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Abstract
A challenge in aircraft design optimization is the presence of non-computable, so-called hidden, constraints that do not 
return a value in certain regions of the design space. In this paper, we present a novel method to handle hidden constraints in 
aircraft conceptual design using Bayesian optimization. The method entails modifying a portion of the acquisition function 
of a Bayesian optimization formulation using supervised machine learning classifiers. The proposed approach reduces the 
effect of classifiers on exploration, therefore allowing the optimization algorithm to consider regions of the design space 
where previous information is not available. In addition, we consider different classifiers for handling hidden constraints. 
We demonstrate the proposed method using two simulation-based aircraft design optimization problems related to landing 
gear sizing and aircraft performance. The obtained results show an improvement of the objective function with fewer func-
tion evaluations.

Keywords  Bayesian optimization · Expected improvement · Hidden constraints · Simulation failure · Machine learning 
classification · Aircraft design

1  Introduction

Aircraft development is a complex process that involves 
significant investment over multi-year design phases. This 
necessitates a strict approach for decision making that mini-
mizes errors and the need for design re-work. The first of 
an aircraft’s design phases is named the conceptual design 
phase and entails selecting the aircraft configuration and the 
major design parameters. It is estimated that about 70% of 
the projected life-cycle cost of an aircraft can be committed 

based on design decisions taken during the conceptual 
design stage of the design process (Sadraey 2012; Geddes 
et al. 1992). Therefore, aircraft manufacturers rely heavily 
on tools to simulate and improve an aircraft’s conceptual 
design and have been increasingly bringing disciplines typi-
cally done in later design stages into the early conceptual 
design phase (Curran et al. 2005; Henderson et al. 2012; 
Piperni et al. 2013; Tfaily and Kokkolaras 2018). In addition 
to adding simulation disciplines to early design phases, air-
craft designers have relied on optimization algorithms since 
the 1970s to aid in solving problems within specific aircraft 
disciplines or to address overall multidisciplinary problems 
by means of multidisciplinary design optimization (MDO) 
(Torenbeek 2013). MDO algorithms have been extensively 
studied and exploited on aircraft design applications, for 
example, for solving complex aero-structural interactions of 
complete aircraft configurations captured using high-fidel-
ity models (Reuther et al. 1999), or for solving conceptual 
design problems using lower-fidelity models that address 
a large number of disciplines (Piperni et al. 2013). Typi-
cal optimizations in aircraft design involve failed (crashed) 
simulations that prevent the completion of an optimization 
or its convergence. A failed simulation in an optimization is 
defined as a simulation that terminates unexpectedly result-
ing in an error in the outcomes of the optimization. In this 
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work, we refer to these failed simulations in an optimization 
as hidden constraints. Hidden constrains are not explicitly 
known to an optimization solver as per (Le Digabel and Wild 
2023). In aircraft design optimization, such simulation fail-
ures can happen due to several reasons ranging from failure 
of an aerodynamic solver to converge (Slotnick et al. 2014; 
Martins 2022) to limitations in black box simulations that 
cause crashes such as engine performance evaluation (Bus-
semaker et al. 2021).

Surrogate-based optimization (SBO) refers to a class of 
methods where typically lower-fidelity physics- or data-
based models are used in lieu of higher-fidelity models 
under the premise that the former are less computationally 
expensive and/or smoother than the latter. Model surrogates 
can be constructed during the optimization process. In this 
work, we consider the Bayesian optimization (BO) para-
digm where Gaussian processes (GP) are used to model the 
objective and constraint functions. BO has become a popu-
lar method for solving optimization problems in aerospace 
engineering design (Lam et al. 2018; Priem et al. 2020; Jim 
et al. 2021; Saves et al. 2022).

Handling hidden constraints in BO algorithms has been 
identified and investigated recently in Lee et al. (2011), Gel-
bart et al. (2014), Sacher et al. (2018), Tran et al. (2019), 
Antonio (2019), and Bachoc et al. (2020). A hidden con-
straint typically appears when simulations within an optimi-
zation crash which makes them not quantifiable and difficult 
to handle. Lee et al. (2011), used a random forest classifier 
to calculate a feasible probability and integrated the classi-
fier within an expected improvement (EI) acquisition func-
tion. In Sacher et al. (2018), the authors extended a method 
developed by Basudhar et al. (2012) to handle hidden con-
straints within BO. The authors use a least-squares support 
vector machine technique for classification of both known 
and hidden constraints which is used to model the boundary 
of the feasible design space of an efficient global optimiza-
tion problem. Gelbart et al. (2014) proposed a framework to 
perform BO under hidden constraints using a probabilistic 
approach where constraint satisfaction can be determined 
by meeting a probability of feasibility threshold. In Antonio 
(2019), the author presents a sequential BO framework for 
problems that are undefined or partially outside the feasible 
region. The framework uses a support vector machine clas-
sification method to estimate the boundary of the feasible 
design space which is then used to construct surrogate mod-
els of the objective function. Tran et al. (2019) proposed 
the use of an external classifier using Gaussian processes 
that determines a probability of feasibility. The calculated 
probability is then used to condition the acquisition func-
tion directly similar to the approach proposed in Lee et al. 

(2011). Bachoc et al. (2020) developed a Gaussian process 
classifier and applied it on a modified EI acquisition func-
tion. The authors then provided proof of global convergence 
of the approach. Audet et al. (2020) proposed the use of 
k-nearest neighbors classifiers to build surrogate models that 
guide a mesh adaptive direct search optimization algorithm.

Existing methods do not favor exploration of the feasi-
ble domain (to reach better optimization solution) as most 
existing approaches handle hidden constraints without 
using variance information. In this paper, we propose a 
novel method to handle hidden constraints and present its 
application on industrial test cases. The proposed method 
entails modifying a portion of the acquisition function of 
a Bayesian optimization framework by using supervised 
machine learning classifiers. The approach is shown to be 
efficient and encouraging the classifiers to favor explo-
ration, therefore allowing the optimization algorithm to 
consider potentially better regions of the design space and 
where previous information is not available.

The paper is organized as follows. Section 2 presents 
hidden constraints in aircraft design optimization and two 
aircraft design optimization applications with hidden con-
straints. Section 3 describes the following: BO algorithm 
with and without hidden constraints, the proposed acqui-
sition function to handle hidden constraints, supervised 
machine learning (ML) classifiers modeled to represent 
hidden constraints, and an analytical illustration example. 
Aircraft design problems results are presented in Sect. 4 
where we compare optimization results of the proposed 
acquisition function with existing methods using several 
types of ML classifiers. Conclusions and perspectives are 
given in Sect. 5.

2 � Hidden constraints in aircraft conceptual 
design

Hidden constraints in aircraft design optimization are depend-
ant on the type of problem to be solved but can be generalized 
into two categories: (1) inability of models to generate solu-
tions, (2) failure in simulation models due to physics-based 
limitations, bugs in the models, or architecture and software 
implementation of the models. An example of the first cat-
egory is an aerodynamic optimization where the CFD solver 
may not converge due to complex flow fields and geometries 
therefore returning an error to the optimizer (Martins 2022). 
Another similar example would be a computer aided design 
(CAD) modeler’s or mesh generator’s inability to create mod-
els for the aerodynamic solver thus causing a failure (Gam-
mon 2018). The second category applies to simulation codes 
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where failures occur due to either errors in a black box code 
or regions of the design space that cannot return a value due to 
the physics of the problem at hand. An example of such is pre-
sented in Feliot et al. (2016) when performing an optimization 
for an aircraft environment control system. In the considered 
problem in Feliot et al. (2016), certain designs can lead to 
supersonic solutions for which the values of temperatures and 
pressures predicted by the environment control system model 
are considered as simulation failures. We consider such models 
as non-robust models since known constraints should be cre-
ated to prevent simulation failure. We note however, that there 
could also be a third category of hidden constraints which 
could be driven by other reasons for simulation failures that 
are considered random such as infrastructure related issues. 
An example we encountered where communication issues 
between a cloud computing platform and simulation models 
caused failures of some iterations of an optimization. Such 
failures must be addressed differently from what we consider 
as hidden constraints in this paper, that is by solving the issues 
causing such failures. We note that designers are required to 
perform thorough investigations to understand the type of hid-
den constraints present in their optimization problems prior to 
using hidden constraint algorithms that may alter optimization 
results. In addition, an understanding of simulation failures 
after every optimization is necessary to ensure the validity of 
results; this is particularly important for cases where random 
simulation failures, grouped under the third category of hidden 
constraints, may have occurred during optimization. We do 
not address the first category of hidden constraint problems in 
the test cases of this paper (i.e., inability of models to generate 
solutions such as CFD-based aerodynamic design optimiza-
tion) as there is a dedicated field of research to increase solver 
robustness as discussed in Martins (2022). We target instead 
the second category of hidden constraints, i.e., black box simu-
lation models with failure, and consider aircraft applications 
of this category.

In this paper, we use a simulation-based aircraft conceptual 
design optimization problem as the application to demonstrate 
hidden constraints by leveraging Bombardier’s multilevel mul-
tidisciplinary optimization framework (Piperni et al. 2013). 
The chosen aircraft is based on the Bombardier Research Air-
craft (BRAC) discussed in Reist et al. (2019) and Priem et al. 
(2020), see Fig. 1. The problem is a minimization of aircraft 
maximum takeoff weight (MTOW) using 12 design variables 
and subject to 12 inequality constraints. The optimization 
problem is formulated as follows:

(1)
{minimize

x∈Ω
MTOW(x)

subject to c
i
(x) ≤ 0, i = 1,… , 12,

where MTOW represents the aircraft maximum takeoff 
weight, x ∈ Ω , defined as the design space ⊂ ℝ

12 , is the 
vector of the design variables (see Table 1 for a detailed 
description) which are all bounded, and ci(x) i = 1,… , 12 
are the inequality constraints described in Table 2.

The extended design structure matrix (XDSM) Lambe 
and Martins (2012) of the two problems considered in 
Sects. 2.1 and 2.2 is presented in Fig. 2. The MDO environ-
ment uses the optimization framework described in Sect. 3 
that interfaces with an aircraft multidisciplinary analysis 
(MDA) environment. This MDA environment is comprised 
of sizing and simulation models of all major disciplines in 
aircraft conceptual design.

The MDA uses design variables defined by Table 1 to 
first size aircraft engines (using a reference engine), wings, 
and structures (based on a reference structure) and performs 
low-speed and high-speed aerodynamics analyses. Then an 
aircraft balancing MDA loop is performed by assessing 
the mission performance of the sized aircraft based on fuel 

Fig. 1   3D model of the BRAC aircraft used in the two industrial 
application problems

Table 1   A list of the design variables related to the aircraft concep-
tual design

Design variables Description

x1 Rubber engine scaling factor
x2 Wing aspect ratio
x3 Wing area
x4 Wing trailing edge sweep
x5 and x6 Wing rear spar chord-wise location
x7 Wing sweep
x8 Wing taper ratio
x9,… , x12 Wing thickness-to-chord ratios
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volume calculations, fuel burn curves, weight estimation of 
all aircraft components, tail sizing, and center of gravity 
envelopes. The balanced aircraft is then used to perform 
constraint checks in landing gear and flight control systems 
volumetric codes. The results of the MDA are fed back to 
the optimizer that collects all MDA parameters and quanti-
ties of interest and associated design variables are obtained. 
The optimization process is performed by firstly defining a 
reference aircraft as a starting point and used later on a refer-
ence for engine and structures scaling and secondly defining 
the bounds of the design variables to meet aircraft design 
requirements which are defined as part of the constraints. 
It is noted that in this industrial MDO environment, any 
improvements of the minimum relative to the starting air-
craft are deemed beneficial, for example, a 15% reduction 
in MTOW between the starting aircraft and the obtained 
minimum after optimization is considered a significant 
improvement. Due to Bombardier intellectual property 

considerations, some industrial cases have been modified 
and reproduced for the purpose of this work.

In the following subsections, we present descriptions 
of the two aircraft design problems subject to hidden con-
straints that will be used in this paper as the industrial 
applications.

2.1 � Landing gear sizing simulation

For the first problem, a landing gear code from Tfaily et al. 
(2013) was added to simulate a hidden constraint which is 
comprised of the following subroutines:

•	 Positioning subroutine: ground contact point positioning 
which starts with a defined wing and fuselage configu-
ration. Given aircraft center of gravity (CG) limits and 
wing and fuselage geometry, the main and nose landing 
gear are positioned to satisfy a set of predefined con-
straints. Examples of such constraints are the tip over and 
tail strike angles shown in Fig. 3.

•	 Sizing subroutine: structural sizing using three major 
load cases that typically size landing gear structure and 
then select main and nose landing gear tires and rims.

•	 Kinematics subroutine: kinematics of retraction analysis 
is performed to determine the stowage location of the 
gear and the feasibility of the proposed design from the 
previous processes.

Landing gear simulation failure in this problem is due to 
the kinematics subroutine and is driven by two distinct pos-
sible simulation failures. The first possible simulation failure 
occurs when calculating the extended position of a trailing 
arm type main landing gear as shown in Fig. 4a. Compressed 
position is based on landing gear geometry, aircraft loads, 

Table 2   A list of the aircraft conceptual design problem constraints

Constraint Description

c1(x) Balanced field length
c2(x) Initial cruise altitude
c3(x) Aircraft reference speed Vref

c4(x) Excess fuel weight
c5(x) and c6(x) Wing flight controls actuation height clearance
c7(x) and c8(x) Wing flight controls actuation chord clearance
c9(x) Wing chord clearance for landing gear integration
c10(x) Wing tip chord
c11(x) Aircraft climb performance
c12(x) Aircraft mission range

x EngineDeck ReferenceStructure Configuration Architecture

MTOW , c 0, 14− 1 : MDA x0 x x

1 : Engine Thrust, SFC Weight

2 : Wing Volume

3 : Aerodynamics

4 : Structure

10 : MTOW , c 5, 10− 6 : Balancing

c 6 : AircraftPerformance

7 : Fuel

MTOW 8 : Weights

9 : Tail

12 : c9 11 : LandingGear

14 : c5 13 : FlightControls

Fig. 2   XDSM representation of the aircraft conceptual design optimization problem
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wing or fuselage attachment points. The calculation of the 
extended position is based on aircraft weight, landing sink 
speed, compressed position, and fixed attachment points to 
the aircraft structure represented by the so-called pintle pin. 
In certain scenarios, the calculation of this extended posi-
tion leads to an infeasible configuration and a simulation 
crash occurs.

The second possible simulation failure occurs when ana-
lyzing landing gear kinematics of retraction, e.g., simulation 
failure occurs if the position of the wing is not aligned with 
the landing gear bays which causes an error when calcu-
lating landing gear pintle pin (retraction axis) orientation. 
Figure 4b shows an example aircraft illustrating a com-
pressed landing gear and a corresponding retracted landing 
gear inside dedicated bays. We treat this code as a black 
box simulation. Therefore, we assume that we cannot adjust 
the internal code to avoid the hidden constraint or create a 
known constraint.

2.2 � Aircraft performance simulation

A second problem that occurs due to an aircraft performance 
model simulation failure is presented herein. The aircraft 

performance model is responsible for analysis and simula-
tion of aircraft ground, takeoff, climb, cruise, and descent 
performance. This model crashes when aircraft design vari-
ables lead to insufficient engine thrust at the beginning of 
the cruise flight phase, known as the initial cruise altitude.

Takeoff is the first phase of flight starting from an initial 
aircraft velocity of zero and ending when the aircraft reaches 
an altitude of 35 ft as illustrated in Fig. 5. An aircraft then 
transitions to a so-called en route climb where a rate of climb 
is set at a fixed aircraft speed until engine thrust is incapable 
to maintain the rate of a minimum set rate of climb. The 
initial cruise altitude is set when the minimum rate of climb 
condition is no longer met, and the engine thrust setting is 
adjusted to the cruise setting to meet the required cruise 
speed. Aircraft takeoff performance is driven by aircraft 
weight, drag, lift, engine thrust, airport altitude, and ground 
rolling friction. Climb and cruise performance are dependant 
on aircraft speed and altitude. The thrust produced by an air-
craft engine is reduced with increasing speed of the aircraft 
and with increasing altitude. In this optimization problem, 
design variables affecting wing design x2,… , x12 impact 
drag and lift whereas the engine scaling factor x1 impacts all 
thrust ratings and altitude/speed combinations. Failure of the 

Fig. 3   Landing gear positioning 
constraints examples showing 
tip over angle and tail strike 
angle (adapted from Currey 
(1988))

Fig. 4   Representation of kinematics of retraction, compression, and extension of a trailing arm landing gear model
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simulation occurs when the combination of design variables 
lead to insufficient thrust to overcome aircraft drag at high 
speed at initial cruise altitude. The aircraft model would be 
able to simulate takeoff and climb at climb speed. However, 
the mission fails when initial cruise altitude is reached at the 
high speed aircraft requirement. Aircraft thrust requirement 
is calculated based on aircraft drag using (Asselin 1997)

where D is total aircraft drag, Cd is the drag coefficient, � is 
the dynamic pressure, v is aircraft speed, and Sref is the refer-
ence aircraft wing area. T is engine thrust, and maximum T 
is defined based on x1 , whereas Cd and Sref are dependant on 
x2,… , x12 . If D is higher than the T values at different flight 
phases determined using the engine scaling factor x1 , the 
code leads to a simulation failure as the aircraft performance 
model is not able to maintain the required aircraft speed. 
The non-linear relationships between D, Sref , and x2,… , x12 
and the corresponding non-linear behaviour of this failure 
region presents a valuable demonstration of methods used 
to handle hidden constraints. This type of simulation failure 
falls within category (2) of hidden constraints since the fail-
ure occurs due to the specific software implementation of 
the aircraft performance model. Similar to the landing gear 
model in Sect. 2.1, we assume that the aircraft performance 
model is a black box simulation and a known constraint can-
not be created to prevent this simulation failure.

3 � Bayesian optimization with hidden 
constraints

A black box constrained surrogate-based optimization cre-
ates surrogate models of an objective y(x) and equality and 
inequality constraints c1(x),… , cm(x) that are evaluated 

(2)D =
�v2CdSref

2
,

using black box simulations without knowledge of the inter-
nal model of these simulations. In this work, an inequality-
constrained surrogate-based optimization problems is for-
mulated as

where ŷ(x) is a surrogate model of objective function and 
ĉ1(x),… , ĉm(x) are surrogate models of the constraints. In 
the case of Bayesian optimization, the surrogate models 
are Gaussian process, or variations thereof, to be able to 
estimate probability distributions. These models are recon-
structed during the optimization process. Prior to the optimi-
zation, a fixed number of evaluations design of experiments 
(DOE) is typically conducted to create the initial surrogate 
models and probability distributions. The optimization loop 
starts after the DOE evaluations as described in Algorithm 1. 
A so-called sequential enrichment problem is solved at every 
optimization iteration. The sequential enrichment problem 
aims to maximize an acquisition function that uses surro-
gate model values along with the probability distributions 
to balance exploration and exploitation of the optimization 
process. The solution of the sequential enrichment problem 
then recommends a new location in the design space for 
the objective and constraint functions to be evaluated using 
black box simulations. The newly evaluated location is then 
added to the data sets of the optimization. The optimiza-
tion continues until a certain convergence threshold is met 
or until a maximum number of iterations is reached as per 
Algorithm 1.

(3)
{minimize

x∈Ω
ŷ(x)

subject to ĉ
i
(x) ≤ 0, i = 1,… ,m,

Fig. 5   Aircraft takeoff phase 
illustration (adapted from Asse-
lin (1997))
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Algorithm 1   The constrained Bayesian optimization framework

3.1 � Feasibility enhanced acquisition functions

Several acquisition functions have been proposed and inves-
tigated, ranging from traditional and widely used functions 
such as probability of improvement (PI) (Kushner 1964) 
and expected improvement (EI) (Jones et al. 1998) to newly 
developed functions such as scaled Watson Barnes (WB2S) 
(Bartoli et al. 2019). The probability of improvement Kush-
ner (1964) is given by

where ymin is the minimum value of the objective function 
observed so far, ŷ(x) and ŝ(x) are mean and standard devia-
tion of the Gaussian process, and Φ is the normal cumulative 
distribution function.

The expected improvement ( EI ) (Jones et al. 1998) is of 
the form:

(4)PI(x) = ℙ(y(x) ≤ ymin) = Φ

(

ymin − ŷ(x)

ŝ(x)

)

,

(a) Function visualization and function
evaluations at iteration 50.

(b) Values of pnf using a classifier at iter-
ation 50.

(c) Values of ŝ(x) at iteration 50. (d) Values of the EFIP(x) at iteration 50.

Fig. 6   1-Dimensional function BO example ( sin(x) + sin(
10

3
x))using EFI

P
(x) showing the hidden regions ( 3.5 < x < 4.8 and 5.2 < x < 6.3 ) (in 

red)



	 A. Tfaily et al.123  Page 8 of 18

where ymin is the value of the incumbent objective function, 
ŷ(x) and ŝ(x) are mean and standard deviation of the Gauss-
ian process. Φ and � are the cumulative distribution func-
tion and probability density function of the Gaussian process 
respectively. If ŝ(x) = 0 , EI(x) is set to zero.

The scaled Watson Barnes WB2S Bartoli et al. (2019) is:

where s is a non-negative scaling factor defined in Bar-
toli et al. (2019). In previous work, methods to adapt BO 
to handle hidden constraints included the conditioning of 
the acquisition function by either the probability of non-
failure or class of non failure (Sacher et al. 2018; Tran et al. 
2019; Lee et al. 2011; Gelbart et al. 2014; Bachoc et al. 
2020). Another method that is also used in the literature 
is constraining the design space of an optimization based 
on regions of predicted failures as shown in Basudhar et al. 
(2012), Sacher et al. (2018), and Antonio (2019). Typical 
expected feasible improvement acquisition functions are 
defined by:

and

where pnf is the probability of non-failure and cnf is the class 
of non-failure calculated using a surrogate model Z(x). The 

(5)
EI(x) = (ymin − ŷ(x)) Φ

(

ymin − ŷ(x)

ŝ(x)

)

+ ŝ(x)𝜙

(

ymin − ŷ(x)

ŝ(x)

)

,

(6)WB2S(x) = sEI(x) − ŷ(x),

(7)EFIP(x) = pnf(x) EI(x)

(8)EFIC(x) = cnf(x) EI(x),

main drawback of the existing methods that condition the 
acquisition function by the probability, or class, of non-fail-
ure is that during the early phase of an optimization process 
EFIP(x) and EFIC(x) could be incorrectly driven by the non-
failure predictor, Z(x), away from exploration regions of the 
design space especially if a non-sequential based framework 
is used. To demonstrate this behaviour, we present in Fig. 6 a 
1-dimensional function y(x) constrained by two hidden simu-
lation failure regions. The minimum of y(x) lies in between 
these two hidden simulation failure regions. We use a BO 
algorithm per Algorithm 1 and a k-nearest neighbors classi-
fier (kNN) at k = 3 to calculate pnf . After 50 iterations, the 
acquisition function no longer explores any of the hidden 
constraint regions nor the feasible region in between. This 
is driven by the non-failure predictor, Z(x), where EFIP(x) is 
estimated to be equal to zero even within the feasible region 
where the minimum lies.

In addition, global convergence cannot always be 
guaranteed using the expected feasible improvement 
acquisition functions in Eqs. (7) and (8) for all types of 
classifiers. Global convergence proof of Eq. (7) has been 
shown using a Gaussian process classifier in Bachoc 
et al. (2020), however using different types of classifiers 
do not always guarantee global convergence. For a BO 
algorithm that uses a Gaussian process �(x) , an acqui-
sition function can be written in a form that separates 
an exploitation portion from an exploration portion as 
presented in the formulation of EI in Eq. (5). The explo-
ration term is dependant on the standard deviation term 
ŝ(x) . We expect that in regions of the design space where 
ŝ(x) is high for �(x) , the non-failure predictor model Z(x) 
would be inaccurate, as �(x) and Z(x) are both trained on 
the same data. Figure 6b and c show an example where 
the both the non-failure predictor Z(x) is bad (i.e., pnf is 
equal to zero around x = 5 ) and the uncertainty ŝ(x) is 
also high at the same region. In order to minimize the 
impact of the inaccuracy of Z on the acquisition func-
tion, we try to reduce the influence of the former on the 
exploration region of the latter by means of an explora-
tion factor � . Therefore, in our framework, for a given 
x ∈ Ω , the feasibility enhanced expected improvement 
acquisition function EFIFE(x) at x will be defined as fol-
lows: If ŝ(x) = 0 , then EFIFE(x) = 0 , otherwise, the value 
of EFIFE(x) will be given by

(9)
EFIFE(x) = pnf(x)

(

ymin − ŷ(x)
)

Φ

(

ymin − ŷ(x)

ŝ(x)

)

+ pnf(x)
𝛼(x)

ŝ(x)𝜙

(

ymin − ŷ(x)

ŝ(x)

)

.

Fig. 7   EFI
FE

 values of the 1-dimensional function after the same 50 
function evaluations from Fig. 6
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 The parameter �(x) ∈ [0, 1] can be seen as an exploration 
factor that allows the acquisition function to approach failure 
regions of the design space.

The EFIFE acquisition function conditions the exploita-
tion portion of EI similar to EFIP ; however the impact on the 
exploration portion is minimized by the term � . We note that 
when � = 1 one has EFIFE = EFIP . We propose a dynamic 
calculation of the term � during an optimization based on 
x. The goal of this dynamic calculation is to prevent the 
acquisition function from solely relying on pnf considering 
the example shown in Fig. 6. Therefore, we use a term s̄c(x) 
that relies on information from ŝ(x) of � to determine the 
value of � as follows

where � is a pre-specified tolerance and s̄c(x) is defined as 
follows

where A is a set containing all simulation failure data 
with a predefined tolerance. The fixed term �0 is the fixed 

(10)𝛼(x) =

⎧

⎪

⎨

⎪

⎩

1.0, if s̄c(x) ≤ 𝜖,

0.0, if s̄c(x) > 𝜖 and pnf(x) = 0,

𝛼0, if s̄c(x) > 𝜖,

(11)s̄c(x) =

{

0.0, if x ∈ A

ŝ(x), otherwise,

exploration factor that allows the acquisition function to 
explore closer to a failure region even if pnf is low. We also 
note that another approach instead of Eq. (11) could be to 
directly equate s̄c(x) = ŝ(x) and apply a filter after the acqui-
sition function optimization results to remove any values that 
lie within A. To visualize the impact of �(x) on the acquisi-
tion function, we consider the same example from Fig. 6 and 
calculate EFIFE as shown in Fig. 7. We note that the explora-
tion portion of the acquisition function is not affected by pnf 
as opposed to EFIP from Fig. 6(d). In this case, the impact 
of �0 is negligible since �(x) falls either under the first or the 
second conditions from Eq. (10). Nonetheless, it is evident 
that the acquisition function in this case will keep exploring 
the regions where pnf = 0 until the design space meets the 
standard deviation tolerance �.

In this paper, we implement and test the proposed 
acquisition function based on EI , however the approach 
can be expanded for any type of acquisition function where 
its formulation allows the separation between exploration 
and exploitation. For example, the WB2S acquisition func-
tion in Eq. (6) can be reformulated as

 

(12)WB2SFE(x) = sEFIFE(x) − pnf(x)ŷ(x).

Algorithm 2   Bayesian optimization with hidden constraints
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A Bayesian optimization algorithm can be adapted to handle 
hidden constraints using EFIFE(x) as shown in Algorithm 2. 
It is noted in this updated algorithm that the classifier model 
of the hidden constraint is updated once at every loop of the 
Bayesian optimization and that the probability of feasibil-
ity is then calculated using this classifier model at every 
call within the sequential enrichment problem to calculate 
EFIFE(x) . This approach reduces the impact of building the 
classifier model on computational costs by building a single 
classifier model for all hidden constraints. Calculation of pnf 
is dependant on the selection of the failure classifier Z and 
is shown in Sect. 3.2.

3.2 � Non‑failure probability estimation

Several models have been proposed in the literature to rep-
resent hidden constraints using supervised ML techniques. 
The use of Gaussian process classifiers, conditioned by signs 
of observations was proposed in Bachoc et al. (2020). Ran-
dom forests were used in Lee et al. (2011). We consider 
additional popular ML classification means to compare 
with existing literature, including nearest neighbor classi-
fiers, decision trees and rule-based classifiers, probabilistic 
models, and support vector machines. We use labeled data 
from failed evaluations to construct and adapt these classi-
fiers on supervised data.

The k-nearest neighbors classifier is commonly based on 
the Euclidean distance d between a sample x and the speci-
fied training samples xtrain ∈ N samples (Aggarwal 2015). In 
a 2 class set where simulation failure is one class and non-
failure is another, the probability of the non failure class at 
a given point x is computed by

where d(x, xi) is the distance between the point x and a train-
ing point xi and I(x) is an index function that is equal to one 
when the predicted class is non-failure and zero otherwise 
(Pedregosa et al. 2011).

Decision trees use a set of tree-like hierarchical deci-
sions on the input variables to model the classification pro-
cess; however, such methods may suffer from over-fitting 
or coarse approximations of a true classification boundary 
layer if the amount of training data is insufficient (Hastie 
et al. 2009). In this context, the probability for a decision 
tree for pnf is computed at a terminal node m of the tree with 
Nm samples by

(13)pnfkNN(x) =

∑

i∈N I(x)d(x, xi)
∑

i∈N d(x, xi)
,

(14)pnfDT(x) =
1

Nm

∑

x∈Nm

I(x).

Probabilistic classifiers such as logistic regression construct 
a relationship between the input features and output class as 
a probability (Aggarwal 2015). In logistic regression, the 
probability of a class-membership is expressed in terms of 
feature variables using a discriminative function. In a binary 
classification problem of failure and non-failure, the prob-
ability of an instance x belonging to the non-failure class is 
modeled using the logistic function from (Aggarwal 2015; 
Hastie et al. 2009)

where �0 is an offset parameter and � is a coefficient with the 
same dimensions as x. Training a logistic regression model 
entails solving an optimization problem that maximizes a 
likelihood function using ( �0, � ) as design variables where 
the likelihood function is defined as the product of the prob-
abilities of all the training examples predicting their assigned 
classes using Eq. (15).

Non-linear support vector machines (SVM) classify 
instances by defining a boundary that separates classes of 
samples from a dataset. SVM does not directly compute 
probability to obtain class predictions. We present the 
method used in Pedregosa et al. (2011) to compute this 
probability. In a case of two class classification, the class 
probabilities are calibrated using the scaling proposed in 
Platt (1999).

where f(x) is the SVM uncalibrated prediction of the hidden 
constraint at x and parameters a and b are found by minimiz-
ing an error function on the training data (Platt 1999). The 
uncalibrated SVM model prediction f(x) is obtained using 
data from N training samples as follows

where xi is the i th training sample, �i is the corresponding 
Lagrangian multiplier of the sample and is obtained by solv-
ing a so-called Lagrangian relaxation problem defining the 
boundary of the SVM, zi is the class of the training sample, 
and k is a kernel function used to handle non-linearity in the 
defined boundary. In this paper, we use the Gaussian radial 
basis function kernel for SVM modeling similar to Antonio 
(2019).

Gaussian processes are also used as classifiers to estimate 
the probability of non-failure (Williams and Rasmussen 2006).

Bachoc et al. (2020) proposed a Gaussian process clas-
sifier (GPC) method to modify the acquisition function of a 
BO as in Eq. (7) in order to handle hidden constraints. The 

(15)pnfLR(x) =
1

1 + exp (𝜃0 + 𝜃⊤x)
,

(16)pnfSVM (x) =
1

1 + exp (af (x) + b)
,

f (x) =

N
∑

i=1

�izik(xi, x),
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proposed GPC is conditioned on the signs of the observa-
tions rather than their values where pnf is approximated as 
follows after sampling N samples from the probability den-
sity function of the Gaussian process:

where N is the number of observation samples, and ĉ(x) and 
ŝ2
c
(x) are the mean and variance of the Gaussian process of 

the constraint at x. 𝜙̄ is calculated from the standard Gauss-
ian cumulative distribution function:

(17)pnfGPC(x) =
1

N

∑

i∈N

𝜙̄

(

−ĉ(x)

ŝ2
c
(x)

)

,
3.3 � Illustration example

The behaviour of the proposed method (see Algorithm 2) is 
illustrated using an analytical example showing the impact 
on the acquisition function and convergence. EFIP and EFIFE 
functions and selected classifiers are implemented in an 

𝜙̄(
a

b
) =

{

1 − 𝜙(
a

b
), if b ≠ 0

1, if b = 0.

(a) Branin-Hoo objective function (b) Masked Branin-Hoo function

Fig. 8   Visualization of the unmasked (contour map) and masked (white area) Branin–Hoo function showing results of a 50-evaluation optimiza-
tion using EFI

P

(a) Hidden region (in blue) and the non-
failure region (in red) at iteration 50.

(b) Values of pnf using a kNN classifier
with k = 3 at iteration 50.

Fig. 9   Hidden region and classifier visualization using the 50-iteration DOE
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(a) EFIP at iteration 1. (b) EFIFE at iteration 1.

(c) EFIP at iteration 17. (d) EFIFE at iteration 17.

(e) EFIP at iteration 50. (f) EFIFE at iteration 50.

Fig. 10   Acquisition function comparison at the first iteration, 17th iteration, and 50th iteration during an optimization starting with a DOE of 5 
samples
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open-source Python Bayesian optimization tool (Nogueira 
2014) in addition to Scikit-learn libraries (Pedregosa et al. 
2011). The selected illustration example is an unconstrained 
optimization problem based on the scaled Branin-Hoo func-
tion presented in Forrester et al. (2008) shown by Eq. (18) 
and in Fig. 8a.

(18)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

minimize
x1,x2∈ℝ

2
f (x1, x2)

f (x1, x2) =

�

x̄2 −
5.1x̄1

4𝜋2
+

5x̄1

𝜋
− 6

�2

+ 10

�

(1 −
1

8𝜋
) cos x̄1 + 1

�

+ 3x̄1

where, x̄1 = 15x1 − 5, x̄2 = 15x2

and x1, x2 ∈ [0, 1]

A hidden simulation failure region H is defined where 
f (x1, x2) returns non-valid values (i.e., Nan) when x1 < 0.4 
and x2 > 0.5 except for an inner region where the mini-
mum lies where 0.05 < x1 < 0.2 and 0.7 < x2 < 0.9 . A 50 
evaluation optimization using EFIP is performed to test the 
behaviour of the acquisition function starting from a random 
sample of 5 evaluations. The hidden region H is illustrated 
in Fig. 9a and the updated function including H is shown in 
Fig. 8b. It is noted that H is selected so that the minimum 
of the unconstrained problem shown in Fig. 8a lies in the 
feasible region within H in order to highlight the impact of 
EFIFE acquisition function when the minimum is close to 
a failure region assuming that pnf would be inaccurate in 
such a region. We note that in the case where the feasibale 
domain is composed of non-connected feasible areas of the 
design space, the global optimization framework, BO in 

this work, is playing a key role in exploring the full design 
space. A successful example using BO to solve optimization 
problems with non-connected feasible regions (using known 
constraints) is presented in Priem et al. (2020).

The 50 evaluation points are used to create a Gaussian 
process of the objective function and a classifier of the hid-
den region to predict the probability of non-failure pnf . The 
classifier selected is a kNN classifier with k = 3 and pnf cal-
culations using the classifier are shown as contour plots in 
Fig. 9b.

Using the kNN classifier with k = 3 , EFIFE acquisition 
function is compared against EFIP using the same classifier 
in Fig. 10 where red contours represent higher values and 
blue contours present lower values. Firstly, comparing the 
two acquisition function at the first iteration in Fig. 10a and 
b, we note that the behaviour of EFIFE differs in the left side 
of the Figure which can be attributed to high variance and a 
prediction of pnf of 0. We also note that EFIP favors exploi-
tation outside the hidden constraint region H compared to 
EFIFE . Secondly, we performed an optimization using EFIFE 

(a) Masked Branin-Hoo function (b) Convergence plots

Fig. 11   Visualization of the unmasked (contour map) and masked G (white area) Branin-Hoo function showing convergence plots for an average 
of 10 optimization runs using EFI

P
 and EFI

FE
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and we show the acquisition function at the iteration where 
the failure region starts to be explored (i.e., iteration 17 in 
Fig. 10d). Using the same 17 evaluations we show EFIP in 
Fig. 10c and we note that: (1) EFIP prevents the optimizer 
from selecting future evaluation points within H due to pnf , 
and (2) EFIFE favors exploring regions where there is a high 
variance of the classifier Z(x). Finally, at iteration 50 using 
two different acquisition functions in Fig. 10a and b, we 
can see that using EFIFE enables the optimizer to find the 
minimum in Fig. 8b whereas EFIP still cannot access the 
region H.

A robustness check was also done on the same illus-
tration example in Eq. (18) but with a hidden simulation 
failure region G away from the minimum to analyze EFIFE 
behaviour on different types of problems. G is defined where 
f (x1, x2) returns non-valid values when x1 > 0.6 and x2 < 0.5 
as shown in Fig. 11a. In these experiments, the tolerance 
� was set at 10% of the absolute value of the maximum 
observed objective function and �0 was set at 0.3. Design-
ers can set a higher tolerance � and a higher �0 in order to 

prevent EFIFE from exploring hidden constraint regions prior 
to feasible regions. Convergence plots in Fig. 11b compare 
EFIP and EFIFE using an average of 10 optimization runs 
with common DOE’s of 10 evaluations and 50 optimization 
iterations show that both acquisition functions possess simi-
lar convergence rates and minimum objective values. This 
in particular indicates that our proposed method of handling 
hidden constraints is not interfering in the optimization pro-
cess when it is not necessary.

In Sect. 4, we use optimization results directly to assess 
the use of EFIFE using the industrial application problems 
considered in this paper.

4 � Aircraft design optimization

The results of the industrial application problems introduced 
in Sect. 2 are presented here. All results are obtained using 
an Intel Ⓡ Xeon Ⓡ CPU E5-1650 v3 @ 3.50 GHz core and 
32 GB of memory. Optimization results are normalized with 

(a) (b)

Fig. 12   Convergence of the landing gear sizing problem with respect to a number of iterations and b computational time for an average of 10 
optimization runs

(a) Convergence plots (b) Box plots of the obtained solutions

Fig. 13   Comparison of landing gear sizing problem results (average of 10 runs) for different values of �
0
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respect to the considered baseline aircraft design. We first 
compare results based on the choice of classifiers using the 
landing gear sizing problem from Sect. 2.1. The five tested 
classifiers, as detailed in Sect. 3.2, are: 

1.	 a k-nearest neighbors classifier with k = 3 (kNN3),
2.	 an SVM classifier (SVM),
3.	 a Gaussian process classifier (Gaussian Process),
4.	 a decision tree classifier (Decision Tree), and

(a) Convergence plots (b) Box plots of the obtained solutions

Fig. 14   Comparison of obtained results for the landing gear sizing problem using a kNN classifier with k = 3 (average of 20 optimization runs)

(a) Convergence plots (b) Box plots of the obtained solutions

Fig. 15   Comparison of obtained results for the aircraft performance problem using a kNN classifier wit k = 3 (average of 20 optimization runs)

(a) Convergence plots (b) Box plots of the obtained solutions

Fig. 16   Comparison of obtained results for the landing gear sizing problem for different DOE sizes (average of 10 runs)
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5.	 a logistic regression classifier (Logistic Regres-
sion).

We conducted 10 optimization runs using a DOE with as 
many sample points equal to the number of design variables 
and 150 BO iterations. Figure 12 shows that the kNN3 clas-
sifier yields the best convergence rate and lowest computa-
tional time. For that reason, in the remainder of this paper, 
a kNN3 classifier will be used.

The impact of the exploration factor �0 on optimization 
convergence was also studied. Figure 13 depicts the conver-
gence rate using 5 different values of �0 : 1, 0.7, 0.3, 0.1, and 
0. We first note that at �0 = 1 and �0 = 0.7 the corresponding 
convergence rate is inferior compared to other lower values 
of �0 . This is expected since a lower value of �0 leads to 
more acquisition function exploration in regions where pnf 
is low, and if the minimum lies close to the simulation fail-
ure regions, pnf may estimate low probability of simulation 
non-failure at the minimum. It is also noted that convergence 
plots of �0 = 0.3, 0.1, 0 are similar in minimum value and 
rate of convergence with �0 = 0.3 having the lowest mini-
mum marginally. For that reason, in the remainder of this 
paper, an �0 value of 0.3 will be used.

We used an average of 20 optimization runs for the two 
industrial problems, landing gear sizing and aircraft per-
formance simulation, to perform the comparison between 
EFIFE and EFIP . Results for the landing gear sizing prob-
lem and aircraft performance simulation problem are pre-
sented in Figs. 14 and 15. Convergence plots show the 
average of the minimum normalized objective values at 
every iteration (shown as a line per acquisition function) 
and the variance at every iteration (shown as pastel colors 
of the corresponding line).

The robustness of the proposed approach against the 
choice of the number of DOE evaluations is verified to 
check the sensitivity of optimization results to the choice 

of the size of the initial DOE. Figure 16 depicts the con-
vergence rate using different initial values of DOE evalu-
ations: 1d, 4d,  and 10d, where d is the number of design 
variables of 12. Results are presented such that the DOE 
evaluations are shown as a flat horizontal line presenting 
the best valid objective value of the DOE until a better 
minimum is found. We note that DOE evaluations of 1d 
and 4d are able to converge to similar optimum values 
whereas the 10d DOE evaluation results in a slightly infe-
rior convergence. However, we conclude that the presented 
optimization framework and the acquisition function are 
robust with respect for the number of evaluations of the 
DOE, and that the suggested number of evaluations to be 
between 1d and 4d to minimize the number of sampling 
evaluations.

It is noted that in this work, the aircraft design problems 
along with the simulation failure problems have been cho-
sen purposefully to highlight the behaviour of the proposed 
Bayesian algorithm with EFIFE , that is by selecting a limited 
design space where a major part of which is within regions 
of the hidden constraints. As presented in Sects. 2.1 and 2.2, 
the hidden failure regions are well understood. However, for 
similar problems where the design space or the hidden fail-
ure regions are within a black box simulation model invisible 
to the optimization engineer, we recommend to perform a 
thorough analysis of the design space to avoid the presence 
of any hidden constraints unrelated to the black box simula-
tion model as discussed in Sect. 2. Another approach would 
be to analyze the design space and create a known constraint 
of the hidden failure region. We tested such an approach 
on the landing gear sizing problem from Sect. 2.1 by creat-
ing known constraints of the two possible simulation failure 
scenarios.

We also compared EFIFE to a scenario where the simu-
lation failure is a known constraint. We used the landing 
gear simulation in Sect. 2.1 and we adjusted the code to 

(a) Convergence plots (b) Box plots of the obtained solutions

Fig. 17   Comparison of obtained results between using a known constraint Gaussian process and a hidden constraint with a kNN3 classifier 
(average of 10 runs)
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return a value to be used as the known constraint instead of 
what would have been a simulation failure. This scenario 
is normally not feasible if the simulation causing failures 
is a black box simulation that cannot be adjusted. We only 
consider this scenario here to compare the behaviour of 
EFIFE when compared to a conventional BO with known 
constraint where the known constraints are modeled using 
Gaussian processes. Figure 17 compares the convergence 
between the known constraints method (labeled as Known 
constraint) and EFIFE using a kNN3 classifier using an 
average of 10 different initial DOE runs since the number 
of constraints is different due to the addition of the known 
constraint. It is noted that both approaches lead to similar 
convergence rates with the hidden constraint using a kNN3 
classifier producing a slightly lower minimum. This can be 
attributed to the fact that the constrained failure approach 
uses a Gaussian process with radial bases function (RBF) 
kernel to model the constraints (as is the standard approach 
used in the Bayesian optimizer from Nogueira (2014)). A 
Gaussian process with a RBF kernel models the boundary of 
the constraint as a smooth transition. However, we know that 
the failure regions presented in the landing gear sizing prob-
lem possess a sharp boundary between the non-failure simu-
lation region and the failure simulation region, and a kNN3 
classifier is better suited for such deterministic failures.

5 � Conclusion

We investigated solutions to handle hidden constraints in 
aircraft design optimization problems. We targeted black 
box simulation models with failure as the candidates of 
hidden constraints. Then we used a feasibility enhanced 
acquisition function, EFIFE , in a Bayesian optimization 
algorithm to perform aircraft conceptual design optimi-
zations. Finally, we validated EFIFE using two industrial 
aircraft conceptual design problems based on landing 
gear sizing and kinematic simulation and aircraft perfor-
mance simulation. Using the two industrial problems, we 
performed comparative analyses relative to the choice 
of the supervised ML classifiers used in addition to the 
internal exploration factor � of EFIFE . We also showed 
the benefits of EFIFE over existing methods in literature 
with respect to convergence rates and optimum values. 
Note that our proposed acquisition function EFIFE offers 
the users additional tuning parameters (i.e., tolerance � 
and exploration term �0 ) to better balance the trade-off 
between the exploration in simulation failure regions and 
minimization of the objective function with in the feasi-
ble regions. Future work on this topic includes extending 
the application to more industrial test cases with varying 
fidelity of the simulation models to understand the impact 

of the choice of simulation fidelity on optimizations with 
hidden constraints.
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