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A B S T R A C T

Background: Human exposure to air pollution involves complex mixtures of multiple correlated air pollutants. To
date, very few studies have assessed the combined effects of exposure to multiple air pollutants on breast cancer
(BC) risk.
Objectives: We aimed to assess the association between combined exposures to multiple air pollutants and breast
cancer risk.
Methods: The study was based on a case-control study nested within the French E3N cohort (5222 incident BC
cases/5222 matched controls). For each woman, the average of the mean annual exposure to eight pollutants
(benzo(a)oyrene, cadmium, dioxins, polychlorinated biphenyls (PCB153), nitrogen dioxide (NO2), ozone, par-
ticulate matter and fine particles (PMs)) was estimated from cohort inclusion in 1990 to the index date. We used
the Bayesian Profile Regression (BPR) model, which groups individuals according to their exposure and risk
levels, and assigns a risk to each cluster identified. The model was adjusted on a combination of matching
variables and confounders to better consider the design of the nested case-control study. Odds ratios (OR) and
their 95 % credible intervals (CrI) were estimated.
Results: Among the 21 clusters identified, the cluster characterised by low exposures to all pollutants, except
ozone, was taken as reference. A consistent increase in BC risk compared to the reference cluster was observed for
3 clusters: cluster 9 (OR=1.61; CrI=1.13,2.26), cluster 16 (OR=1.59; CrI=1.10,2.30) and cluster 15 (OR=1.38;
CrI=1.00,1.88) characterised by high levels of NO2, PMs and PCB153. The other clusters showed no consistent
association with BC.
Discussion: This is the first study assessing the effect of exposure to a mixture of eight air pollutants on BC risk,
using the BPR approach. Overall, results showed evidence of a positive joint effect of exposure to high levels to
most pollutants, particularly high for NO2, PMs and PCB153, on the risk of BC.

Abbreviations: AFP, Age at first full-term pregnancy; BaP, Benzo[a]pyrene; BC, Breast cancer; BMI, Body Mass Index; BPR, Bayesian Profile Regression; CI,
Confidence Interval; CrI, Credible Interval; CNIL, National Commission for Data Protection and Privacy; DPM, Dirichlet Process Mixture; E3N, Etude Epidémiologique
auprès de femmes de la Mutuelle Générale de l’Education Nationale; IARC, International Agency for Research on Cancer; IGN, National Geographic Institute; MCMC,
Markov Chain Monte Carlo; MET, Metabolic equivalent task; NO2, Nitrogen dioxide; ORs, Odds ratios; O3, Ozone; PAM, Partitioning Around Medoids; PCBs, Pol-
ychlorinated biphenyls; PCB153, group III of the Wolff’s classification of polychlorinated biphenyls; PMs, Particles (including PM10 and PM2.5); PM10, Particles
(diameter < 10 µm); PM2.5, Fine particles (diameter < 2.5 µm); SD, Standard deviation.
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1. Introduction

Exposure to air pollutants is a major public health concern because of
its many adverse effects on human health, including cancer (Turner
et al., 2020). Air pollution is a complex mixture of highly correlated
pollutants from multiple sources (Billionnet et al., 2012). The Interna-
tional Agency for Research on Cancer (IARC) has classified outdoor air
pollution as a whole, and particulate matter (PM) as carcinogenic to
humans with sufficient evidence for lung cancer and a positive associ-
ation for bladder cancer (Loomis et al., 2013). Other chemical con-
taminants present in the air have been classified as carcinogenic to
humans, such as benzo(a)oyrene (BaP), cadmium, dioxins, and poly-
chlorinated biphenyls (PCBs). Exposure to chemical air contaminants, in
particular those with endocrine disrupting effects are strongly suspected
to play a role in breast cancer (BC) development (Darbre, 2021; Wan
et al., 2022; Yilmaz et al., 2020), the most common cancer in women
worldwide (2.3 million new cases estimated in 2020) (Sung et al., 2021).
The body of evidence reporting positive associations between

exposure to air pollutants and risk of BC is steadily increasing, both for
pollutants with endocrine disrupting effects as well as for nitrogen di-
oxide (NO2) and PMs (Gabet et al., 2021; Niehoff et al., 2022; Praud
et al., 2023; White et al., 2021, 2018). An increased BC risk has been
shown for BaP exposure (Amadou et al., 2021; Large and Wei, 2017),
while inconsistent findings have been reported from epidemiological
studies for dioxins (Danjou et al., 2019; Fiolet et al., 2022; VoPham
et al., 2020; Xu et al., 2016), cadmium (Amadou et al., 2020b; Filippini
et al., 2020; Florez-Garcia et al., 2023), as well as PCBs (Deygas et al.,
2021; Fiolet et al., 2022). Several studies have shown an increased BC
risk related to NO2 exposure, largely emitted from road traffic (Amadou
et al., 2023; Gabet et al., 2021; Praud et al., 2023; Wei et al., 2021).
Concerning PM10 and PM2.5, although positive associations were re-
ported in some studies, the findings remained globally inconsistent
across studies (Wei et al., 2021; Zhang et al., 2019). With regard to
ozone (O3), a “secondary” pollutant, the available studies showed no
association between BC risk and high exposure to O3 (Bai et al., 2020;
White et al., 2021), but an inverse association has been observed in
relation to breast density, a well-established risk factor for BC (Yaghjyan
et al., 2017).
While the population is exposed simultaneously to multiple air pol-

lutants, previous studies have mainly investigated the adverse effects of
exposure to air pollutants considering one pollutant at a time. Tradi-
tional epidemiological methods, such as multiple logistic regression, are
not adapted to investigate joint health effects of simultaneous exposure
to multiple highly correlated pollutants leading to variance inflation of
the estimates (Agier et al., 2016; Farrar and Glauber, 1967; Hoerl and
Kennard, 1970; MacLehose et al., 2007). Consequently, parameter es-
timates of the model may not be significantly different from zero in
multivariate analyses adjusted on correlated variables, even when an
effective relationship between exposure and health exists. There is thus a
great interest in assessing the impact of exposure to correlated pollutant
mixtures on BC risk, using more appropriate methods (Bellavia, 2023).
An increasing number of statistical methods for considering exposure

to pollutant mixtures have been described in the literature to investigate
these complex relationships. Among these methods, Bayesian profile
regression (BPR) analysis, is a pertinent approach, for identifying at-risk
groups of individuals who share similar exposure profiles of correlated
pollutants, and assigning a risk to each of these groups (Molitor et al.,
2010).
The main objective of this study was to estimate the joint effect of

exposure to eight air pollutants (BaP, cadmium, dioxins, PCB153, NO2,
O3, PM10 and PM2.5) on the risk of BC in a matched case-control study
nested within the French E3N cohort using BPR analysis (Liverani et al.,
2015; Molitor et al., 2010).

2. Material and methods

2.1. The cohort study population

The E3N-Generation prospective study is an ongoing French familial
cohort study established as an extension of the E3N cohort of women
(Etude Epidémiologique auprès des femmes de la Mutuelle Générale de
l’Education Nationale) including the E3N women’s children, their fa-
thers and, in the future, their grandchildren. The present study focuses
only on the E3N part of the cohort that was created in 1990 with the
recruitment of 98,995 women that at that time were the E3N cohort of
women (Etude Epidémiologique auprès des femmes de la Mutuelle
Générale de l’Education Nationale) including the E3N women’s chil-
dren, their fathers and, in the future, their grandchildren. The present
study focus only on the E3N part of the cohort that was created in 1990
with the recruitment of 98,995 women that at that time were aged
40–65 years, were living in France and were affiliated to the national
health insurance covering workers from the French National Education
System (Mutuelle Général de l’Education Nationale, MGEN) (Clavel-
Chapelon and E3N Study Group, 2015). The E3N cohort is still followed-
up after more than 30 years with self-administered questionnaires
including data on socio-demographic characteristics, lifestyle, repro-
ductive factors, anthropometry, past medical history, and familial his-
tory of cancer. The addresses of the cohort participants included in the
study were collected at baseline (1990), and at each of the twelve follow-
up questionnaires. BC occurrence was self-reported in follow-up ques-
tionnaires and a few additional cases were retrieved from health in-
surance data or from mortality data including causes of death obtained
from the National Services on Causes of Deaths (CépiDC- Inserm). Self-
reported cases were validated through retrieval of medical records from
treating physicians and pathological confirmationwas obtained for 93%
of cases. Since the false-positive rate of self-reports was low in the cohort
population (<5%), we also included the cases that were not pathologi-
cally confirmed. For one fourth of the cohort blood samples were
collected between 1995 and 1998 and are stored in liquid nitrogen as
aliquots of buffy coat, plasma, serum and erythrocytes. The study was
approved by the French National Commission for Data Protection and
Privacy (CNIL), and informed consent was obtained from each
participant.

2.2. The nested case-control study

This study is based on data from a case-control study nested in the
E3N cohort described in previous articles (Amadou et al., 2020a). In
brief, the study included participants without any cancer at baseline,
who had reported their home address at baseline, and lived in metro-
politan France during the follow-up period from 1990 to 2011(Deygas
et al., 2021). Of the 6,298 invasive BC cases diagnosed during follow-up,
we excluded women with phyllodes tumours which are biologically and
clinically different (N=19) (Zhang and Kleer, 2016), those with missing
data on matching variables (N=3) and those with more than one missing
address (N=1,054 cases) (Amadou et al., 2021; Deygas et al., 2021). For
each case, one control free of cancer was randomly selected by incidence
density sampling, among cohort participants at risk of BC at the time of
case diagnosis (Amadou et al., 2020a). This incidence density sampling
is an efficient method of choice for obtaining unbiased results, in which
controls are selected without replacement from all persons at risk at the
time of case occurrence, excluding the index case itself (Richardson,
2004). Two matchings were done according to the availability of a
biological sample (blood or saliva) (Amadou et al., 2020a). This variable
was one of the matching variables, as the case-control study was origi-
nally designed to also address additional objectives (impact of exposure
on DNAmethylation and interactions with genetic polymorphisms). The
protocol of the matched nested case control study has been published in
JMIR protocol (Amadou et al., 2020a). Briefly, cases having blood
samples collected before diagnosis were matched to controls with a
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blood sample collected before the index date of the matched case, and
matched on the department of residence, age (+/- 1 year), date (+/- 3
months), and menopausal status, all at the time of blood collection.
Cases without a blood sample were matched to controls on the same
criteria, at inclusion, and additionally matched on availability of a saliva
sample. The final study population included 5,222 women diagnosed
with an invasive BC and 5,222 matched controls. The flow chart is
presented in Supplementary Figure S1.

2.3. Assessment of long-term exposure to eight atmospheric pollutants

The approach used to estimate the subjects’ atmospheric exposure
based on the pollutant concentrations at the women’s consecutive res-
idential addresses has been applied in our previous studies and
described elsewhere (Amadou et al., 2023, 2021). Briefly, mean annual
atmospheric BaP (ng/m3), cadmium (pg/m3), dioxins (fg-TEQ/m3),
PCB153 (pg/m3), NO2 (µg/m3), O3 (pp/m3), PM10 (µg/m3) and PM2.5
(µg/m3) concentrations were estimated at the women’s geocoded
consecutive residence addresses, from 1990 to their index date using a
chemistry-transport model (CHIMERE) with a spatial resolution of
0.125◦ 0.0625◦ (approximately 7 × 7 km) (Couvidat et al., 2018). This
deterministic model simulates pollutant concentrations on large scales
using emission inventories and meteorological data as input data
(Couvidat et al., 2018; Guerreiro et al., 2016; Menut et al., 2013). The
CHIMERE model has been validated by comparisons with pollutant
measurements (Clément et al., 2017; Couvidat et al., 2018) and has been
used to estimate for example BaP exposure and other air pollutants in
Europe (Guerreiro et al., 2016). French departments are administrative
divisions of territories (“NUTS-3” in the classification of territorial di-
visions of the European Union) (Eurostat, 2024) with surfaces suffi-
ciently large to exhibit heterogeneous exposure profiles with the
CHIMERE model (7x7 km spatial resolution). Surface areas range from
105 to 10,000 km2 (with 25th, 50th, and 75th percentiles of 5147 km2,
5954 km2, and 6775 km2 respectively); with population size varying
from 76,604 to 2,608,346 persons (Amadou et al., 2023; INSEE, 2024).
The consecutive residential addresses of the participants were geo-

coded with the ArcGIS Software (ArcGIS Locator version 10.0, Envi-
ronmental System Research Institute – ESRI, Redlands, CA, USA), and its
reference street network database, BD Adresse® from the National
Geographic Institute (IGN) (Faure et al., 2017).
Weighted annual estimates of pollutant concentrations were

assigned to the subsequent geocoded residential addresses of subjects for
each year during the 1990–2011 follow-up period. For each woman,
mean concentration levels of pollutant exposure at the residential
address were calculated, from their entry into the cohort to their index
date. Entry into the E3N (1990) cohort is thus the starting point for the
exposure assessment in the present nested case-control study. Exposure
assessment is performed until the index date (corresponding to the date
of BC diagnosis for cases and date of selection for controls). The average
of the mean annual concentrations for each pollutant prior to BC diag-
nosis and used as an estimate of the actual pollutant exposure in the
present study (Amadou et al., 2023, 2021; Deygas et al., 2021).

2.4. Statistical analyses

2.4.1. Descriptive analysis
Exposure estimates for each pollutant, socio-demographic charac-

teristics, and other covariates of the participants were described using
mean and standard deviation (SD) for continuous variables, and fre-
quency and percentage for categorical variables. The Pearson correla-
tion coefficients were computed to assess the correlations between
exposure to different pollutants (Gallo et al., 2018).

2.4.2. Bayesian profile regression (BPR)
BPR was used to assess the association between the combined

exposure to the eight pollutants and the risk of BC by estimating the odds

ratio (OR) between groups of individuals sharing a similar exposure
profile. BPR assigns individuals to clusters according to an assignment
model. When grouping individuals into clusters, the assignment model
considers both the information on joint exposures, provided by an
exposure sub-model, and the expected cluster effect on BC estimated
from risk provided by a disease sub-model (Liverani et al., 2015; Molitor
et al., 2010).
Details of the BPR model are described in supplementary material.

Briefly, the assignment sub-model is based on a Dirichlet Process
Mixture (DPM) model, a non-parametric model used for probabilistic
clustering of mixture profiles (Molitor et al., 2010). This sub-model es-
timates the optimal number of clusters and calculates the probability
that an individual belongs to each cluster. The exposure sub-model de-
termines the exposure profile of each cluster (Belloni et al., 2020). The
eight exposure variables, represent the average of the mean annual
exposure levels of BaP, cadmium, dioxins, PCB153, NO2, O3, PM10 and
PM2.5 respectively during the follow-up period of the woman, and were
continuous.
The disease sub-model links clusters of profiles to the outcome, by

estimating the risk of BC within each cluster. An unconditional logistic
regression model adjusted for confounders was therefore fitted. The
binary indicator Yi specified the woman’s i status (1 for cases and 0 for
controls). This model included specific parameters for each cluster and a
vector of parameters shared by all clusters. The assignment model is
written by specifying the respective contributions of the exposure and
disease sub-models.
The number of clusters and the construction of the mixing weights ψc

were defined by a “stick-breaking” process, with the maximum number
of clusters Cmax specified (Molitor et al., 2010). From the elements of the
likelihood, the posterior probabilities of a given individual belonging to
each cluster was calculated using Bayes theorem. According to this, an
individual was assigned to the cluster with the highest probability. This
was repeated for each individual.
The parameters of the BPR model were estimated by a Bayesian

approach using a Markov chain Monte Carlo (MCMC) algorithm, with
30,000 iterations after a burn-in sample of 10,000 iterations. Every
iteration of the MCMC algorithm assigned each individual to a cluster
therefore partitioning the study population. As the MCMC algorithm
finds it harder to split clusters than to merge them, and given the large
population of the present study (including 10,444 participants), the
initial number of clusters was set to a large number, namely 2,500.
During the MCMC simulation, the number of clusters could vary and the
label associated with each cluster changed during the iterations, thus
postprocessing of the MCMC output was carried out to obtain an optimal
partition. First, a score matrix of (n× n) (n being the total number of
individuals) size, was generated at each iteration, to determine whether
two individuals belonged to the same cluster or not. Second, a proba-
bility matrix of (n× n) size was created, to indicate the probability that 2
individuals belonged to the same cluster, by averaging each matrix
score. Lastly, based on this probability matrix, an optimal partition was
obtained by maximising the average silhouette width across various
partitions obtained by partitioning Around Medoids (PAM) (Molitor
et al., 2010).
Posterior distribution of cluster parameters was obtained from

MCMC output. For each iteration of the MCMC sampler, the risk asso-
ciated with a given cluster k is the average of the risk obtained, for all
individuals included in the cluster k. Repeating this for all iterations
provides a distribution for the risk for the optimal partition, applied for
all cluster parameters (Molitor et al., 2010).
The MCMC algorithm was run five times with different initial posi-

tions randomly assigned and the marginal posterior distributions of the
α parameter of DPM were compared between the five runs to assess
convergence. The final partition selected was the one maximising the
average silhouette clustering score among the optimal partitions ob-
tained by post-processing (Lengyel and Botta-Dukát, 2019; Liverani
et al., 2015).

C. Giampiccolo et al.
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Confounders were identified using a directed acyclic graph (Sup-
plementary figure S2). Two minimal sufficient adjustment sets of vari-
ables have been proposed. The first includes physical activity (<25.3,
25.3–35.5, 35.6–51.8, and ≥ 51.8 METs-h/week), alcohol intake (0,
1–6.7,> 6.7 g/day), bodymass index (BMI) (<25, 25-<30, and≥ 30 kg/
m2), breastfeeding (ever, never), oral contraceptive use (ever, never),
menopausal hormone treatment (ever, never), status of birthplace
(rural, urban), status of inclusion (rural, urban), smoking status (never,
current, and former), parity and age at first full-term pregnancy (AFP)
(0, 1–2 children & AFP<30 years, 1–2 children & AFP≥30 years, and 3
children), and mammography screening (yes, no). The second includes
the level of education, considered as a proxy of socio-economic status.
The model with more adjustment variables was selected for the analysis.
Confounding variables with less than 5 % missing data were imputed
using the median for continuous variables and the mode for categorical
variables, based on control population data. Covariates with more than
5 % missing values, specifically alcohol consumption and birthplace,
were treated as a separate category (Amadou et al., 2020a).
Analyses were run in R (version 4.0.2; R Core Team 2020). The R

PReMiuM package (Liverani et al., 2015) designed to fit the BPR model
includes an unconditional logistic regression disease sub-model but not
the conditional regression model more suitable for the matched case-
control design of the present study. In consequence, we fitted the un-
conditional logistic regression model, adjusted on the combination of
matching variables (including department of residence, age (±1 year),
date (±3 months), menopausal status at blood collection (menopaused
or not) and availability of a saliva sample (yes, no), in addition to con-
founders as proposed by Pearce (Pearce, 2016). To fit mixtures and
potentially link covariates with responses, we identified covariates that
actively influence the mixture components and those that exhibit
characteristics common to all components through variable selection
available in PReMium package. Odds ratios (ORs) of BC risk associated
with combined exposure to the 8 pollutants in each cluster, and their 95
% credible intervals (CrIs) were estimated (Coker et al., 2020). The
average exposure profiles of each cluster also assessed and presented
with boxplot and heat map. The geocoded residential locations of all
women were graphically displayed by cluster.
Sensitivity analyses were further conducted by defining exposure

profiles solely based on the exposure variables, without considering the
risk provided by the disease sub-model in the profile regression, using an
option of the BPR model in the R PReMium package that excludes the
outcome variable from the profile regression model. To assess the
model’s convergence, we followed the same approach as in the main
analyses. Associations between these exposure profiles and BC risk were
analysed using unconditional logistic regression models and adjusted on
the matching variables and previously defined confounders.

3. Results

3.1. Characteristics of the study population

General characteristics of the study population are presented in
Supplementary Table S1. Overall, women were included on average at
age 49.6 (6.3) years, 54,5% were ever smokers, 62.1 % were born in
urban areas, 37 % were in the highest tertile level of alcohol intake
(>6.7 g/day), 83 % had normal BMI (<25 kg/m2). Fig. 1 shows the
Pearson correlation matrix between the average of the annual mean
concentrations (1990–2011) for each of the eight pollutants. Overall,
moderate to strong positive correlations were observed between the
majority of the pollutants. The strongest correlations were observed
between PM2.5 and PM10 (0.99), between PCB153 and PM (0.93 and
0.94, for PM10 and PM2.5, respectively), between NO2 and PM (0.87 and
0.86 for PM10 and PM2.5, respectively) and between PCB153 and NO2
(0.81). In contrast, O3 was negatively correlated with all other pollut-
ants, with a strong negative correlation for NO2 (− 0.92), PM10 (− 0.90),
PM2.5 (− 0.89), and PCB153 (− 0.83).

3.2. Association between exposure profiles and BC risk

The marginal posterior distributions of the α parameter (Markov
chains), shown in Supplementary Figure S3, overlapped among the five
runs of the MCMC algorithm and showed the model convergence. Sup-
plementary Table S2 presents the number of clusters for each partition,
ranging from 18 to 26 clusters, and the associated average silhouette
score. Partition 2, with 21 clusters, maximising the silhouette average
score (0.866), was selected as the final partition. Visual comparison of
the five post-processed partitions with the highest silhouette average
scores (0.79–0.87), showed similar exposure profiles, supporting the
convergence of the model (data not shown).
During the iterations of the MCMC algorithm, the selection proba-

bility for each pollutant remained consistently above 0.8 (Supplemen-
tary Figure S4).
For a visual overview of cluster exposure profiles, Fig. 2 shows the

normalised posterior means of each of the eight pollutants, for the 21
clusters ordered by decreasing levels of O3 exposure. The Supplementary
Figure S5 shows a heat map of the posterior clustering. Average con-
centration estimates of the pollutants for the 21 resulting clusters are
shown in Table 1. The number of subjects in each cluster ranged from 52
(cluster 3) to 1,223 (cluster 11). Table 2 shows the ORs and corre-
sponding 95 % credible intervals for each cluster.
Cluster 1 (1141 women), characterised by low exposure to all pol-

lutants except O3 was selected as the reference cluster (Fig. 2). Graphical
displays of women residential locations by cluster, shows that women in
the reference cluster were scattered over a wide area of France (Fig. 3).
The three clusters with the highest ORs were characterised by quite

similar pollutant patterns with varying levels of exposures (Table 1,
Table 2, Fig. 2 and Supplementary Figure S6): cluster 9 (265 partici-
pants; OR=1.61; CrI=1.13,2.26), cluster 16 (210 participants;
OR=1.59; CrI=1.10,2.30) and cluster 15 (357 participants; OR=1.38;
CrI=1.00,1.88). Cluster 9 corresponded to women with very high NO2
exposure levels and high exposure to PCB153, PM10 and PM2.5. How-
ever, exposure to BaP, cadmium and dioxins were lower than the other
pollutants and exposure to O3 was extremely low. Cluster 16 represented
women with very high exposure levels for NO2, PCB153, PM10 and

Fig. 1. Pearson’s correlation matrix between the average of the annual mean
concentrations (1990–2011) for each of the eight pollutants (BaP, dioxins,
cadmium, PCB153, NO2, O3, PM10, PM2.5) in the case-control study nested
within the E3N-generation cohort, France, 1990–2011.
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PM2.5, lower exposure to BaP, cadmium and dioxins and low exposure to
O3. Cluster 15 was characterised by high exposure levels for NO2 and
PMs, lower exposures to BaP, cadmium, dioxins and PCB153, and low
exposure to O3 (Table 1, Table 2 and Fig. 2). Women in these three
clusters were mainly located in urban metropolitan areas of Paris and
Lyon (Fig. 3). Two other clusters with less elevated ORs and CrI limits
showed close profiles with lower exposure levels: cluster 11 (1,223
participants; OR=1.21; CrI=0.95,1.55) and cluster 10 (285 participants;
OR=1.22; CrI=0.91,1.64).

Seven other clusters essentially characterised by higher exposure
levels for cadmium, dioxins and/or BaP, were not associated with BC
risk (Table 1, Fig. 2). Of these, six clusters had ORs greater than 1: cluster
3 (52 participants; OR=1.08; CrI=0.64,1.83), cluster 4 (249 partici-
pants; OR=1.08; CrI=0.75,1.53), cluster 6 (361 participants; OR=1.11;
CrI=0.81,1.52), cluster 19 (148 participants; OR=1.26; CrI=0.87,1.80),
cluster 20 (158 participants; OR=1.22; CrI=0.66,2.28) and cluster 21
(54 participants; OR=1.26; CrI=0.72,2.20). One cluster, cluster 13 was
associated with an OR below 1 (321 participants; OR=0.74;

Fig. 2. Characterization of the exposure profiles associated to each cluster using BPR, in the case-control study nested within the E3N-generation cohort, France,
1990–2011. Clusters were numbered from 1 to 21 and ordered by decreasing levels of O3 exposure. For each cluster, the boxplot of the normalised means distribution
of each pollutant were represented from left to right in the following order: BaP (1), cadmium (2), dioxin (3), NO2 (4), O3 (5), PCB153 (6), PM10 (7), PM2.5 (8). These
distributions came from MCMC algorithm of BPR model. The two different colours, blue and red, correspond to a 95 % credible interval, respectively under or upper
0 which represents low or high exposure level respectively. Orange colour shows no evidence of high or low values of exposures. Pst mean: normalised posterior mean
of the exposures within cluster. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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CrI=0.49,1.17) (Table 2).
Four further clusters associated with exposures relatively close to the

overall average for each pollutant were found (Table 1, Fig. 2): cluster 5
(656 participants; OR=1.13; CrI=0.85,1.48), cluster 18 (562 partici-
pants; OR=1.15; CrI=0.87,1.54), cluster 7 (792 participants; OR=1.23;
CrI=0.97,1.56) and cluster 2 (529 participants; OR=1.20;
CrI=0.97,1.49) (Table 2).
The remaining four clusters exhibited high O3 levels and low expo-

sures to other pollutants (Table 1, Fig. 2): cluster 17 (662 participants;
OR=1.24; CrI=0.93,1.66), cluster 8 (767 participants; OR=1.10;
CrI=0.84,1.45), cluster 14 (842 participants; OR=1.03; CrI=0.79,1.33);
and cluster 12 (810 participants; OR=0.96; CrI=0.77,1.18) (Table 2).

3.3. Sensitivity analyses

The results of the sensitivity analyses of pollutant exposure profiles,
without considering the risk, are shown in Supplementary Figures S7
and S8, and, Supplementary Tables S3, S4 and S5. The marginal poste-
rior distributions of the parameter (Markov chains) overlapped among
the five runs of theMCMC algorithm and showed the model convergence
(Supplementary Figure S7). Partition 3, with 18 clusters, maximising the
silhouette average score (0.863), was selected as the final partition

(Supplementary Table S3). Cluster S1 (1,085 women), characterised by
low exposure to all pollutants except O3 was selected as the reference
cluster (Supplementary Figure S8). The three clusters with the highest
ORs of BC risk were cluster S7 (88 participants; OR=1.99;
CI=1.15,3.46), cluster S9 (290 participants; OR=1.96; CI=1.29,2.98)
and cluster S12 (1,433 participants; OR=1.36; CI=1.03,1.80) (Supple-
mentary Table S4). Cluster S7 and S9 were characterised by quite similar
pollutant patterns with women exposed to very high levels of NO2,
PCB153, PM10 and PM2.5 (Supplementary Figure S8). Clusters S7 and S9
displayed similar pollutant profiles than clusters 9, 15 and 16 in the
main analyses, but with slightly higher ORs. In contrast, cluster S12
corresponded to women considerably exposed to NO2 and moderately or
slightly exposed to all other pollutants (Supplementary Figure S8).
Characteristics of women in cluster S12 did not substantially differ from
the overall population (Supplementary Figure S5).

4. Discussion

To the best of our knowledge, this is the first study assessing the
association between the combined exposure to eight highly correlated
air pollutants and BC risk using the BPR model.
Overall, the present study demonstrated a positive association

Table 1
Characterization of the exposure profiles associated to each cluster when fitting a BPR model, in the case-control study nested within the E3N-generation cohort,
France, 1990–2011.

Cluster
Label

Bap* Cadmium* Dioxin* PCB153* NO2* O3* PM2.5* PM10*

1 0.09
(0.09,0.10)

71.88 (67.98,73.11) 2.83 (2.51,3.45) 6.40 (6.31,6.49) 2.83 (2.70,2.96) 32.44
(32.26,32.61)

12.00
(11.84,12.16)

14.47
(14.32,14.62)

2 0.18
(0.18,0.19)

178.05
(172.33,185.09)

10.23
(9.74,10.73)

9.65 (9.43,9.86) 8.91 (8.50,9.34) 28.68
(28.33,29.02)

17.48
(17.12,17.85)

20.13
(19.78,20.48)

3 0.28
(0.25,0.31)

608.34
(548.34,660.23)

10.09
(8.57,11.60)

9.06 (8.27,9.84) 13.21
(12.15,14.16)

24.10
(22.82,25.54)

18.58
(16.99,20.09)

21.78
(20.31,23.19)

4 0.37
(0.35,0.39)

230.08
(224.20,236.25)

18.27
(17.25,19.21)

11.80
(11.52,12.07)

16.00
(15.34,16.65)

20.79
(20.42,21.17)

25.42
(24.86,25.98)

28.35
(27.80,28.91)

5 0.16
(0.15,0.16)

122.72
(120.35,124.87)

8.87 (8.61,9.12) 9.71 (9.56,9.85) 8.85 (8.57,9.14) 26.22
(26.02,26.42)

17.64
(17.44,17.85)

20.65
(20.46,20.84)

6 0.38
(0.36,0.40)

296.52
(289.68,305.75)

17.11
(16.11,18.10)

12.40
(12.20,12.61)

15.90
(15.39,16.42)

21.15
(20.87,21.44)

23.43
(23.07,23.80)

25.91
(25.54,26.29)

7 0.13
(0.12,0.14)

95.12 (92.25,96.61) 5.38 (5.12,5.79) 8.63 (8.52,8.73) 10.07
(9.72,10.42)

25.81
(25.64,25.99)

16.70
(16.54,16.86)

19.54
(19.38,19.69)

8 0.07
(0.06,0.08)

70.76 (66.83,72.14) 3.46 (3.15, 4.02) 6.46 (6.36,6.56) 3.67 (3.53,3.82) 31.62
(31.43,31.81)

13.06
(12.93,13.20)

16.84
(16.72,16.96)

9 0.23
(0.23,0.24)

266.46
(262.44,272.62)

17.45
(16.74,18.06)

16.89
(16.62,17.17)

40.58
(40.40,40.78)

11.79
(11.70,11.88)

32.70
(32.33,33.08)

34.86
(34.52,35.20)

10 0.20
(0.20,0.21)

233.93
(225.73,242.40)

19.72
(18.65,20.72)

13.85
(13.41,14.28)

26.55
(25.40,27.71)

20.95
(20.21,21.67)

24.96
(24.15,25.79)

27.61
(26.87,28.36)

11 0.20
(0.20,0.21)

191.42
(189.15,193.90)

14.57
(14.13,14.92)

12.04
(11.93,12.16)

22.08
(21.73,22.42)

19.81
(19.65,19.97)

22.17
(21.97,22.36)

24.56
(24.37,24.74)

12 0.13
(0.12,0.13)

115.25
(112.75,117.47)

6.10 (5.83,6.47) 7.39 (7.29,7.49) 8.99 (8.67,9.31) 29.14
(28.90,29.37)

14.11
(13.93,14.29)

16.99
(16.82,17.16)

13 0.32
(0.30,0.34)

115.97
(113.32,118.51)

6.48 (6.15,6.84) 9.12 (8.94,9.31) 7.71 (7.36,8.09) 27.94
(27.70,28.15)

20.23
(19.85,20.61)

21.73
(21.37,22.09)

14 0.19
(0.19,0.19)

127.83
(125.60,129.94)

6.30 (6.04,6.64) 7.78 (7.65,7.91) 9.86
(9.50,10.23)

29.30
(29.00,29.61)

17.46
(17.13,17.79)

19.29
(18.97,19.61)

15 0.28
(0.27,0.29)

233.15
(228.11,238.57)

15.98
(15.21,16.72)

13.30
(13.04,13.57)

32.93
(32.61,33.25)

15.18
(15.04,15.31)

30.44
(30.11,30.78)

32.26
(31.96,32.55)

16 0.30
(0.29,0.31)

316.04
(312.01,323.39)

26.53
(25.08,27.38)

23.23
(22.88,23.59)

43.85
(43.66,44.03)

11.12
(11.02,11.23)

41.59
(41.12,42.05)

42.87
(42.45,43.29)

17 0.12
(0.12,0.13)

118.94
(116.12,121.50)

9.41 (9.09,9.72) 7.67 (7.50,7.84) 10.34
(9.97,10.72)

31.82
(31.57,32.07)

13.85
(13.60,14.11)

17.20
(16.93,17.47)

18 0.24
(0.23,0.24)

157.88
(154.35,161.46)

8.08 (7.80,8.36) 10.23
(10.06,10.39)

8.20 (7.95,8.46) 25.84
(25.68,26.00)

19.91
(19.64,20.17)

21.89
(21.64,22.14)

19 0.41
(0.37,0.46)

520.90
(462.90,580.59)

38.17
(31.75,44.88)

14.87
(14.18,15.56)

13.91
(13.39,14.43)

23.64
(23.16,24.11)

21.47
(20.88,22.06)

24.35
(23.77,24.94)

20 0.72
(0.65,0.78)

170.05
(165.58,174.05)

7.89 (7.50,8.27) 12.40
(12.09,12.71)

16.14
(15.28,16.91)

21.97
(21.53,22.48)

26.65
(26.00,27.29)

28.31
(27.67,28.93)

21 0.24
(0.23,0.25)

571.19
(551.52,594.23)

34.24
(31.47,36.84)

15.26 (14.75,
15.7)

31.40
(31.07,31.72)

15.16
(15.04,15.29)

26.71
(26.06,27.33)

29.03
(28.47,29.58)

Overall 0.19 157.32 9.96 9.82 13.12 25.84 18.94 21.51

BaP was expressed in ng/m3, PCB153 in pg/m3, cadmium in pg/m3, dioxin in fg-TEQ/m3, PM10 in µ/m3, PM2.5 in µg/m3, NO2 in µg/m3, O3 in pp/m3.
* : estimated mean (95 %CrI).
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between BC risk and exposure to combinations of the eight pollutants,
with significant evidence only for three clusters, characterised mainly by
high levels of NO2, PM10, PM2.5, and PCB153. Women in these three
clusters (9, 15 and 16) were mainly located in high-density urban en-
vironments of Paris and Lyon. Two other clusters (10 and 11) with close
exposure profiles but lower exposure levels, likewise predominantly
located in high-density urban areas, were associated with increased ORs
of lower magnitude. Moreover, several clusters (3, 4, 6, 19, 20, and 21)
driven by high exposure levels to cadmium, dioxins, and / or BaP, were
associated with positive ORs, although not consistent. Women in these
clusters were mainly located in eastern France, near the border with
Germany and Belgium (cluster 4, 6 and 20), and potentially subject to
cross-border pollution, or located in highly industrialised areas known
to be associated with industrial emissions (clusters 3, 19 and 21)
(Jeanjean et al., 2021).
Most studies have investigated the effects of single air pollutants on

BC risk, with classical and well-known methods such as multiple linear
or logistic regression (Niehoff et al., 2022; White et al., 2021, 2018). The
results observed for the three clusters associated with highest risk are
consistent with results obtained from single pollutant analyses.
Increased risks of BC have been constantly found in previous studies for
NO2 (Gabet et al., 2021; Praud et al., 2023), including a previous study
in the same nested case-control study with OR=1.15 (95 % CI=
1.06,1.26)) (Amadou et al., 2023). Likewise, there was a statistically
significant positive association between cumulative atmospheric expo-
sure to PCB153 and BC risk (OR=1.19; 95 % CI= 1.08,1.31) (Deygas
et al., 2021). Yet, divergent results were reported between PM (PM2.5
and PM10) and BC risk (Gabet et al., 2021; Wei et al., 2021; Zhang et al.,
2019). However, the ORs for clusters of combined exposures (cluster 9
(OR=1.61; CrI=1.13,2.26), cluster 16 (OR=1.59; CrI=1.10,2.30) and
cluster 15 (OR=1.38; CrI=1.00,1.88)) were superior to the ORs
observed in the single pollutant studies.
Our study has revealed that exposure profiles with high exposure to

cadmium, dioxin, and BaP, showed no consistent increase of BC risk.
Similar to these findings, single epidemiological analyses available on
the association between cadmium and dioxins and risk of BC showed
divergent results (Amadou et al., 2020b; Danjou et al., 2019; Filippini

et al., 2020; Fiolet et al., 2022; Florez-Garcia et al., 2023; VoPham et al.,
2020; Xu et al., 2016). A recent meta-analysis showed that exposure to
higher levels of cadmium (dietary, airborne, and biomarker measures)
was associated with an increased risk of BC (Florez-Garcia et al., 2023),
while our previous study found no evidence of an association between
single airborne exposure to cadmium and overall risk of BC (Amadou
et al., 2020b). Regarding dioxins, a study by Danjou et al. showed no
increased risk of BC in relation to higher dioxin exposure levels (Danjou
et al., 2019). In contrast, evidence of increased risk of BC associated with
exposure to BaP was reported in the present nested-case control study by
Amadou et al. (OR=1.15; 95 %CI= 1.04,1.27) (Amadou et al., 2021).
Of note, one prospective cohort study has investigated the combined

effect of multiple metallic air pollutants exposures (including cadmium)
on the risk of BC, using the weighted quantile sum regression (WQS)
method. This study showed a statistically significant association be-
tween the WQS index (combined exposure to ten air toxic metallics) and
postmenopausal BC (OR=1.06; 95 %CI= 1.00–1.13) (White et al.,
2019). Regarding air pollutant exposure profile approaches, our findings
are notably consistent with the study by Niehoff et al., in which classi-
fication and regression tree method has been used to identify patterns
and combinations of 29 air toxics related to BC. This exploratory anal-
ysis identified combinations of age, methylene chloride, BMI and four
other toxic substances (propylene dichloride, ethylene dibromide,
ethylene dichloride, styrene) associated with overall BC risk, high-
lighting the complex association between these pollutants and BC risk
(Niehoff et al., 2019). However, no study has employed the BPR model
to estimate the joint effect of long-term exposure to several air pollutants
on the risk of BC in the context of correlated exposures.
The BPR model was selected for the present study, as it considers the

risk of BC in addition to the level of exposure, as well as its interest to
jointly analyse positively correlated exposures, and also negatively
correlated ones (O3). In this study, the MCMC algorithm converged to 21
clusters (± 3 clusters depending on the initial positions of the Markov
chains), a number slightly higher than those obtained in most previous
studies, which often had between five and 15 clusters (Coker et al.,
2020, 2023; Hoover et al., 2023; Mattei et al., 2016; Rouanet et al.,
2021). For example, a study assessing the association between metal
mixtures and Preterm birth among pregnant Indigenous women from
the Navajo Birth Cohort Study, based on 417 individuals, has estimated
six clusters (Hoover et al., 2023). Another study investigating the effect
of occupational exposures to organic solvents on lung cancer risk, based
on 5,012 individuals, identified 13 exposure profiles (Mattei et al.,
2016). Of note, the observed difference in the number of clusters can be
explained by the size of our study population, including 10,444 women,
exceeding that of most published studies with between 551 and 5,012
subjects (Coker et al., 2023; Hoover et al., 2023; Mattei et al., 2016). It
has been shown that the MCMC algorithm of a DPM tends to converge
towards a higher number of clusters with increasing population size
(Chaumeny et al., 2022). It should be highlighted that the MCMC al-
gorithm with the PReMiuM R package has a superior performance to
merge rather than to split clusters (Liverani et al., 2015). It is then
important that the number of clusters selected at the initiation of the
MCMC algorithm is substantially higher than the true number of clus-
ters, possibly in the dataset. If the number of clusters at MCMC initiation
is too low, the final number of clusters may be overestimated by a DPM
as the algorithm might be unable to converge to the optimal number of
clusters (Hastie et al., 2015). In response to this, the initial number of
clusters at initialization of the MCMC algorithm in the present study was
fixed at 2,500. We observed a similar number of final clusters produced
by the five runs of the MCMC chain with convergence of the model as
shown by the marginal posterior distributions of the α parameters.
The sensitivity analyses, ignoring the risk provided by the disease

sub-model in the clustering process, yielded similar average exposure
profiles than the full BPR model, with slightly higher ORs for the two
clusters (S7 and S9) characterised by high levels of NO2, PM10, PM2.5,
and PCB153, than clusters 9, 15 and 16 in the main analysis. However,

Table 2
Association between BC risk and clusters, using BPRmodel, in the case-control
study nested within the E3N-generation cohort, France, 1990–2011.

Clusters Label Cases/controls OR (95 % CrI)

1 559/582 Reference
2 282/247 1.20(0.97,1.49)
3 26/26 1.08(0.64 1.83)
4 123/126 1.08 (0.75,1.53)
5 329/327 1.13 (0.85,1.48)
6 174/187 1.11 (0.81,1.52)
7 410/382 1.23 (0.97,1.56)
8 377/390 1.10 (0.84,1.45)
9 151/114 1.61 (1.13,2.26)
10 138/147 1.22 (0.91,1.64)
11 595/628 1.21 (0.95,1.55)
12 384/426 0.96 (0.77,1.18)
13 152/169 0.74 (0.49,1.17)
14 410/432 1.03 (0.79,1.33)
15 186/171 1.38 (1.00,1.88)
16 121/89 1.59 (1.10,2.30)
17 337/325 1.24 (0.93,1.66)
18 287/275 1.15 (0.87,1.54)
19 78/70 1.26 (0.87,1.80)
20 80/78 1.22 (0.66,2.28)
21 23/31 1.26 (0.72,2.20)

BPR model were adjusted for physical activity, alcohol intake, body mass index,
breast- feeding, oral contraceptive use, menopausal hormone treatment, status
of birthplace, status of inclusion smoking status, parity and age at first full-term
pregnancy, mammography screening, department of residence, menopausal
status and availability of a saliva sample.
OR: Odds Ratio; CrI: credible interval.
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as a difference we observed a profile significantly associated with BC risk
(cluster 12) consisting of women with low exposure to most pollutants.
This profile was not observed with the full BPR model. Grouping in-
dividuals together based on their similarity in terms of both, the expo-
sure profile and probability of outcome, the full BPR model may achieve
clustering of more homogenous groups of individuals.
One of the strengths of the present study is the use of the BPRmethod

to estimate the risk of BC in the presence of multiple correlated air
pollutants, with concentration levels of the eight pollutants estimated
over a long period (up to 22 years). With the use of BPR, the limitations
of unstable estimates encountered in traditional methods such as mul-
tiple regression in presence of multiple correlated predictors are cir-
cumvented. This method could be applied to other multiple exposures
and diseases risks. Another strength of this study is the design of the
nested case-control study within the large prospective French E3N-

generation cohort providing the availability of information on a wide
range of potential confounders. The low percentages of missing data
reflect the high quality of the data.
Despite these strengths, it is important to note some limitations. The

non-implementation of the likelihood of a conditional logistic regression
model in the R premium package, as a disease sub-model, required
thorough consideration of applying the BPR model to the matched case-
control study. Further adjusting the models for matching variables,
allowed us to get correct estimates comparable to that obtained with a
conditioned model. Another limitation is that the main pollutants
responsible for the association with BC have not been identified. This
method is unable to provide any evidence of interactions throughout the
mixture. Moreover, BPR tends to estimate a greater number of clusters
when dealing with a larger population (Chaumeny et al., 2022), of note
several clusters have comparable ORs and exposure profiles, suggesting

Fig. 3. Geographic location of women in France, based on their addresses. Women’s residential address coloured by cluster at all addresses. “Cluster 9, 16, 15”:
associated with women at highest risk; “Cluster 10, 11”: characterised by high exposure to NO2, PCB153, PM2.5 or PM10; “Cluster 3, 4, 6, 13, 19, 10, 21”; char-
acterised by higher exposure levels for cadmium, dioxins and/or BaP; Cluster 2, 5, 7, 18: characterised by exposures relatively close to the overall average for each
pollutant; “Cluster 8, 12, 14, 17”: characterised by high O3 levels and low exposures to other pollutants.
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that there is redundancy in the partitioning of the study population.

5. Conclusion

Overall, this study supports evidence of a positive association be-
tween a mixture of air pollutant exposures and risk of BC, with greater
risk observed for clusters with high concentrations levels of NO2, PMs
and PCB153. BPR was an appropriate model for the present research,
considering women’s levels of risk and air pollutant exposure profiles.
Overall, this is the first time that BPR was applied to estimate the joint
effects of exposure to eight air pollutants on the risk of BC. This study
suggests the importance of considering combinations of air pollutants
when estimating BC risk, in order to identify specific subgroups at high
risk, to inform public health policies and development of preventive
strategies.
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Schulze, M.B., Wennberg, M., Harlid, S., Cairat, M., Kvaskoff, M., Huybrechts, I.,
Romana Mancini, F., 2022. Dietary intakes of dioxins and polychlorobiphenyls
(PCBs) and breast cancer risk in 9 European countries. Environ Int 163, 107213. Doi:
10.1016/j.envint.2022.107213.

Florez-Garcia, V.A., Guevara-Romero, E.C., Hawkins, M.M., Bautista, L.E., Jenson, T.E.,
Yu, J., Kalkbrenner, A.E., 2023. Cadmium exposure and risk of breast cancer: A
meta-analysis. Environ. Res. 219, 115109 https://doi.org/10.1016/j.
envres.2022.115109.
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