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A B S T R A C T

The multi-scale asymptotic method provides a separate description of the viscous and thermal response functions
governing acoustic waves propagation through porous materials. However, these response functions are inher-
ently interdependent for simple porous structures such as slits or tubes – their determination being directly
influenced by the microstructural features of the geometry. This study aims to identify, characterize, and realize
a microgeometry providing the ability to independently modify the viscous and thermal behaviours. A relative
autonomy in the control of these phenomena would make it possible to regulate energy conversion processes
within the structure, which can be either dissipative (e.g., sound absorption) or generative (e.g., thermoacoustic
gain). Among the various microgeometries, cellular solids made by an assembly of cells with solid edges or faces,
packed together so that they fill space, emerge as promising candidates for achieving such a goal. Within the
interconnected cells (pores), the viscous losses are governed by the aperture sizes of the faces (throat section). On
the other hand, the thermal exchanges are closely related to the interface between the fluid and the solid and
consequently to the dimensions of the cells. The identified microstructure is a typical Kelvin cell-based geometry,
modified to account for manufacturing constraints, and characterized by faces with well-defined opening ratio
and thickness. This work presents a model, experimentally validated, to predict the transport parameters of such
cellular solids. It provides a valuable tool for designing microstructures having the attributes to independently
tune thermal and viscous effects for specific application requirements.

1. Introduction

The flow of fluids and diffusion of heat through porous media is
important to a wide variety of environmental and technological pro-
cesses. Practical examples of scientific and technological interest include
the thermal management of battery pack [1], the modelling of sound
absorbing materials [2], energy-conversion devices [3–5] and heat
protective materials’ spectral properties [6,7]. Lotton et al. [8] consid-
ered an accurate analytical solution including a precise quantification of
heat transfer mechanisms in a stack of plates. Hariharan et al. [9]
studied possible improvements of the performance by focusing either on
operational, geometrical or fluid parameters. The geometrical parame-
ters were limited to stack position, stack length and resonator length.
Kuzuu and Hasegawa [10] performed both CFD simulation and nu-
merical heat transfer analysis in a straight channel thermoacoustic to
better understand the non-linear behaviour of the temperature field in a
thermoacoustic engine core. In all case, a better understanding of the

temperature and velocity fields is required to gain insight into the heat
transfer mechanisms and improve the corresponding performance. We
extend this work by considering more specifically the cellular design of
the stack. Recently, there has been a great interest in understanding the
relationship between the transport of fluids and diffusion of heat and the
geometry of porous media [11–14]. Elementary transport processes can
be used to probe the salient features of the pore structure [15–18], and
vice versa [19–24]. Our aim in this paper is to propose a microstructure
that can be used to promote thermal relaxation effects while maintain-
ing viscous dissipation as small as possible in order to achieve a sub-
stantial fraction of Carnot’s efficiency in thermoacoustic engines.

Controlling the geometrical features of porous material/structure
enables the regulation of viscous and thermal phenomena inside the
microstructure. In general, these two phenomena are strictly linked,
because both the viscous and thermal processes inside a porous material
are related to its own microstructure. As an illustration, simple geome-
tries, such as uniform cross-sectional materials, exhibit interdependent
viscous and thermal responses [25]. By changing the radius of a circular
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pore, it is possible to modify both the thermal and the viscous contri-
butions. In general, this also happens for classical acoustical materials
like fibers, open-cell foams, granular.

However, in some cases, it may be important to govern the thermal
or viscous effects independently. For example, in thermoacoustics, the
core of such devices is a particular porous material, referred to as the
stack. The aim is to enhance heat exchange between the oscillating fluid
and its solid matrix while simultaneously reducing viscous losses.

The overall behaviour of porous materials is described through the
dynamic viscous k(ω) and thermal kʹ(ω) permeability, which are two
frequency-dependent complex parameters [13,26]. These parameters
enable the characterization of the visco-thermal interaction between the
solid skeleton and the oscillating fluid. We emphasize, following John-

son et al. [11] and Lafarge et al. [12], that k̃(ω) and k̃
ʹ
(ω) depend on the

tortuosity α∞, the viscous Λ and thermal Λʹ characteristic lengths of the
pore space, the static viscous k0 and thermal k0ʹ permeabilities and the

porosity φ. Accordingly, any estimate of k̃(ω) and k̃
ʹ
(ω) must involve an

estimate of the intrinsic macroscopic transport parameters (φ, k0, k0ʹ, Λ,
Λʹ, α∞) relevant to fluid flow and heat transfer.

In the present paper, our aim is to examine a specific class of ordered
three-dimensional cellular system and, for a large range of geometrical
parameters, to compute the corresponding transport parameters (φ, k0,
k0ʹ, Λ, Λʹ, α∞). By doing so, we hope to test the idea that tuning the cell
size and the aperture ratio of a cellular structure can provide a valuable
alternative to conventional thermoacoustic stacks. It is noteworthy that
the viscous behaviour of such porous materials is closely linked to the
throat section area and, consequently, to the membrane holes. On the
other hand, the thermal behaviour depends on the solid-fluid interface
and, therefore, the cell dimension.

Hence, the model cellular structure employed in our study is pre-
sented in Sec. 2, resulting as a promising candidate for realizing a porous
structure where viscous and thermal behaviour can be independently

tuned. In Sec. 3, we summarize the basic equations used for modelling
visco-thermal properties in a porous material. In Sec. 4, correlation
functions are used to quantitatively link pore structure with transport
properties. In Sec. 5, we analyse the application of the correlation
functions on the specific example of the thermal relaxation θκ and
viscous dissipation θv functions, which are closely linked to k̃(ω) and
k̃
ʹ
(ω). The design and the manufacturing process of the samples is re-

ported in Sec. 6. In Sec. 7, our findings are compared with experimental
data and discussed. The main findings are summarized in the Sec. 8.

2. Three-dimensional cellular structure

Recent developments in additive manufacturing technology (AM)
allow to realize porous material/structure with tailored geometrical
features as well as mechanical and mass transport properties [27–31].
Furthermore, AM technology imposes geometrical constraints that de-
pends on the adopted manufacturing process. An open-celled foam
micro-structural model is defined using a tetrakaidecahedron (Kelvin
model) as a repeated unit-cell (Fig. 1). To account for the need of
structural support imposed by the additive manufacturing process, the
cell walls possess a thickness ξ. The properties of the porous structure are
written as a function of the cell size of diameter Dt and the opening ratio
of the faces t0 =

̅̅̅̅̅̅̅̅̅̅̅
Ao/A

√
, where Ao denotes the opened surface area of

the faces of surface area A. Simulations were performed in the range
0.2 ≤ t0 ≤ 0.7 and 0.003 ≤ ξ/Dt ≤ 0.2 (in agreement with the con-
straints imposed by the manufacturing process, Sec. 5). Furthermore,
due to the symmetry of the microstructure, one can easily recognize that
the numerical computations can be carried out on one-eighth of the
tetrakaidecahedron shown in Fig. 1.

Nomenclature

A Cross-sectional area
[
m2]

cp Fluid specific heat at constant pressure
[

J
kg ⋅K

]

d Sample thickness [m]

Dt Size of the unit cell [m]

e Unit vector [ − ]

f Frequency [Hz], thermoviscous functions [ − ]

i Imaginary unit
k̃n Complex wave number [1 /m]

k̃ Dynamic viscous permeability
[
m2]

k̃
ʹ

Dynamic thermal permeability
[
m2]

K̃ Complex bulk modulus [Pa]
k0 Static viscous permeability

[
m2]

k0́ Static thermal permeability
[
m2]

p Acoustic pressure [Pa]
pup Acoustic pressure in the upper cavity [Pa]
pdw Acoustic pressure in the lower cavity [Pa]
T Acoustic temperature [K]
t0 Face opening ratio [ − ]

v Acoustic velocity [m /s]
Vdw Lower cavity volume

[
m3]

Vup Upper cavity volume
[
m3]

w Scaled velocity vector [ − ]

x Coordinate [m]

xmic Microphone’s position [m]

Greek letters
α∞ High frequency limit of tortuosity [ − ]

γ Specific heat ratio [ − ]

δ Viscous/thermal boundary layer [m]

θ Microgeometrical parameter [ − ]

κ Fluid thermal conductivity
[

W
m ⋅K

]

Λ Viscous characteristic length [m]

Λʹ Thermal characteristic length [m]

μ Dynamic viscosity [Pa⋅s]
ξ Face thickness [m]

ρ Acoustic density
[
kg /m3]

ρ̃ Acoustic complex density
[
kg /m3]

τ Scaled temperature [ − ]

φ Porosity [ − ]

ϕ Scalar potential [ − ]

ω Angular frequency [rad /s]
Ωf Fluid Volume

[
m3]

Ω Total Volume
[
m3]

Subscript
N Viscous
K Thermal
m Mean time variable
s Solid part
1 First order variable
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3. Modeling visco-thermal properties

Consider a fluid-filled porous material with bicontinuous solid and
fluid networks under the excitation of an external harmonic source with
angular frequency ω = 2πf (f is the frequency). In the framework of
linearized acoustics, air being considered as an ideal gas, the air motion
inside the porous material is completely characterized, at the micro-
scopic level, by the values of the acoustic velocity v, the excess pressure
p, the excess density ρ, and the excess temperature T fields. These var-
iables obey the coupled equations of continuity, momentum, energy and
the equation of state in the fluid domain Ωf . In harmonic regime, this
coupled visco-thermal problem can be written as:

μ
(

∇2v+
1
3
∇(∇ ⋅v)

)

− ∇p = iωρmv, (1)

ρm∇⋅v+ iωρ = 0, (2)

κ∇2T = iωρmcPT − iωp, (3)

p
pm

=
ρ

ρm
+

T
Tm

. (4)

In the above equations, i with i2 = − 1 is the imaginary unit. The
physical parameters of the saturating fluid are the dynamic density μ,
thermal conductivity κ, heat capacity cp. At the ambient conditions of
pressure pm and of temperature Tm, the density of the fluid is ρm. In this
treatment, the solid frame displacement may be regarded as motionless.
At the interface between the fluid and solid frame ∂Ωf , the no-slip v = 0
and thermostat T = 0 conditions apply. The isothermal condition (T =

0) is justified owing to a much larger thermal capacity of the solid
matrix with respect to the fluid one [32].

One may identify a scale separation between a small scale l that is
given by the typical pore size Dt and a large scale L that is on the order of
the wavelength λ of the incident sound wave (L ∼ λ/2π). Under this scale
separation, ϵ = l/L≪1, the interplay between the viscous and thermal
effects can be neglected at a first approximation [13]. With the existence
of this scale separation, homogenization theory enables considering the
periodic unit-cell (Fig. 1a) as a Representative Elementary Volume
(REV) and provides theoretical evidence supporting the following
semi-phenomenological relationships for the dynamic viscous k̃ (John-

son et al.) and thermal k̃
ʹ
(Lafarge et al.) permeabilities defined by a

generalized Darcy’s law and its thermal counterpart:

φ〈v〉 = −
k̃(ω)

μ ∇〈p〉, (5)

φ〈T〉 =
k̃
ʹ
(ω)
κ

iω〈p〉, (6)

where 〈⋅〉 defines averaging,

〈⋅〉 =
1
Ω

∫

Ωf

(⋅) dΩ. (7)

The porosity φ is defined as the ratio between Ωf , the volume
occupied by the filling fluid, andΩ, the total volume of the unit-cell: φ =

Ωf/Ω. k̃ and k̃
ʹ
are two frequency-dependent response functions used to

describe sound propagation at the macroscopic level. In the limit of low
frequencies (ω→0), the real constants k0 = lim

ω→0
k̃(ω) and kʹ

0 = lim
ω→0

k̃ʹ(ω)

play the role of the static viscous and thermal permeabilities. In the limit
of high frequencies, the asymptotic expressions for k̃(ω) and k̃ʹ(ω) can be
deduced from the knowledge of the viscous Λ and thermal Λʹ charac-
teristic lengths, together with the high frequency limit of the tortuosity
α∞. The set of these parameters(φ, k0, kʹ

0, Λ, Λʹ, α∞) represent the six
geometrical and transport parameters used as inputs into the analytical
formulation for the complex density ρ̃ and bulk modulus K̃ of the porous
material, as defined by Johnson-Champoux-Allard-Lafarge (JCAL) semi-
phenomenological model (see Appendix A). The link between the dy-

namic permeabilities [k̃(ω),k̃
ʹ
(ω)] and the complex density and bulk

modulus [ρ̃, K̃] can be written as:

k̃ =
δ2ν
2i

ρm
ρ̃ , (8)

k̃
ʹ
=

δ2κ
2i

γ
γ − 1

(
1 −

pm
K̃

)
. (9)

Here, γ is the specific heat ratio, while δν =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2μ/ωρm

√
and δν =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2κ/ωρmcp

√
are respectively the viscous and thermal boundary layers.

The derivation of these equalities [Eqs. (8)-(9)] is reported throughout
Appendix B.

The transport parameters of a porous media are determined on the
three-dimensional periodic unit-cell using a finite element method for
solving three boundary value problems in the pore space (Fig. 1 and
Fig. 2) [33–35].

Fig. 1. Tetrakaidecahedron repeating unit cell illustrating the open-cell structure used in this study [left panel, (a)], together with one-eighth of the unit cell allowing
to reduce the cost of the numerical calculations [right panel (b)].

E. Di Giulio et al.
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1. Scaled Stokes’ problem

The static viscous permeability k0 can be obtained from a scaled
Stokes’ problem with two Ω-periodic unknowns w (vector field) and π
(scalar field) [33]:

− ∇2w+∇π = e, in Ωf , (10)

∇⋅w = 0, in Ωf , (11)

w = 0, on ∂Ωf . (12)

where e is a constant unit vector of the direction in which the flow is
globally driven. The static viscous permeability k0 for the preferential
flow direction e is computed as follows:

k0 = φ〈w⋅e〉. (13)

2. Laplace’s problem

In the high frequency range, the viscous boundary layer becomes
negligible, and the fluid behaves as an inviscid perfect one. According to
the works of Johnson et al. [11], Brown [36], and Avellaneda and
Torquato [37], this problem is equivalent to a boundary value problem
of electric conduction, where the conducting fluid having a constant
conductivity fills the porous media. Laplace’s problem for the scalar
Ω-periodic unknown ϕ can be written, together with the boundary
conditions, as

∇2ϕ = 0 in Ωf , (14)

∇ϕ⋅n = e⋅n on ∂Ωf , (15)

with E = e − ∇ϕ and ϕ are respectively the local electric fields and a
scalar potential. Therefore, the high frequency limit of the tortuosity,
α∞, and the viscous characteristic length, Λ, can be evaluated as

α∞ =
〈E⋅E〉
〈E〉⋅〈E〉

, (16)

Λ = 2

∫

Ωf
E⋅EdΩ

∫

∂ΩE⋅EdS
. (17)

3. Poisson’s problem

The static thermal permeability k0́ is evaluated from a diffusion-

controlled process. Lafarge et al. [12] pointed out the link between
the acoustic fluctuations of temperature and the time derivative of
acoustic pressure, Eq. (6). The static thermal permeability is useful to
describe these thermal effects in the fluid saturating a solid skeleton,
which can be considered as a thermostat. Furthermore, the Poisson’s
problem for the scalar Ω-periodic unknown τ is written as:

∇2τ = − 1 in Ωf , (18)

τ = 0 on ∂Ω. (19)

Using the solution field of this boundary value problem, static ther-
mal permeability kʹ

0 is estimated as k
ʹ
0 = φ〈τ〉.

Porosity and thermal characteristic length are purely geometrical
transport parameters not related to a specific physical field. Their values
can be assessed simply by using their definitions, as

φ =
Ωf

Ω
, (20)

Λʹ = 2

∫

Ωf
dΩ

∫

∂ΩdS
. (21)

It should be noted that due to the symmetry of the periodic unit-cell,
it is possible to utilize only one-eighth of the structure, effectively
reducing the computational expenses involved in the determination of
the solution fields. In this case, the symmetry conditions are used to
replace the periodic conditions on the cut-off boundaries while in the
preferential direction of flow, the periodic conditions are always
maintained (Fig. 2). More specifically, the condition set on each sym-
metric face is: w⋅n = 0 for the scaled Stokes’ problem; E⋅n = 0 for the
Laplace’s problem; ∇τ⋅n = 0 for the Poisson’s problem (Fig. 2).

An example of three solution fields (microscopic velocity, electric
potential and scaled temperature) within the fluid phase of the open-
celled foam micro-structural model under study is reported in Fig. 3.
It is worth noting how the fluid velocity increases in the vicinity of the
wall apertures (Fig. 3a). The same regions have also great influence on
the values of the electric field (Fig. 3b). These areas correspond to the
domain where the viscous losses occur, and greatly influence the values
of the viscous permeability k0, tortuosity α∞, and viscous characteristic
length Λ [Eqs. (16)-(17)]. On the other hand, Fig. 3c highlights the
contribution of the fluid volume within the cells away from the fluid-
solid interface ∂Ω in determining the thermal behaviour of the struc-
ture. To ensure a numerical convergence in the computation of E⋅E [Eqs.
(16)-(17)] the sharp edges were replaced by small smooth fillets with
radius (RF = 0.001 mm) much smaller than the radii of pores and

Fig. 2. Boundary conditions applied to solve the boundary value problems of interest.

E. Di Giulio et al.
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windows [38].

4. Correlations between pore structure and transport properties

Certain porous media with rather simple geometries such as the one
studied in this paper allow analytical calculations of the porosity φ and
thermal characteristic length Λʹ. In the limit of thin walls, ξ→0, the solid
volume at the intersection between faces can be ignored so that the
proposed analytical relationships between the geometric parameters (φ,

Λʹ) and the microstructural descriptors (Dt, ξ, t0) hold almost exactly.
Doutres et al. [39] proposed empirical power laws in 1 /Rw for α∞,

where Rw is defined by the closed pore content of a foam. We then
extend this power law in 1/t0 for α∞ on our periodic unit cell so as to also
include the 1/φ porosity dependency. Similarly, the ratio of thermal
over viscous characteristic lengths Λʹ/Λ is no more constant, when the
opening ratio t0 is decreasing, and also depends on porosity φ. This is
clearly seen in the power law for Λʹ/Λ in 1/t0 and φ. The dimensionless
permeability k0/D2t , was related analytically to d30 where d0 is the
aperture size (Sampson’s law) [40,41]. The prediction for k0 /D2t could
then be extended to ć φt03, where ć is an unknown, but hopefully
calculable, constant scale factor. The dimensionless static thermal
permeability k0ʹ/D2t was analytically related to − ln(1 − φ) for fibrous
media [40], and therefore found to diverge when φ→1. Finite element
computations performed by Hoang and Perrot [42] also shown analogue
results for cellular structures with thin membranes when t0→0.
Furthermore, the inequality k0ʹ/D2t ≥ k0/D2t holds for all φ [37]. All of
these results are consistent with the fit obtained with our data, stating
that the thermal permeability is proportional to the product of power
laws in φ and t0 for the open-celled cellular structure in situations
departing from ξ/Dt→0. All the correlations functions that relate the
dimensionless macroscopic properties (φ, Λʹ/Dt, Λʹ/Λ, α∞, k0 /D2t , k0

ʹ

/D2t ) to pore-structure (t0, ξ/Dt) parameters are summarized in Table 1.
A distinction can then be made between dimensionless visco-inertial (k0
/D2t , α∞, Λ/Dt) and thermal (k0ʹ/D2t , Λʹ/Dt) parameters when plotting
them with the porosity φ against the opening ratio t0 and the dimen-
sionless wall thickness ξ/Dt (Fig. 4). It is clearly seen that the walls
opening ratio t0 is the pore-structure parameter that mostly determine
the material’s visco-inertial (Fig. 4.a, 4.c, 4.e) and thermal (Fig. 4.b, 4.d,
4.f) properties, compared to the wall thickness ξ/Dt. It is also of interest
to mention that the wall thickness ξ/Dt is comparatively more influent
on the thermal parameters than on the visco-inertial ones (Fig. 1).
However, in the studied range of parameters, 0.2 ≤ t0 ≤ 0.7 and

0.003 ≤ ξ/Dt ≤ 0.2, it turns out that the effect of the wall thickness ξ/Dt

is small on thermal characteristic length Λʹ/Dt and permeability k0ʹ/D2t ,
so that these parameters tend to be relatively non-sensitive to the wall
thickness ξ/Dt values.

5. Tuning thermal and viscous exchanges

Sec. 3 gives an explicit recipe for the numerical calculation of the

viscous k̃ and thermal k̃
ʹ
response functions from the knowledge of the

microstructure parametrized by the cell diameter Dt , the wall thickness ξ
and the aperture ratio t0. However, there was still a need, in particular
for open-celled cellular structures that can be obtained using additive
manufacturing, for simple and compact analytical models that enable
the viscous and thermal exchanges of these porous materials to be un-
derstood on the basis of microstructural parameters. For that purpose,
we carried out systematic calculations in Sec. 4 to provide direct re-
lations between the macroscopic transport parameters (φ, k0, ḱ0, Λ, Λʹ,
α∞) and the microstructure coefficients Dt, ξ/Dt and t0 (Table 1 and
Fig. 4). This micro-structural model employed a Kelvin-like model ge-
ometry (Sec. 2) which is adapted to account for some constraints
induced by additive manufacturing, by taking into account not only the
size Dt and opening ratio t0 of the repeating unit cell, but also the cor-
responding wall thickness ξ. The effect of these size parameters on the

Fig. 3. Fields of (a) the scaled velocity w under the application of a macroscopic driving force e; (b) the electric potential ϕ corresponding to a unit differential
stimulus e, and (c) the scaled temperature field τ.

Table 1
Transport parameters’ correlations for the open-celled foam micro-structural
model shown in Fig. 1, considering a wall of thickness ξ/Dt which can be cho-
sen to make the structure manufacturable. R-squared is the coefficient of
determination, while SSE denotes the sum squared errors of residuals.

Correlation R-Squared SSE

φ = 1 −
9
16

(
1 + 2

̅̅̅
3

√ )(
1 − t20

) ξ
Dt

0.9875 0.01649

Λʹ

Dt
=

2φ

6
(
1 − t20

)
+

ξ
Dt

0.9534 0.03528

Λʹ

Λ
= (φ)0.2468

(
1
t0

)0.9609 0.9556 3.254

α∞ = 0.6668(φ)− 0.4703
(
1
t0

)0.9678 0.9641 1.984

k0
D2t

= 0.03249φt30
0.9974 2.334e-6

ḱ0
D2t

= 0.04023φ3.265t2.4940 + 0.01097
(

ξ
Dt

)− 0.07873 0.9778 4.506e-5

E. Di Giulio et al.
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thermal and viscous exchanges is demonstrated in this section, and the
advantages of this more general micro-structural model for thermo-
acoustic applications are illustrated. To derive the associated viscous
and thermal frequency-dependent terms, we followed closely Swift [3]
(Sec. 5.1.1, Eq. 5.10) for acoustic power dissipation without “carrying
heat” from a temperature gradient inside the stack (porous material),
which led us to the following dimensionless viscous dissipation θν and
thermal-relaxation θκ functions (see Appendix B):

θν = δ2ν
ℜ[k̃]
|k̃|2

, (22)

θκ =
2
δ2κ
R[k̃

ʹ
]. (23)

Here, ℜ denotes the real part of a complex number. The latter dimen-
sionless functions θν and θκ are important to build understanding,
through a quantitative discussion. Indeed, the viscous losses and the
thermal relaxation processes inside a porous material may either

contribute to an energy dissipation or to a thermoacoustic energetic
gain.

The effect of the value of the opening ratio t0 of the walls of the unit
cell is illustrated in Fig. 5, where the other parameters of the tetrakai-
decahedron, the unit cell diameter Dt and the wall thickness ξ, are kept
to the same values (Dt = 2 mm, ξ/Dt = 0.1). Increasing the opening ratio
t0 by a factor of 2.4 significantly decreases the viscous dissipation factor
θν of about tenfold. On the other hand, increasing the opening ratio t0 by
a factor of 2.4 has a relatively little effect on the thermal-relaxation
factor θκ. The thermal-relaxation factor θκ increased by a factor of
about 1.2 in the vicinity of the thermal transition frequency fκt =

κφ/2πρmcpk0́, where both isothermal and adiabatic regimes coexist.
Importantly, we therefore note that increasing the opening ratio t0 is
therefore a mean for reducing viscous dissipation (loss in acoustic
power) while maintaining the thermal exchanges to a similar order of
magnitude.

The effect of wall thickness ξ is documented in Fig. 6, in which the
viscous dissipation θν and thermal-relaxation θκ functions are displayed
for different values of this parameter, namely 100, 200 and 360 µm. The

Fig. 4. Dimensionless transport parameters versus wall thickness ξ/Dt and aperture ratio t0. On the left column, the visco-inertial parameters: (a) the high frequency
limit of the tortuosity α∞, (c) the dimensionless viscous characteristic length Λ/Dt , (e) the dimensionless static viscous permeability k0/D2t . On the right column, the
porosity and thermal parameters: (b) the porosity φ, (d) the dimensionless thermal characteristic length Λʹ/Dt , (f) the dimensionless static thermal permeability
kʹ0/D

2
t .

E. Di Giulio et al.
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influence of wall thickness was quantitatively small on the viscous
dissipation θν, presumably because visco-inertial effects are dominated
by the opening ratio t0 and to a lesser content by porosity (see Table 1, d-
e and a). Around the thermal transition frequency fκt, lowering the wall
thickness ξ slightly increases the thermal-relaxation factor θκ by a factor

of about 1.35. The results from this study suggest that it is preferable to
avoid too thick walls when manufacturing the corresponding unit cells.

Finally, we note that the plot of the viscous dissipation θν and
thermal-relaxation θκ functions versus frequency for three different cell
diameters Dt (Dt = 2, 3 and 4 mm) using constant opening ratio t0 in-

Fig. 5. Viscous dissipation θv (left y-axis) and thermal-relaxation θk (right y-axis) functions versus frequency for three different aperture ratio t0, as shown in the
legend of the plot on the right, at constant dimensionless wall thickness ξ/Dt of 0.1 and cell size Dt equal to 2 mm.

Fig. 6. Viscous dissipation θv (left y-axis) and thermal-relaxation θκ (right y-axis) functions versus frequency for three different dimensionless wall thickness ξ /Dt, as
shown in the legend of the plot on the right, at constant opening ratio t0 of 0.4 and cell size Dt equal to 2 mm.
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dicates that increasing the cell size (by a factor of two) both decreases
the viscous dissipation θν (by a factor of two) and shifts the maximal
thermal-relaxation coefficient θκ to lower frequencies (by a factor of
about 2.4) – at constant relaxation coefficient θκ; Fig. 7. Because the cell
sizes are increased at constant opening ratio t0, the aperture radii are
proportional to the cell size Dt , which leads to the observed viscous
dissipation θν drop. In contrast, when ξ/Dt and t0 are fixed to given
values, the ratio Λʹ/Dt is expected to be a constant (Table 1) and the
corresponding variation in the amplitude of θκ to be negligible. In the
case of constant opening ratio t0, the larger the pore size Dt, the lower
the viscous dissipation θν, but we get as a consequence that the fre-
quency at which the maximal thermal-relaxation coefficient θκ occurs is
also lowered.

6. Design and manufacturing of samples

The tetrakaidecahedron (Kelvin cell) models (Sec. 2, Fig. 1) are
generated using a Computer-Aided Design (CAD) software (PTC Creo)
with Dt , ξ and to as input geometrical parameters. The corresponding
elementary periodic volume is translated and combined with Boolean
operations to convert the solid skeleton into a cylindrical sample. Three
samples are printed using Dt = 8 mm, ξ = 0.8 mm and to = 0.25 for
sample 1 (S1), to = 0.4 for sample 2 (S2) and to = 0.6 for sample 3 (S3).
The diameter of the samples is 100 mm, and the thickness is equal to
60 mm. The representative unit cells and the corresponding cylindrical
samples are shown in Fig. 8. The CAD software is also used to generate
the files providing the instructions to the printer.

Fig. 7. Viscous dissipation θv (left y-axis) and thermal-relaxation θκ (right y-axis) functions versus frequency for three different cell sizes Dt, as shown in the legend of
the plot on the right, at constant opening ratio t0 of 0.4 and dimensionless wall thickness ξ/Dt equal to 0.1.

Fig. 8. Geometric models of 3D membrane structures obtained using the three unit cells marked as S1, S2 and S3.
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The Fusel Deposition Modelling (FDM) Prusa i3 MK3 printer is used
to produce samples (with a diameter of 100 mm and a thickness of
60 mm). The extruded material is polylactic acid (PLA). The diameter of
the nozzle is dn = 400 μm. The revolution axis of the sample is placed
vertically. The nozzle temperature is set to 210oC. The printing speed is
45 mm/s, and Table 2 reports the employed process parameters.

The printer nozzle extrudes a layer of rods in the horizontal plane,
then the build plate shifts vertically and allows the next layer to be
printed. The build plate displacement is set to 200 μm.

7. Experimental results and discussion

In order to characterize the viscous k̃ and thermal k̃́ response func-
tions of the manufactured samples, we have used an experimental setup
previously developed to improve the accuracy of the measurements in
the low frequency range [43,44]. The technique relies on the lumped
element approach. Figs. 11 and10 show the experimental setup used to
characterize the dynamic viscous k̃ function and the dynamic thermal k̃ʹ
function, respectively. The measurement procedure relies on two
distinct acquisitions for each response function: one measurement
where the sample is filling the cavity downward the loudspeaker (full,
left panel) and one measurement end without the sample (empty, right
panel). The “empty” tests correspond to a correction accounting for
imperfect rigid backing or for the effect of radiation impedance with the
open termination. By leveraging different boundary conditions (open
termination or rigid backing) and measuring the acoustic pressure field
in both the lower cavity pdw and the upper cavity pup, it is possible to
provide an experimental estimate of the dynamic mass density ρ̃ and the
dynamic bulk modulus K̃ of the manufactured samples, as:

ρ̃ = φ

(

ρm +
γpmA

ω2Vdw(d − xmic)

[(
pup
pdw

)

full
−

(
pup
pdw

)

empty

])

, (24)

K̃ =
γpm

1
φ
−

Vdw

Vupφ

[(
pup
pdw

)

full
−

(
pup
pdw

)

empty

],
(25)

where d and A are respectively the thickness and the cross-sectional area

of the sample, xmic is the microphone’s position (relevant for the com-
plex density measurement); Vdw and Vup are the lower and upper cavity
volume. This method is limited to the low frequency range and must

satisfy |k̃nd| < 0.5 where k̃n = ω
̅̅̅
ρ̃
K̃

√

is the complex wavenumber of the

compressional wave propagating inside the sample. Once ρ̃ and K̃ are
known, similar frequency-dependent response functions can be ob-

tained; like k̃ and k̃
ʹ
, fν and fκ or θν and θκ (Appendix B).

7.1. Comparison with experimental results

In Figs. 13, 14 and 15, the real and imaginary parts of the viscous k̃

and thermal k̃
ʹ
permeabilities are plotted versus the frequency in order to

compare both modelled and measured data for the three manufactured
samples S1, S2 and S3, respectively. More details on the assessment of
the measurement uncertainties are reported in Supplementary Material.
These figures suggest the following comments: (i) as expected, the
modelled and measured data are generally in good agreement; (ii) the
dispersion of the experimental results increases with decreasing fre-
quency. These dispersions of the experimental data in the lower fre-
quency range are attributed to the acoustic source, which was not
specifically designed to operate in the low frequency range (like a
woofer). A better appreciation of the behaviour of the dynamic viscous k̃

and thermal k̃
ʹ
permeabilities can be obtained by an approximate

calculation of the viscous fνt = μφ/2πρmα∞k0 and thermal fκt =
κφ/2πρmcpk0́ transition frequencies equal to 3 Hz and 25 Hz for S1, 3 Hz
and 10 Hz for S2, 2 Hz and 4 Hz for S3, respectively. These values
reveal that the observed frequency-dependent properties essentially
correspond to their high frequency behaviour. This is not surprising
because the viscous fνt and thermal fκt transition frequencies are pri-
marily governed by their respective viscous k0 and thermal k0ʹ static
permeabilities that are related to the square of the cell size Dt (k0 ∼ D2t ,
k0́ ∼ D2t ) and are drastically increasing with the opening ratio

(k0D2t ∼ t30,
kʹ0
D2t

∼ t2.50 ; Table 1). The tortuosity α∞, which appears at the
denominator of fνt is comparatively less influenced by the opening ratio

to

(

α∞ ∼

(
1
t0

)0.97
)

. This reflects the fact that the cellular structures

were manufactured with large cell sizes (Dt = 8 mm) and opening ratios
0.25 ≤ t0 ≤ 0.6, a choice which was largely influenced by the
manufacturing constraints of the FDM technology. Another motivation
which led us to choose relatively large cell sizes and opening ratios was
related to the objective of promoting thermal relaxation effects θκ

[θκ ∼ ℜ(k̃
ʹ
), Eq. (23)] but on the other hand at minimal viscous dissi-

pation effects θν (which suggests increasing k0 with a large t0 at constant
Dt , as discussed earlier).

Table 2
List of AM process parameters - held factors.

Factor Value

Process/Printing Temperature ( ◦C) 210
Layer Height (µm) 200
Bed Temperature ( ◦C) 60
Printing Speed (mm/s) 45

An image of the 3D printed samples is reported in Fig. 9.

Fig. 9. An image of 3D printed membrane structures for experimental tests.
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Fig. 10. Schematic illustration of the acoustic lumped element setup used to measure the complex bulk modulus for the full configuration (left panel), and the empty
configuration (right panel).

Fig. 11. Schematic illustration of the acoustic lumped element setup elaborated to experimentally evaluate the complex density from the full configuration (left
panel) and the empty configuration (right panel).

Fig. 12. Illustration of the three manufactured samples of three-dimensional cellular structures: (a) S3, Dt = 8 mm, ξ = 0.8 mm and t0 = 0.6; (b) S2, Dt = 8 mm, ξ =

0.8 mm and t0 = 0.4; (c) S1, Dt = 8 mm, ξ = 0.8 mm and t0 = 0.25.
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Finally, in Fig. 16 we compare directly the experimental and theo-
rical values of the thermal relaxation θκ and viscous dissipation θν
functions. The experimental data are generally in good agreement with
the vertical shift towards lower viscous dissipation θν as predicted by the
model when increasing the opening ratio t0 (from t0 = 0.25 for S1, to t0
= 0.4 for S2 and t0 = 0.6 for S3). It is seen from Fig. 16.b that the
measured viscous dissipation θν is larger than the predicted one for the
case of the third manufactured sample S3 characterized by the largest
opening ratio (t0 = 0.6). This behaviour is attributed to the presence of
filaments, which are visible on the pictures of the manufactured cellular
samples in Fig. 12 and are well known as an artefact of the additive
manufacturing process [20]. Clearly, the effect of obstruction due to the
presence of filaments becomes significant as we go to larger opening
ratio. While the smallest windows of the manufactured sample S1
(Fig. 12.c) were apparently not affected by filaments, their presence is
visible on the largest windows of all the manufactured samples (Fig. 12.
a-c) which could contribute to lower the viscous permeability k0 and
increase the viscous dissipation θν of the cellular structure S3 having the
largest throats. We also note that, as the frequency increases, the
experimental values of θν starts to deviate from the model, in line with
the previously mentioned limitations of the experimental method where
the frequency validity range assumes that |k̃nd| < 0.5. By contrast, as
predicted by the model, the thermal relaxation process is essentially
controlled by the cell size Dt and not significantly influenced by the
opening ratio t0 (Fig. 5), which results in experimental values of the
thermal relaxation θκ that are following the same trend (Fig. 16.a).

It is quite interesting to see that the key points of this research work
are clearly validated by the experimental data provided throughout
Fig. 16. Indeed, viscous dissipation θν can be modulated and reduced by
increasing the opening ratio t0 while maintaining and controlling the

thermal relaxation processes θκ to a significant level by playing on the
cell size Dt, some trends fairly well described by our model and the
corresponding proposed cellular structure.

8. Summary and conclusions

The main findings of this study are summarized in the following:

(1) A unified set of transport and diffusion calculations have been
carried out on a family of realistic three-dimensional cellular
structures; the tetrakaidecahedron unit cell parameterized with
the cell size Dt, the opening ratio of the faces to and the thickness
of the walls ξ.

(2) The model studied here provides an excellent candidate for ad-
ditive manufacturing technologies and allows the modelling of
viscous-thermal properties to be tested against experimental
measurements.

(3) Correlations between the geometrical parameters of the cellular
structure (Dt , to, ξ) and the transport properties characterizing
visco-inertial and thermal effects (k0 k0ʹ, φ, Λ, Λʹ, α∞) were also
derived; they can be useful to avoid repeating our calculations.

(4) These structure-property relations were then used to study ther-
mal and viscous exchanges in terms of frequency-dependent
response functions, such as the dimensionless viscous dissipa-
tion θv and thermal relaxation θk suggested by Swift et al. [3] in
the context of thermoacoustic.

(5) The results shown in this study proved that the proposed cellular
structure is an excellent way to promote thermal-relaxation
processes while reducing viscous dissipation that could be
detrimental to thermal-acoustic conversion; increase the cell size

Fig. 13. Comparison between experimental results and the proposed modelling approach for the first manufactured cellular structure, S1. Circular points account for
the mean values and the error bars stand for the measured standard deviations. The continuous black line corresponds to the real and imaginary parts of the

frequency-dependent viscous permeability k̃ (left panel) and thermal permeability k̃
ʹ
(right panel).
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Fig. 14. Comparison between experimental results and the proposed modelling approach for the second manufactured cellular structure, S2. Circular points account
for the mean values and the error bars stand for the measured standard deviations. The continuous black line corresponds to the real and imaginary parts of the

frequency-dependent viscous permeability k̃ (left panel) and thermal permeability k̃
ʹ
(right panel).

Fig. 15. Comparison between experimental results and the proposed modelling approach for the third manufactured cellular structure, S3. Circular points account
for the mean values and the error bars stand for the measured standard deviations. The continuous black line corresponds to the real and imaginary parts of the

frequency-dependent viscous permeability k̃ (left panel) and thermal permeability k̃
ʹ
(right panel).
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Fig. 16. Comparison between the experimental data and the model (a) for the thermal θκ and (b) viscous θν relaxation parameters.
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Dt and control the opening ratio to in a relatively independent
manner.

(6) The model system studied here, while relatively simple, opens a
new avenue in the thermal-acoustic domain, suggesting a way to
significantly improve the overall energy efficiency of thermoa-
coustic engines when compared to conventional stacks.

CRediT authorship contribution statement

Elio Di Giulio: Writing – review & editing, Writing – original draft,
Visualization, Software, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization. Cong Truc Nguyen: Software,
Conceptualization. Antonio Gloria: Writing – review & editing, Visu-
alization, Validation, Supervision. Camille Perrot: Writing – review &
editing, Data curation, Conceptualization. Raffaele Dragonetti:
Writing – review & editing, Validation, Supervision, Investigation,

Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknoledgments

None

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ijheatmasstransfer.2024.126076.

Appendix A. JCAL model

Johnson et al. [11] provided a formulation of the dynamic viscous permeability (equivalent to the dynamic tortuosity) to describe the visco-inertial
behaviour of a porous material. Three transport parameters, depending on the micro-geometrical features were introduced: the viscous and thermal
characteristic lengths Λ and Λʹ, the high frequency limit of the tortuosity α∞. These parameters influence the high frequency range of the viscous
response function k̃ν (equivalent to ρ̃), where the inertial forces dominate over the viscous ones. While the static viscous permeability k0 (equivalent to
the airflow resistivity σ = μ/k0) characterizes the low frequency behaviour where viscous frictions predominate. Champoux and Allard [45]
contributed to the thermal characterization of a porous medium. Subsequently, Lafarge et al. [12] introduced a fundamental parameter to complete
the low frequency description of the thermal behaviour: the static thermal permeability ḱ0, that together with the thermal characteristic length Λʹ

delineate the thermal response function k̃
ʹ
(or K̃) respectively in the low (isothermal) and high (adiabatic) frequency range. Further parameter is the

porosity φ. The relations are reported in the following:

ρ̃ = α∞ρm

⎡

⎣1+
μφ

iωρmα∞

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ i
4α2∞k

2
0ρmω

μΛ2φ2

√ ⎤

⎦, (A.1)

K̃ =
γpm

γ − (γ − 1)

⎡

⎣1 − i
φκ

k’
0cpρmω

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ i
4k’

0
2cpρmω

κΛ’2φ2

√
√
√
√

⎤

⎦

.

(A.2)

Appendix B. Relations between dynamic permeabilities, thermo-viscous functions, and complex density and bulk modulus.

This appendix details the mathematical relationships between several ways to describe a porous material’s viscous and thermal properties.
Dragonetti et al. [46] pointed out the link between the complex density ρ̃ and bulk modulus K̃ and the thermo-viscous functions fν and fκ:

ρ̃ =
ρm

1 − fν
, (B.1)

K̃ =
γpm

1+ (γ − 1)fκ
. (B.2)

The general solution of the linearized 1D momentum equation is expressed as

dp1
dx

= −
iωρm
1 − fν

〈v1〉. (B.3)

By combining Eqs. (B.3) and (5), it follows that

k̃(ω) = φ
δ2v
2i

(1 − fν) = φ
δ2v
2i

ρm
ρ̃ . (B.4)

Furthermore, the linearized 1D energy equation yields

〈T1〉 =
p1

ρmcp
(1 − fκ). (B.5)
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This last equation, together, with Eq. (6), provides the link between the dynamic thermal permeability k̃
ʹ
, the complex bulk modulus K̃ and the

dynamic thermal function fκ:

k̃
ʹ
= φ

δ2κ
2i

(1 − fκ) = φ
δ2κ
2i

γ
γ − 1

(
1 −

pm
K̃

)
. (B.6)

Therefore, Eqs. (B.1) and (B.2) can be combined with relationships (B.4) and (B.6) to predict the dynamic permeabilities k̃ and k̃
ʹ
.

In thermoacoustics, Swift [3] highlighted the importance of thermoviscous functions to assess the viscous losses and the thermal relaxation
processes inside a porous material. The viscous Ė˙ν and thermal Ė˙κ energy dissipations can be written as follow [2,3,47]

dĖ˙ν
dx

= −
iωρm
A

θν|U1|
2
, (B.7)

dĖ˙κ
dx

= −
γ − 1
γpm

ωA θκ|p1|2. (B.8)

θν and θκ represent respectively the microgeometrical viscous and thermal factors. They allow to consider the influence of the material’s micro-
geometry on the energy dissipation processes. In particular, they can be expressed as

θν =
ℑ[− fν]
|1 − fν|2

, (B.9)

θκ = I[− fκ]. (B.10)

In Eqs. (22) and (23) for consistency in the treatment, these parameters are reported as function of the dynamic permeabilities, remembering Eqs.
(B.4) and (B.6).
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