω + f)u− ∂y(p+ k) , (5b)138

∂t h = −H(∂xu+ ∂yv)− ∂x(uh)− ∂y(vh) , (5c)139

where f is the Coriolis parameter. These equations can be formulated in the compact form140

∂tX = F (X) , (6a)141
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with X = (u,v,h)
T
, the state variable, and142

F

u
v
h

 =

 (∂xv − ∂yu+ f)v − ∂x
(
Mh+ (u2 + v2)/2

)
−(∂xv − ∂yu+ f)u− ∂y

(
Mh+ (u2 + v2)/2

)
−H(∂xu+ ∂yv)− ∂x(uh)− ∂y(vh)

 , (6b)143

the RSW model operator.144

Figure 1. Vertical cross-section of a three-layer RSW model displaying layer thicknesses Hi+hi

and interface heights ηi

2.2 QG scaling of RSW equations145

The QG model is derived from the RSW model under two scaling assumptions: Ro ≪ 1146

and Bu ∼ 1 (J. McWilliams, 2006; Zeitlin, 2018), where Ro is the Rossby number and Bu is147

the Burger number (ratio of the deformation Radius Ld =
√
gH/f to the scale of motion L).148

The consistency of the QG scaling necessitates a beta-plane approximation for the Coriolis149

parameter f = f0 + βy, where β is the meridional gradient of the Coriolis parameter. The150

condition Ro ≪ 1 implies that the velocity is near the geostrophic balance, specifically that151

the ageostrophic correction is O(Ro). We define (ug,vg) as the geostrophic velocity that152

adheres the geostrophic balance153

−f0ug = ∂yp , f0vg = ∂xp , (7a)154

and decompose the velocity into the geostrophic and the ageostrophic components (ua,va):155

u = ug + ua , v = vg + va . (7b)156

The conditions Bu ∼ 1 and Ro ≪ 1 imply that h/H ∼ O(Ro). Following the approach of157

Holton (1973); J. McWilliams (2006); Cushman-Roisin and Beckers (2011); Zeitlin (2018),158

we do not decompose p,h,η into a geostrophic and an ageostrophic parts, as this would159

require an additional assumption to define the ageostrophic component of the stratification,160

which is unnecessary for deriving the QG model. Thus, there is a single mass variable and161

two velocity components per layer.162

Under these assumptions, the multi-layer QG equations can be expressed in terms of163

three equations for the prognostic variables (ug,vg,h) with the right-hand side terms that164

depend on the ageostrophic velocities (ua,va):165

∂t ug = (ωg + f0 + βy)vg + f0va − ∂x(Mh+ kg) , (8a)166

∂t vg = −(ωg + f0 + βy)ug − f0ua − ∂y(Mh+ kg) , (8b)167

∂t h = −H(∂xug + ∂yvg)− ∂x(ugh)− ∂y(vgh)−H(∂xua + ∂yva) . (8c)168
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Note that using the geostrophic balance (7a), one can simplify these equations to169

∂t ug = (ωg + βy)vg + f0va − ∂xkg , (9a)170

∂t vg = −(ωg + βy)ug − f0ua − ∂ykg , (9b)171

∂t h = −∂x(ugh)− ∂y(vgh)−H(∂xua + ∂yva) . (9c)172

In this form, the QG equations still appear similar to the RSW equations, but this is173

misleading as there is only one degree of freedom per layer. The two components of the174

geostrophic velocity are constrained by h via (7a) and (3a). Another difficulty with this175

system is that, although well-posed, it is highly implicit. There is no straightforward method176

to determine the ageostrophic velocity. In practice, and particularly for numerical models,177

the equations are rewritten in a more explicit form. This form reveals a hidden variable of178

the system that is the potential vorticity (PV):179

q = β y + ωg − f0
h

H
. (10)180

2.3 Multi-layer QG equations181

The multi-layer QG equations are obtained upon by differentiating (10) with respect182

to time and utilizing (9). The resulting equations are183

∂t q = −∂x(ugq)− ∂y(vgq) , (11a)184

∆p− f2
0Ap = f0q− f0βy , (11b)185

−f0ug = ∂yp, f0vg = ∂xp , (11c)186

where ∆ = ∂2
xx+∂2

yy denotes the horizontal Laplacian operator, and A represents the vertical187

discretization of the stretching operator introduced in Equation (3d). The PV q is the sole188

prognostic variable in (11a). All other model variables are derived from q via the diagnostic189

relations (11b) for p and (11c) for u and v. The QG model is thus expressed in terms of190

the variables (q, p), with p/f0 being the vector of streamfunction for each layer.191

Numerical implementations of the QG model typically rely on this system of equations.192

However, this system differs significantly from the RSW system of equations. One notable193

aspect is the absence of the ageostrophic velocities from the RSW system of equations. This194

absence does not imply that ua and va vanish; rather, it means they can be disregarded if195

the focus is solely on the evolution of p and q. The substantial difference between the QG196

and RSW model equations complicates direct comparisons between them. Consequently,197

numerical versions of the QG and RSW models generally have distinct implementations,198

with differing numerical methods in all aspects. In the following sections, we demonstrate199

how to reestablish the similarity between the two models.200

3 Quasi-geostrophic model as projected rotating shallow-water201

In this section, we propose a straightforward formulation of the QG equation using the202

horizontal velocity and layer thickness (u,v,h) as state variables, along with the non-linear203

RSW operator F defined in (6b), and a linear projection operator P . To our knowledge, this204

projection relation has been largely overlooked, with one notable exception being Charve205

(2004).206

3.1 Projection formulation207

To derive this projection, we start from the QG equations (8), and isolate the part208

controlled by F :209

∂t

ug

vg

h

 = F

ug

vg

h

+

 f0va

−f0ua

−H(∂xua + ∂yva)

 , (12)210
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where several terms cancel due to the geostrophic balance. In this form, the QG model can211

be interpreted as a RSW model applied to the geostrophic component and forced by an212

ageostrophic source term, represented by the second term of the right-hand side.213

Let us now introduce the PV linear operator Q:214

Q

u
v
h

 = ∂xv − ∂yu− f0
h

H
. (13a)215

This operator relates to the PV by216

Q

ug

vg

h

 = q− βy , (13b)217

and ensures that the contribution of the ageostrophic source term in (12) vanishes:218

Q

 f0va

−f0ua

−H(∂xua + ∂yva)

 = 0 . (13c)219

Since Q is independent of time, it commutes with the time derivative. Therefore,220

∂tQ

ug

vg

h

 = Q ◦ F

ug

vg

h

 . (14)221

This equation is a reformulation of (11a), representing the conservation of PV. As Q reduces222

the state vector from three to one variable, we need a reverse operation to retrieve the three223

variables (ug,vg,h). This is accomplished by introducing the geostrophic operator G:224

G (p) =

 −∂yp
∂xp

f0 HAp

 . (15a)225

Thus, G is a linear operator with uniform and time-independent coefficients. The composi-226

tion of the two operators Q and G yields:227

(Q ◦G) (p) = ∆p− f2
0Ap (15b)228

which is the QG elliptic operator (11b) relating p to q. This operator is invertible (Dutton,229

1974; Bourgeois & Beale, 1994), hence (Q ◦G)−1 is well-defined.230

Finally, we introduce the QG projection operator P :231

P = G ◦ (Q ◦G)−1 ◦Q . (16)232

P is a projection because P ◦ P = P , as demonstrated by233

P ◦ P = G ◦ (Q ◦G)−1 ◦ (Q ◦G) ◦ (Q ◦G)−1 ◦Q = P . (17)234

By construction, P preserves the geostrophic state Xg = (ug,vg,h)
T
, i.e., P (Xg) = Xg.235

Indeed, since Xg is geostrophic, we have236

Q(Xg) = q− β y , (18)237

(Q ◦G)−1(q− β y) = p/f0 , (19)238

G(p/f0) = Xg . (20)239

Applying P to Equation (12), and noting that P commutes with ∂t, we can formulate the240

multi-layer QG model as241

∂tXg = P ◦ F (Xg) . (21)242
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This form differs from the RSW model (6a) by the additional projection operator P acting243

on F . By projecting the RSW tendency onto the geostrophic manifold, P ensures that the244

QG state remains in geostrophic balance. Alternatively, the QG model can be viewed as245

evolving under the action of the RSW operator with the ageostrophic tendency removed.246

To fully implement the projection method, it is necessary to specify the lateral boundary247

condition for Equation (15b). The appropriate condition, consistent with the QG model, is248

the Dirichlet boundary condition, where the pressure remains constant along each connected249

boundary. Given that the projection is applied to the model tendency rather than the model250

state, and that this work focuses on simply connected domains, the constant term is zero.251

In cases involving multiply connected domains, the constant can be explicitly evaluated as252

proposed by J. C. McWilliams (1977); however, this is beyond the scope of the present253

paper.254

3.2 Diagnostic variables255

With this formulation, the ageostrophic velocity (ua,va) can be expressed in a simple256

closed form. Using equations (12) and (21), we have257  f0va

−f0ua

−H(∂xua + ∂yva)

 = P ◦ F

ug

vg

h

− F

ug

vg

h

 . (22)258

In a numerical model, this requires only a basic difference between the QG and RSW259

tendencies, with no costly computations.260

Using this projection formulation, the QG system can be expressed with the same261

prognostic variables as the RSW system, namely the horizontal velocity (u,v) and the262

layer thickness h. This reestablishes the proximity between these two sets of equations263

in the ocean model hierarchy, leading to four practical implications. First, given a RSW264

discretization, one can implement the projection to derive the companion QG model for this265

specific discretization. Second, this formulation provides access to the ageostrophic velocity266

hidden in the QG equations at the cost of a simple subtraction. This enables an a posteriori267

diagnostic of the validity of the QG scaling. For a given geostrophic state (ug,vg,h), the268

corresponding ageostrophic velocity (ua,va) can be computed and checked against:269

ka

kg
∼ Ro2 ,

h

H
∼ Ro , (23)270

where ka = (|ua|2 + |va|2)/2 and kg = (|ug|2 + |vg|2)/2 are the ageostrophic and the271

geostrophic kinetic energies, respectively.272

Third, using the same variables (u,v,h) facilitates the development of eddy parameter-273

izations, such as those in Bachman (2019); Li et al. (2023), which work similarly for both the274

RSW and the QG models. Finally, this formulation may offer new insights and approaches275

for the mathematical analysis of the QG equations, particularly regarding the extension of276

recent results on the well-posedness properties for a stochastic RSW model (Crisan & Lang,277

2023) by examining the effect of the QG projector on these properties.278

This formulation also presents an interesting analogy with the Leray projector formula-279

tion of the Navier-Stokes equations, where the Leray projector enforces the incompressible280

constraint by filtering out compressible sound waves through an elliptic Poisson equation for281

the pressure. Similarly, the proposed QG projector enforces the QG balance by filtering out282

fast gravity waves through an elliptic Helmholtz equation for the PV. It is noteworthy that283

the QG balance is not a constraint added to the RSW model; the Hamiltonian structure of284

the QG model (Holm & Zeitlin, 1998) is distinct from that of the RSW model. Specifically,285

contrary to the pressure, the PV is not a Lagrange multiplier enforcing a constraint.286

–8–
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4 Numerical experiments287

This section presents the numerical experiments carried out to validate and explore the288

behavior of our new formulation. We first describe the implementation of the RSW solver289

and QG projector, then detail the specific experiments designed to test vortex shear insta-290

bility, the idealized double-gyre circulation, and a simplified North Atlantic configuration.291

The first two experiments are analyzed to compare the solutions obtained from the QG and292

RSW models under varying conditions and parameters.293

4.1 Numerical implementations294

To implement our formulation, we require a RSW solver and a QG projector. We295

utilize the RSW solver developed by Roullet and Gaillard (2022), which is available at296

https://github.com/pvthinker/pyRSW. We re-implemented this solver in PyTorch to297

enable seamless GPU acceleration, verifying that our implementation reproduces their orig-298

inal results up to numerical precision. The key element of the discretization is a fifth-order299

Weighted Essentially Non-Oscillatory (WENO) upwinded reconstruction for both the mass300

flux and the nonlinear vortex-force term. This approach provides sufficient numerical dis-301

sipation, eliminating the need for an ad-hoc hyperviscous diffusion, while ensuring good302

material conservation of PV (Roullet & Gaillard, 2022).303

The QG projector requires an elliptic solver. Thiry et al. (2024) released an efficient304

Python-PyTorch implementation of the QG equations. They solve the QG elliptic equation305

using discrete sine transforms implemented with PyTorch’s Fast Fourier Transform (FFT),306

which leverages highly optimized MKL FFT on Intel CPUs and cuFFT on Nvidia GPUs.307

We employ their elliptic solver to solve the QG elliptic equation (11b). Once the projector308

is available, the QG solver is implemented by simply adding the projection step to the RSW309

solver. Numerically, the two solvers differ by only one line of code – the projection step. All310

other elements, including variable staggering, time discretization, and core RSW equations,311

are identical.312

To summarize, the QG model is advanced in time as follows: (1) compute the RSW313

tendencies, (2) apply the projection operator P to obtain the QG tendencies, and (3) update314

the state variables. For the RSW model, step (2) is omitted, and only steps (1) and (3) are315

performed.316

Consequently, we achieve a PyTorch implementation (see Supporting Information files)317

that is concise (approximately 800 lines of code), remains true to the equations, and imple-318

ments both the multi-layer QG and RSW equations using the same state variables (u,v,h).319

4.2 Vortex shear instability320

To validate our formulation, we first study a vortex shear instability and compare its321

evolution in both the QG and the RSW models as Ro increases for Bu = 1. The initial state322

is a perfectly shielded vortex with a core of uniform vorticity ω1 surrounded by a ring of323

opposite sign uniform vorticity ω2. The system involves two lengths: the core radius r0 and324

the vortex outer radius r1. The ratio ω2/ω1 is such that the total circulation vanishes. This325

system is unstable and leads to the formation of multipoles (Morel & Carton, 1994). The326

number of poles depends on the ratio of the vortex radius to the core radius. We focus here327

on a tripole formation case with r1/r0 = 1.4. To promote the growth of the most unstable328

mode, we add a small mode azimuthal perturbation.329

The experiments are set up in dimensional form with a square domain of size Lx×Ly =330

100 km× 100 km on a f-plane. There is a single layer of fluid with thickness H = 1km. We331

assume no-flow and free-slip boundary conditions. The acceleration of gravity is set to332

g = 10m s−2. The vortex core has a radius r0 = 10 km and a positive vorticity; the vortex333

radius is r1 = 14 km. We run the simulations on a 512× 512 grid, providing a 200m spatial334
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resolution. The Coriolis parameter is chosen such that Bu = 1, i.e., f0 =
√
gH/r0. The335

vorticity ω1 is set indirectly via umax, the maximum velocity of the initial condition. We336

define the Rossby number as Ro = umax/(f0r0). We impose Ro and deduce umax. We have337

tested four cases: Ro ∈ {0.01, 0.05, 0.1, 0.5}. In all cases, we apply the QG projector to338

the initial state before starting the time integration. Consequently, the initial states are339

in geostrophic balance and differ only by a scaling factor. As Ro increases, the instability340

develops faster in dimensional time. Therefore, we present the results in the rescaled eddy-341

turnover time τ , defined as the inverse of the ℓ2-norm of the initial vorticity, i.e., τ = 1/∥ω∥.342

We integrate the simulations for T = 10 τ .343

Figure 2 shows the evolution of the initial state for the two extreme cases, Ro = 0.01 and344

Ro = 0.5. In the Ro = 0.01 case, the differences between the QG and the RSW solutions are345

not perceptible to the naked eye. This is consistent with the QG scaling and the fact that the346

QG model is an asymptotic limit of the RSW model. In the Ro = 0.5 case, the differences347

are of order one. In the RSW model, the vortex spins faster, and the filaments of negative348

vorticity are stabilized. The smoothness of the RSW solution at t = 10 τ might be surprising349

as we expect some gravity waves generated during the fast cyclo-geostrophic adjustment of350

the initial state. These gravity waves are present but at t = 10 τ , they have bounced back351

and forth several times along the boundary and are strongly scattered. Interestingly, the352

QG solution is exactly the same as in the Ro = 0.01 case. This is expected since the QG353

equations are scaling invariant, i.e., the evolution is invariant under multiplication by a354

constant. However, it is also quite remarkable to recover this property in the numerical355

solutions because the QG solver relies on the full RSW right-hand side. Another symmetry356

of the QG model is parity invariance. The solution should be invariant under a sign change357

of the vorticity. In other words, cyclones and anticyclones follow the same evolution, up to358

a change in rotation. This is not at all the case for the RSW model. By flipping the sign359

of the initial vorticity, we verified that the solutions satisfy this property (not shown). This360

means that the QG projector behaves well as it restores two invariances, scaling and parity,361

that are absent in the RSW solver.362

To assess the influence of Ro on the time evolution, we define the normalized difference363

δ = 2||ωqg − ωsw||/(||ωqg|| + ||ωsw||). Figure 3 shows δ(t) for the four Ro cases. The364

oscillations during the [0, 4 τ ] period are due to the gravity waves in the RSW case resulting365

from the imperfect initial balance. Interestingly, the shortening of the oscillation period as366

Ro decreases is due to the time rescaling by τ . In dimensional time, the periods are the367

same. A practical consequence is that the RSW experiment requires more time steps to368

reach t = 10 τ as Ro decreases, whereas for the QG experiment, the number of time steps369

is constant. After t = 4 τ , the differences are dominated by the shear instability developing370

on the vortex. The small difference seen in the snapshots in the Ro = 0.01 case has actually371

reached a plateau, meaning the QG solution closely follows the RSW one. This confirms372

that the QG model is a good simplified model when the scaling assumption holds. On a373

longer time scale and with chaotic vortex dynamics, the solutions would diverge, but in374

such a simple setup, the solutions remain close. The time evolution of δ is similar for all375

Ro except Ro = 0.5, where δ saturates at one, the maximum value of this metric. In376

this case, this metric suggests that the two models predict a completely different solution.377

Looking back at the snapshots, this seems exaggerated. The order one difference is mostly378

due to the difference in timing, not the difference in pattern. Depending on the purpose,379

the QG solution might still be of interest as it still captures the main phenomenology. Note380

that the QG solution could be made closer to the RSW solution if the two models were381

started with different initial states: a cyclo-geostrophic balance for the RSW model and382

the associated projected state for the QG model. The initial state would thus depend on383

Ro. For this illustrative experiment, we preferred to stick to the same initial state, up to a384

scaling constant.385
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Figure 2. Vortex shear instability solved using QG and SW for Bu = 1. (Top to bottom) Initial

relative vorticity for Ro = 0.01 and Ro = 0.5. Final relative vorticities and their differences for

QG and SW models with Ro = 0.01. Final relative vorticities and their differences for QG and SW

models with Ro = 0.5. Units are in s−1.
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Figure 3. Time evolution of the normalized differences of relative vorticity between the QG

model and the RSW model with Bu = 1 and different Ro.

Parameter Value Description

Lx, Ly 5120, 5120 km Domain size
Hk 400, 1100, 2600 m Mean layer thickness
g′k 9.81, 0.025, 0.0125 m s−2 Reduced gravity
γ 3.6 10−8 s−1 Bottom drag coefficient
τ0 0.08 N m−2 Wind stress magnitude
ρ 1000 kg m−3 Ocean density
f0 9.375 10−5 s−1 Mean Coriolis parameter
β 1.754 10−11 (m s)−1 Coriolis parameter gradient
Ld 41, 25 km Baroclinic Rossby radii

nx, ny 256, 256 Grid size
dt 4000 s Time-step

Table 1. Parameters of the idealized double-gyre configuration. There no viscosity nor diffusion

coefficient as the grid-scale dissipation is implicitely handled by the upwindedWENO reconstruction

of the masse flux and the vortex-force (see Roullet & Gaillard, 2022).

4.3 Double-gyre circulation386

To explore a richer phenomenology, we have tested our new formulation on a classical387

oceanic test case, the idealized wind-forced double-gyre circulation. The domain is a non-388

periodic square ocean basin with N = 3 layers. We assume free-slip boundary conditions389

on each boundary. A stationary and symmetric wind stress (τx, τy) is applied in the top390

layer, with τx = −(τ0/ρ0) cos(2πy/Ly) and τy = 0. Additionally, a linear drag with drag391

coefficient γ is applied in the bottom layer. The parameter values are given in Table 1.392

We study this configuration in an eddy-permitting resolution of 20 km, meaning that393

the spatial resolution (20 km) is half of the largest baroclinic Rossby radius (41 km). We394

expect QG and RSW simulations to produce strong western boundary currents converging395

to the middle of the western boundary and an eastward jet departing from the middle of396

the western boundary. Starting from the rest state, this configuration requires about 100397

years to spin up and achieve converged statistics (Hogg et al., 2005; Simonnet, 2005).398

In Figure 4, we present snapshots of key quantities of the upper layer after 100 years of399

integration. The solution exhibits expected properties of this setup: a double-gyre circula-400

tion (Fig. 4e) separated by a meandering eastward jet (Fig. 4a,d) emanating from the western401

boundary, two strong and narrow western boundary currents (Fig. 4b) feeding the eastward402
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jet, mesoscale turbulence throughout, especially near the jet (Fig. 4c,d), and Rossby waves403

propagation (Fig. 4e,f). The local Rossby number, defined as ω/f0 peaks at 0.2, which is404

significant but not large enough to dismiss the solution. Interestingly, the layer thickness405

perturbation h1 is substantial compared to the reference depth H1 = 400m.406

Figure 4. QG upper-layer snapshot after 100 years of spin-up from the rest state. KE, geos.,

and rel. stand for kinetic energy, geostrophic, and relative, respectively.

To complement this snapshot, we present statistics estimated over the years (100-200)407

after the initial state, using one snapshot every 10 days. We decompose the geostrophic408

kinetic energy into its mean and eddy components, and compute the ratio ka/kg. The409

results are shown in Figure 5 for the upper layer. The statistics confirm the presence of the410

strong western boundary currents (Fig. 5a) and a strong eastward jet reaching the middle of411

the domain (Fig. 5a,d). A remarkable feature is the symmetry of all quantities with respect412

to the central latitude, due to the symmetry of the forcing and the cyclone/anticyclone413

symmetry of the QG model. This symmetry prevents the model from breaking the symmetry414

of the forcing. From the ratio ka/kg and h/H (Fig. 5c,f), we test the validity of the QG415

scaling assumptions (Eq. 23). The color scale is adjusted so that the white intermediate416

color corresponds to Ro = 0.1. Red areas indicate where the QG scaling assumptions are not417

respected. Counter-intuitively, the central jet region, where kinetic energy is the highest,418

shows the best QG scaling. The worst regions are the gyre centers due to large thickness419

deviations and the boundaries due to large ageostrophic velocities.420

Finally, we compare the QG solution with its companion RSW one. Due to the421

free surface and the presence of fast barotropic gravity waves, the RSW solver requires422

a much smaller time step, typically 200 times smaller. This factor corresponds to the ratio423 √
gH/max(u). Integrating from the rest state over 200 years would be computationally424

intensive. A compromise would be to use a barotropic-baroclinic time splitting (Higdon &425

De Szoeke, 1997) or implicit stepping of the free surface (Roullet & Madec, 2000), but this426

is beyond the scope of the present study. Instead, we ran the RSW solver starting from year427

200 of the QG solution and integrate it over 2 years. Figure 6 compares QG and RSW on428

a snapshot of vorticity in the upper layer. The central jet has a southward component, the429

two gyres are no longer symmetric, and mesoscale turbulence has intensified in the Northern430

gyre and weakened in the Southern gyre. Applying the QG projector on the RSW state431

results in a state that remains very close (Fig. 6c) yet with damped fluctuations. The QG432

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 5. QG upper-layer statistics over 100 years after 100 years spin-up from rest state.

projector tends to dampen the short scales, but since it is applied on the RSW model ten-433

dency, it does not affect the QG state, as seen from the comparison between Fig. 6a and434

Fig. 6b. The closeness suggests that while the QG solution might be locally tangent to the435

RSW solution, long-term integration results in noticeable differences.436

Figure 6. (Left) QG upper-layer relative vorticity after 100 years of spin-up, (middle) RSW

upper-layer relative vorticity, and (right) projected RSW vorticity after 2 additional years of spin-

up. Units are in f0.

4.4 Simplified North Atlantic configuration437

To demonstrate the applicability of the proposed projection formulation to more com-438

plex ocean configurations, we extend the previous idealized double-gyre circulation to the439

North Atlantic basin, located at 9◦N–48◦N and 98◦W–4◦W. The ocean boundaries are set440

at a depth of 250 meters to exclude the continental shelf from the simulation. In this study,441

we simplify the realistic North Atlantic configuration by not considering inflows and out-442

flows across the northern and southern open boundaries (Marchesiello et al., 2001; Blayo &443

Debreu, 2005), which will be investigated in subsequent studies. Here, we assume a flat bot-444

tom to be consistent with the formulation presented in the previous sections. However, the445

presented formulation could be extended to include bottom topography in the future. The446
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ocean surface boundary condition is imposed using the Hellerman and Rosenstein (1983)447

monthly wind stress climatology, which has been widely used in several other reference448

simulations of the Gulf Stream (Blayo et al., 1994; Hurlburt & Hogan, 2000).449

The simulation runs on a horizontal grid of 1024×512 points, corresponding to a spatial450

resolution of 8.5 km (∼ 1/11◦), with 3 vertical layers using the same reference thickness and451

reduced gravity as specified in Table 1. The time step is set to 2000 s, and a partial free-slip452

condition is applied on the ocean boundaries with the coefficient set to 0.6 (0 for no-slip453

and 1 for free-slip). To solve the elliptic equation on non-rectangular geometries for the QG454

projector, we extend the fast discrete sine transform spectral solver using the capacitance455

matrix method (Thiry et al. (2024), see also Blayo and LeProvost (1992) for the original456

technique).457

Figure 7 illustrates the instantaneous prognostic and diagnostic variables of the pro-458

jected QG model after 40 years of spin-up simulation. The surface relative vorticity in459

Fig. 7a reveals the meandering and energitic western boundary current, along with the tur-460

bulent eddying structures throughout most of the basin. The sea surface height in Fig. 7b461

illustrates the gyre circulation structure in this configuration and could potentially be as-462

similated with available observations. Fig. 7c and Fig. 7d demonstrate the surface current463

speed (
√
u2
1 + v21) for the prognostic geostrophic motions and the diagnostic ageostrophic464

motions, respectively. The latter is at least five times smaller than the former across the465

entire basin. This instantaneous snapshot notably shows that the ageostrophic velocity466

component is extremely small in the region going from 25◦N to 30◦N, which approximately467

corresponds to the range of latitudes for the state of Florida. However, the ageostrophic468

motions remain significant along the Gulf Stream current.469

a) rel. vorticity (unit f0) b)surface height (m)

c) geos. current speed (ms 1) d) ageos. current speed (ms 1)
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Figure 7. QG upper-layer snapshot after 40 years of spin-up from the rest state.

We also investigate the temporal statistics of the projected QG model over 20 years470

following a 40-year spin-up. For instance, Figure 8 illustrates the surface MKE and EKE471

densities for both geostrophic and ageostrophic motions. Figures 8a and 8b reveal that EKE472

predominates over MKE across the basin, particularly along the Gulf Stream, highlighting473

the significant influence of mesoscale eddies on flow variability. Figures 8c and 8d show the474

ratio of ageostrophic to geostrophic MKE and EKE, confirming the previous instantaneous475
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finding: geostrophic balance is markedly dominant in the North Atlantic Subtropical Gyre,476

validating the QG scaling in that region.477

a) geos. MKE dens. (m2s 2) b) geos. EKE dens. (m2s 2)

c) ageos./geos. MKE ratio (log 10) d) ageos./geos. EKE ratio (log 10)

0.
00

0.
05

0.
10

0.
00

0.
05

0.
10

4
2

0

4
2

0

Figure 8. QG upper-layer statistics over 20 years after 40 years spin-up from rest state.

5 Conclusions478

In this paper, we have demonstrated that the QG model can be formulated as a pro-479

jected RSW model by applying the QG projector P (defined in Equation 16) to the RSW480

tendency. This formulation allows the QG model to utilize the same variables (u, v, h) as481

the RSW model, rather than the more conventional (p, q) variables. This unified approach482

enables us to enhance the similarities and differences between the two models and facilitates483

a coherent integration of both models within the same numerical framework. In contrast to484

earlier approaches based on similar concepts (Leith, 1980; Salmon, 1998; Saujani & Shep-485

herd, 2006), the projection formulation we propose here does not depend on the shape of the486

boundary. As demonstrated, it can be easily implemented for basins with general coastal487

geometries.488

We have validated this approach through a vortex shear instability test, demonstrating489

that the resulting QG model retains essential symmetry properties, such as scaling and490

parity, which are not present in the RSW model. Furthermore, we have shown that a QG491

model implemented in this manner reproduces the expected characteristics of a double-gyre492

experiment. An immediate benefit of this approach is the ability to directly compare RSW493

and QG solutions. This straightforward formulation paves the way for further investigations494

into the differences between QG and RSW equations, such as studies on the stability of495

geostrophic equilibrium or spontaneous imbalance phenomena.496

Additionally, it holds significant potential for data assimilation applications, enabling497

seamless switching between these nested RSW and QG models or even their combination.498

For instance, one could initially run a data assimilation algorithm, such as an ensemble499

Kalman filter (Evensen, 2003), using the projected QG model to capture geostrophic dy-500

namics. Subsequently, the obtained solution could be refined by transitioning to the RSW501

model. This flexibility could enhance the accuracy and efficiency of data assimilation pro-502

cesses in oceanographic modeling and related fields.503
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