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Abstract. We revisit parallel-innermost term rewriting as a model of parallel computation on
inductive data structures and provide a corresponding notion of runtime complexity parametric in
the size of the start term. We propose automatic techniques to derive both upper and lower bounds
on parallel complexity of rewriting that enable a direct reuse of existing techniques for sequential
complexity. Our approach to find lower bounds requires confluence of the parallel-innermost
rewrite relation, thus we also provide effective sufficient criteria for proving confluence. The
applicability and the precision of the method are demonstrated by the relatively light effort in
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extending the program analysis tool APROVE and by experiments on numerous benchmarks from
the literature.

Keywords: Term rewriting, confluence, complexity analysis, parallelism, static analysis

1. Introduction

Automated inference of complexity bounds for parallel computation has seen a surge of attention in
recent years [2, 3, 4, 5, 6, 7]. While techniques and tools for a variety of computational models have
been introduced, so far there does not seem to be any paper in this area for complexity of term rewriting
with parallel evaluation strategies. This paper addresses this gap in the literature. We consider term
rewrite systems (TRSs) as intermediate representation for programs with pattern-matching operating
on algebraic data types like the one depicted in Figure 1.

let rec size : tree -> int = function

| Node (_, left , right) -> 1 + size left + size right

| Empty -> 0

Figure 1. Tree size computation in OCaml

In this particular example, the recursive calls size left and size right can be done in parallel.
Building on previous work on parallel-innermost rewriting [8, 9] and first ideas about parallel complex-
ity [10], we propose a new notion of Parallel Dependency Tuples that captures such a behaviour, and
methods to compute both upper and lower parallel complexity bounds.

Bounds on parallel complexity can provide insights about the potentiality of parallelisation: if
sequential and parallel complexity of a function (asymptotically) coincide, this information can be
useful for a parallelising compiler to refrain from parallelising the evaluation of this function. Moreover,
evaluation of TRSs (as a simple functional programming language) in massively parallel settings such
as GPUs is currently a topic of active research [11, 12]. In this context, a static analysis of parallel
complexity can be helpful to determine whether to rewrite on a (fast, but not very parallel) CPU or on a
(slower, but massively parallel) GPU.

In this paper, we provide techniques for the synthesis of both upper and lower bounds for the
parallel-innermost runtime complexity of TRSs. We motivate our focus on innermost rewrite strategies
by the fact that innermost rewriting is closely related to call-by-value evaluation strategies as used by
many programming languages, such as OCaml, Scala, Rust, C++, . . .

Our approach to finding lower bounds requires that the input TRS is confluent. This means
essentially that computations with the TRS have deterministic results. Thus, we also provide efficiently
checkable sufficient criteria for proving confluence of parallel-innermost rewriting, which are of interest
both as an ingredient for our complexity analysis and in their own right. These criteria capture the
confluence of TRSs corresponding to programs with deterministic small-step semantics, the motivation
of this work.

This paper is an extended journal version of a conference paper published at LOPSTR 2022 [13].
We make the following additional contributions over the conference version:
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• We provide additional explanations, examples, and discussion throughout the paper.
• We state a stronger new sufficient criterion for confluence of parallel-innermost rewriting (Theo-

rem 6.18).
• We have run more extended experiments.
• We provide proofs for all our theorems.

2. Illustrating Example

We illustrate our approach informally with the help of an example.
Consider the following functional program, given as a term rewrite system with the following

rewrite rules.

doubles(Zero) → Nil d(Zero) → Zero

doubles(S(x)) → Cons(d(S(x)), doubles(x)) d(S(x)) → S(S(d(x)))

Here we use the constructor symbols Zero and S to represent natural numbers (with Zero for 0 and
S(x) for x+ 1). Lists are represented via the constructors Nil and Cons. Then the function d computes
the double of a natural number:

d(S(S(Zero))) i→R S(S(d(S(Zero)))) i→R S(S(S(S(d(Zero))))) i→R S(S(S(S(Zero))))

In other words, 2 · 2 = 4. The function doubles takes a number n and computes a term representing the
list [2n, 2(n− 1), . . . , 4, 2]. To evaluate the start term doubles(S(Zero)), we need four rewrite steps
with a sequential evaluation strategy. In the following rewrite sequence, coloured boxes indicate terms
that are reduced by a given step, called redexes.1

doubles(S(Zero)) i→R Cons( d(S(Zero)) , doubles(Zero))
i→R Cons(S(S( d(Zero) )), doubles(Zero))
i→R Cons(S(S(Zero)), doubles(Zero) )
i→R Cons(S(S(Zero)),Nil)

We want to get an upper bound on the number of evaluation steps with our program for the general
case. We first consider existing methods for the classic case of a call-by-value strategy in a sequential
model: evaluate only a single redex at a time, as in the examples above. We consider start terms where
a defined function is called on data terms, i.e., terms that use only constructor symbols. Here these
terms have the form d(t) and doubles(t), where t may contain only the constructor symbols Zero, S,
Nil, Cons, and variables. Our upper bound will be parametric in the size n of the start term: larger start
terms usually have higher runtimes.

Dependency Tuples [14] are a standard technique for finding such upper bounds for sequential
evaluation. The idea is to “desugar” the program by grouping all the function calls of a rule together
(hence the name “tuple”) and then to analyse how big the function call tree can become.
1Boxes that keep the same colour throughout one or more rewrite steps indicate terms that are reduced multiple (consecutive)
times.
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For example, the rule

doubles(S(x)) → Cons(d(S(x)), doubles(x))

has the dependency tuple

doubles♯(S(x)) → Com2(d
♯(S(x)), doubles♯(x))

that groups the function calls d♯(S(x)) and doubles♯(y) into a single tuple, using a fresh constructor
symbol Com2 for a tuple of 2 arguments Here we ignore the constructor context Cons(...) from the
original rule – evaluating it does not cost anything. We use the ♯ symbol to indicate which function
calls must be “paid for” in the analysis.

This dependency tuple says, informally:

cost(doubles(S(x))) = 1 + cost(d(S(x))) + cost(doubles(x))

So evaluating a call to doubles(S(x))) with that rule “costs” us 1 step (for using the rule itself) + the
cost of evaluating the call d(S(x)) + the cost of evaluating the call doubles(x).

Polynomial interpretations [15] are the working horse for finding upper bounds on the complexity
of such complexity problems represented by Dependency Tuples. A polynomial interpretation Pol
maps function symbols to polynomial functions over the natural numbers, and extends naturally to
terms. If we can find an interpretation Pol such that, among other requirements,

Pol(doubles♯(S(x))) ≥ 1 + Pol(d♯(S(x))) + Pol(doubles♯(x))

then the highest degree of a polynomial in Pol for a symbol f ♯ is also an upper bound for the size of
the call tree possible for these Dependency Tuples with the given program: the polynomial function
overapproximates the cost function.

Such polynomial interpretations can be found automatically using modern constraint solvers
[16, 17]. For our example, we would find an interpretation of degree 2. This tells us that the complexity
for evaluating a function in our program using a sequential call-by-value strategy is bounded by O(n2)
for n as the size of the start term. The above is just an informal overview – Section 3 provides a formal
introduction to this approach to analysing complexity for sequential evaluation.

The bound is tight: from doubles(S(S(. . . S(Zero) . . .))), we get linearly many calls to the linear-
time function d on arguments of size linear in the start term. So this is as good as it gets. . . for a
sequential evaluation strategy.

Now, how about a parallel call-by-value evaluation strategy, where we evaluate function calls that
happen at independent positions at the same time rather than one after the other? It turns out that with a
parallel strategy, we can evaluate our start term doubles(S(Zero)) in just three steps (the two coloured
redexes are reduced in parallel):

doubles(S(Zero)) i−→R Cons( d(S(Zero)) , doubles(Zero) )
i−→R Cons(S(S( d(Zero) )),Nil)
i−→R Cons(S(S(Zero)),Nil)
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Can we expect such speed-ups in the number of steps also in the general case? It turns out that, for our
example, the answer is yes. To prove this automatically, we revisit Dependency Tuples using a little
trick. The reason why parallel evaluation is faster here is that the rule

doubles(S(x)) → Cons(d(S(x)), doubles(x))

makes two function calls at independent positions, which then get evaluated in parallel. Whichever
of the two calls to d(S(x)) and to doubles(x) finishes last is responsible for the overall cost of using
this rule and evaluating its function calls in parallel. We express this by introducing two separate
Dependency Tuples for our rewrite rule:

doubles♯(S(x)) → Com1(d
♯(S(x)))

doubles♯(S(x)) → Com1(doubles
♯(x))

These two Dependency Tuples are enough to capture the worst case: either the call to d♯(S(x)) takes
longer to evaluate than the call to doubles♯(x) (then the first one represents the worst case), or it does
not (then the second one represents the worst case).

We can now reuse the same analysis machinery as before to search for a polynomial interpretation
Pol that solves the following constraints:

Pol(doubles♯(S(x))) ≥ 1 + Pol(Com1(d
♯(S(x))))

Pol(doubles♯(S(x))) ≥ 1 + Pol(Com1(doubles
♯(x)))

Here our constraint solvers find a solution already for a parametric interpretation with templates of
degree 1. This tells us that the complexity for evaluating a function in our program using a parallel
call-by-value strategy is bounded by O(n) for n as the size of the start term, a strictly better bound
than is possible for sequential evaluation.

However, this example is very benign: here all function calls triggered by a rule are at independent
positions. How about a function to compute the size of a tree with a rule like the following?

size(Tree(v, l, r)) → S(plus(size(l), size(r)))

Here plus must wait for the calls to size to finish, and we cannot evaluate plus in parallel with the calls
to size. As we shall see in Section 4, a refinement of our method can be used to also deal with such
more complicated structural dependencies between function calls.

The above example shows that our analysis of parallel complexity can reuse machinery from
sequential complexity analysis provided by the Dependency Tuple framework. But Dependency Tuples
are just one method out of a plethora for analysis of sequential complexity of term rewrite systems.
Can we not go back from Dependency Tuples to term rewriting systems whose sequential complexity
we can then analyse in order to get upper bounds for the parallel complexity of our original program?
Section 5 shows us how this is possible.

We would also like to find lower bounds on the complexity of parallel evaluation. It turns out that if
we are dealing with a confluent input program (roughly speaking, a program with deterministic results),
Section 5 lets us reuse methods to find lower bounds for sequential complexity of term rewriting
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systems to get answers for lower bounds for the parallel complexity of our original program. But to be
able to apply these methods, we must somehow know that the input program is indeed confluent. This
is why Section 6 introduces methods for analysing confluence of a term rewrite system in our parallel
evaluation strategy. Then Section 7 gives experimental evidence of the practicality of our methods on
large standard benchmark sets. We discuss related work and conclude in Section 8.

Limitations. Our approach to complexity analysis of parallel-innermost rewriting is transforma-
tional, by generating problem instances that can be handled by existing complexity analysis tools for
(sequential) innermost rewriting [18, 19] as backends. Therefore, the precision of our analysis is limited
by the precision of these backend tools, and improvements to their precision should carry over directly
also to the analysis of parallel-innermost rewriting.

Moreover, while our contributions aim to be applicable to complexity analysis of programming
languages with algebraic data types that use innermost/call-by-value evaluation strategies, we present
them in the setting of first-order term rewriting without built-in data types, for parallel-innermost
runtime complexity. Extensions to first-order term rewriting with logical constraints [20, 21], to higher-
order rewriting without [22] and with [23] logical constraints, and to rewrite strategies that rewrite at
even more positions simultaneously than parallel-innermost rewriting [12] would be natural next steps.
Similarly, we anticipate extensions from term rewriting to programming languages with call-by-value
evaluation strategies, such as OCaml or Scala.

3. Term Rewriting and Innermost Runtime Complexity

We assume basic familiarity with term rewriting (see, e.g., [24]) and recall standard definitions to fix
notation, which we illustrate in Example 3.1. As customary for analysis of runtime complexity of
rewriting, we consider terms as tree-shaped objects, without sharing of subtrees.

We first define Term Rewrite Systems and Innermost Rewriting. T (Σ,V) denotes the set of terms
over a finite signature Σ and the set of variables V . For a term t, its size |t| is defined by: (a) if
t ∈ V , then |t| = 1; (b) if t = f(t1, . . . , tn), then |t| = 1 +

∑n
i=1|ti|. The set Pos(t) of the

positions of a term t is defined by: (a) if t ∈ V , then Pos(t) = {ε}, and (b) if t = f(t1, . . . , tn), then
Pos(t) = {ε} ∪

⋃
1≤i≤n{i.π | π ∈ Pos(ti)}. The position ε is the root position of term t.

If t = f(t1, . . . , tn), root(t) = f is the root symbol of t. The (strict) prefix order > on positions is
the strict partial order given by: τ > π iff there exists π′ ̸= ε such that π.π′ = τ . Two positions π and
τ are parallel iff neither π > τ nor π = τ nor τ > π hold. For π ∈ Pos(t), t|π is the subterm of t at
position π, and we write t[s]π for the term that results from t by replacing the subterm t|π at position
π by the term s. A context C[] is a term that contains exactly one occurrence of a special symbol □.
Similar to t[s]π (but omitting the position π because it is implied by the sole occurrence of □), we write
C[s] for the term obtained from replacing □ by the term s.

A substitution σ is a mapping from V to T (Σ,V) with finite domain Dom(σ) = {x ∈ V | σ(x) ̸=
x}. We write {x1 7→ t1; . . . ;xn 7→ tn} for a substitution σ with σ(xi) = ti for 1 ≤ i ≤ n and σ(x) =
x for x ∈ V with x ̸= xi. We extend substitutions to terms by σ(f(t1, . . . , fn)) = f(σ(t1), . . . , σ(tn)).
We may write tσ for σ(t).

For a term t, V(t) is the set of variables in t. A term rewrite system (TRS) R is a set of rules
{ℓ1 → r1, . . . , ℓn → rn} with ℓi, ri ∈ T (Σ,V), ℓi ̸∈ V , and V(ri) ⊆ V(ℓi) for all 1 ≤ i ≤ n.
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The rewrite relation of R is s →R t iff there are a rule ℓ → r ∈ R, a position π ∈ Pos(s), and a
substitution σ such that s = s[ℓσ]π and t = s[rσ]π. Here, σ is called the matcher and the term ℓσ the
redex of the rewrite step. If no proper subterm of ℓσ is a possible redex, ℓσ is an innermost redex, and
the rewrite step is an innermost rewrite step, denoted by s i→R t.

ΣR
d = {f | f(ℓ1, . . . , ℓn) → r ∈ R} and ΣR

c = Σ \ ΣR
d are the defined and constructor

symbols of R. We may also just write Σd and Σc. The set of positions with defined symbols of t is
Posd(t) = {π | π ∈ Pos(t), root(t|π) ∈ Σd}.

For a relation →, →+ is its transitive closure and →∗ its reflexive-transitive closure. An object o is
a normal form (also: in normal form) w.r.t. a relation → iff there is no o′ with o → o′. A relation →
is confluent iff s →∗ t and s →∗ u implies that there exists an object v with t →∗ v and u →∗ v. A
relation → is terminating iff there is no infinite sequence t0 → t1 → t2 → · · · .

Example 3.1. (size)
Consider the TRS R with the following rules modelling the code of Figure 1.

plus(Zero, y) → y size(Nil) → Zero

plus(S(x), y) → S(plus(x, y)) size(Tree(v, l, r)) → S(plus(size(l), size(r)))

Here ΣR
d = {plus, size} and ΣR

c = {Zero, S,Nil,Tree}.
First, consider the term t = S(plus(Zero,S(Zero))). Its size is 5. Its positions are Pos(t) =

{ε, 1, 1.1, 1.2, 1.2.1}. In t, at position π = 1 we have the subterm t|1 = plus(Zero,S(Zero)). This
term matches the first rule of our TRS plus(Zero, y) → y with the substitution σ = {y 7→ S(Zero)}.
We can therefore reduce t to S(S(Zero)).

Beginning from t′ = size(Tree(Zero,Nil,Tree(Zero,Nil,Nil))), we have the following innermost
rewrite sequence, where the used innermost redexes are put in coloured boxes:

size(Tree(Zero,Nil,Tree(Zero,Nil,Nil)))
i→R S(plus( size(Nil) , size(Tree(Zero,Nil,Nil))))
i→R S(plus(Zero, size(Tree(Zero,Nil,Nil)) ))
i→R S(plus(Zero,S(plus( size(Nil) , size(Nil)))))
i→R S(plus(Zero,S(plus(Zero, size(Nil) ))))
i→R S(plus(Zero,S( plus(Zero,Zero) )))
i→R S( plus(Zero, S(Zero)) )
i→R S(S(Zero))

This rewrite sequence uses 7 steps to reach a normal form as the result of the computation.

Our objective is to provide static bounds on the length of the longest rewrite sequence from terms of
a specific size. Here we use innermost evaluation strategies, which closely correspond to call-by-value
strategies used in many programming languages. We focus on rewrite sequences that start with basic
terms, corresponding to function calls where a function is applied to data objects. The resulting notion
of complexity for term rewriting is known as innermost runtime complexity.
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Definition 3.2. (Derivation Height dh, Innermost Runtime Complexity irc [25, 14])
For all P ⊆ N ∪ {ω}, sup P is the least upper bound of P , where sup ∅ = 0 and ω is the smallest
infinite ordinal, i.e., ω > n holds for all n ∈ N. The derivation height of a term t w.r.t. a relation → is
the length of the longest sequence of →-steps from t: dh(t,→) = sup{e | ∃ t′ ∈ T (Σ,V). t →e t′}
where →e is the eth iterate of →. If t starts an infinite →-sequence, we write dh(t,→) = ω.

A term f(t1, . . . , tk) is basic (for a TRS R) iff f ∈ ΣR
d and t1, . . . , tk ∈ T (ΣR

c ,V). T R
basic

is the set of basic terms for a TRS R. For n ∈ N, the innermost runtime complexity function is
ircR(n) = sup{dh(t, i→R) | t ∈ T R

basic, |t| ≤ n}.

Many automated techniques have been proposed [25, 14, 26, 27, 28, 29, 30] to analyse ircR and
compute bounds on it. We build on Dependency Tuples [14], originally designed to find upper bounds
for (sequential) innermost runtime complexity. A central idea is to group all function calls2 by a rewrite
rule together rather than to separate them, in contrast to Dependency Pairs for proving termination [31].
We use sharp terms to represent these function calls.

Definition 3.3. (Sharp Terms T ♯)
For every f ∈ Σd, we introduce a fresh symbol f ♯ of the same arity, called a sharp symbol. For a term
t = f(t1, . . . , tn) with f ∈ Σd, we define t♯ = f ♯(t1, . . . , tn). For all other terms t, we define t♯ = t.
T ♯ = {t♯ | t ∈ T (Σ,V), root(t) ∈ Σd} denotes the set of sharp terms.

To get an upper bound for sequential complexity, we “count” how often each rewrite rule is used.
The idea is that when a rule ℓ → r is used, the cost (i.e., number of rewrite steps for the evaluation) of
the function call to the instance of ℓ is 1 + the sum of the costs of all the function calls in the resulting
instance of r, counted separately. To group n function calls together, we use “compound symbols”
Comn of arity n, which intuitively represent the sum of the runtimes of their arguments.

Definition 3.4. (Dependency Tuple, DT [14])
A dependency tuple (DT) is a rule of the form s♯ → Comn(t

♯
1, . . . , t

♯
n) where s♯, t♯1, . . . , t

♯
n ∈ T ♯.

Let ℓ → r be a rule with Posd(r) = {π1, . . . , πn} and π1 ⋗ . . . ⋗ πn where ⋗ is the standard
lexicographic order on positions. Then DT (ℓ → r) = ℓ♯ → Comn(r|♯π1 , . . . , r|

♯
πn).3 For a TRS R, let

DT (R) = {DT (ℓ → r) | ℓ → r ∈ R}.

2Here we use the term “function call” for a subterm f(t1, . . . , tn) with a defined symbol f at its root to capture the
corresponding intuition from functional programming. In contrast to most standard functional programming languages, in
term rewriting it is possible that such a function call can be evaluated in several ways (non-determinism), or not at all, so that
f need not describe a (total or even partial) function from terms to terms in the mathematical sense.
3The original definition of Dependency Tuples [14] allows for using an arbitrary total order instead of the lexicographic order
on positions for ⋗. The theory presented in this paper would work also with the original definition. The order ⋗ must be total
to ensure that the function DT is well defined w.r.t. the order of the arguments of Comn, so the (partial!) prefix order > is
not sufficient here.
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Example 3.5. For R from Example 3.1, DT (R) consists of the following DTs:

plus♯(Zero, y) → Com0

plus♯(S(x), y) → Com1(plus
♯(x, y))

size♯(Nil) → Com0

size♯(Tree(v, l, r)) → Com3(size
♯(l), size♯(r), plus♯(size(l), size(r)))

Intuitively, the DT size♯(Tree(v, l, r)) → Com3(size
♯(l), size♯(r), plus♯(size(l), size(r))) distils the

information about the function calls that we need to “count” from the right-hand side of the original
rewrite rule size(Tree(v, l, r)) → S(plus(size(l), size(r))), and the DT represents this information in
a more structured way: 1. the constructor context S(□) on the right-hand side that is not needed for
counting function calls is removed; 2. now all the function calls that need to be counted are present as
the sharp terms size♯(l), size♯(r), and plus♯(size(l), size(r)); 3. these sharp terms are direct arguments
of the new compound symbol Com3; and 4. the function calls size(l) and size(r) below plus♯ on the
right-hand side are now ignored for their direct contribution to the cost (their cost is accounted for via
size♯(l) and size♯(r)), but are considered only for their normal forms from innermost evaluation that
will be used for evaluating plus♯ in the recursive call.

To represent the number of rewrite steps used in the worst case to reduce a sharp term according
to a set of DTs and a TRS R, chain trees are used [14]. Intuitively, a chain tree for some sharp term
is a dependency tree of the computations involved in evaluating this term. Each node represents a
computation (the function calls represented by the DT with its special syntactic structure) on some
arguments (defined by the substitution).

We now use a tree structure to represent the computation represented by the Dependency Tuples
rather than a rewrite sequence or a linear chain (as with Dependency Pairs). The reason is that we now
have several function calls on the right-hand sides of our Dependency Tuples, and we want to trace
their computations in the tree independently. Thus, each function call gives rise to a new subtree.

Each actual innermost rewrite sequence with R will have a corresponding chain tree constructed
using DT (R), with R used implicitly for the calls to helper functions inside the sharp terms. This will
make chain trees useful for finding bounds on the maximum length of rewrite sequences with R.

Definition 3.6. (Chain Tree [14])
Let D be a set of DTs and R be a TRS. Let T be a (possibly infinite) tree where each node is labelled with
a DT q♯ → Comn(w

♯
1, . . . , w

♯
n) from D and a substitution ν, written (q♯ → Comn(w

♯
1, . . . , w

♯
n) | ν).

Let the root node be labelled with (s♯ → Come(r
♯
1, . . . , r

♯
e) | σ). Then T is a (D,R)-chain tree for s♯σ

iff the following conditions hold for any node of T , where (u♯ → Comm(v♯1, . . . , v
♯
m) | µ) is the label

of the node:

• u♯µ is in normal form w.r.t. R;

• if this node has the children (p♯1 → Comm1(. . .) | δ1), . . . , (p
♯
k → Commk

(. . .) | δk), then there
are pairwise different i1, . . . , ik ∈ {1, . . . ,m} with v♯ijµ

i→∗
R p♯jδj for all j ∈ {1, . . . , k}.
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A chain tree represents a rewrite sequence starting from some basic term. Each node captures exactly
one rewrite step in this sequence. Its label consists of the DT corresponding to the applied rewrite rule
and of the substitution with which the rule matches the term. A node has at most as many children as the
arity of the compound symbol on the right-hand side of its DT. Each of its children captures one of the
compound symbol’s arguments and represents the remaining rewrite steps for this particular subterm.
In the definition, we allow innermost rewrite steps to occur from compound symbols’ subterms to
their corresponding child node. This does not affect the overall cost of the computation represented by
the chain tree. Indeed, the cost of every redex that appears as a result of rewriting is captured by the
dependency tuple. Therefore, there is no need to “count” the cost of redexes that appear in one of a
compound symbol’s arguments: they have already been accounted for in another of its arguments.

We illustrate this notion in Example 3.7.

Example 3.7. For R from Example 3.1 and D = DT (R) from Example 3.5, the following is a chain
tree for the term s♯ = size♯(Tree(Zero,Nil,Nil)):

size♯(Tree(v, l, r)) → Com3

(
size♯(l) , size♯(r) , plus♯( size(l) , size(r) )

)
{v 7→ Zero; l 7→ Nil; r 7→ Nil}

size♯(Nil) → Com0 {} size♯(Nil) → Com0 {} plus♯( Zero , y ) → Com0 {y 7→ Zero}

The root node of the chain tree represents the rewrite step

size(Tree(Zero,Nil,Nil)) i→R S(plus(size(Nil), size(Nil)))

via the following DT:

size♯(Tree(v, l, r)) → Com3(size
♯(l), size♯(r), plus♯(size(l), size(r)))

This node has three children, each corresponding to a redex that will be evaluated when rewriting
S(plus(size(Nil), size(Nil))) to normal form. Its first two children represent the reduction of the
subterms at positions 1.1 and 1.2: size(Nil) i→R Zero, both with the corresponding DT size♯(Nil) →
Com0.

Its third child node represents the reduction of the rewritten subterm at position 1 of the right-
hand side of the rewrite rule, i.e., plus(size(Nil), size(Nil)). In this node, we capture the rewrite
step plus(Zero,Zero) i→R Zero with the DT plus♯(Zero, y) → Com0. In order to reach the term
plus♯(Zero,Zero) from the sharp term plus♯(size(Nil), size(Nil)) that appears inside Com3 (and to reach
a normal form w.r.t. i→R in its arguments), we must first perform the rewrite steps size(Nil) i→∗

R Zero
on each of its arguments. For the purposes of reaching the third child node, these rewrite steps are “for
free”, as they have already been accounted for by the two first children.

Analogous to the derivation height dh(t, i→R) for the number of rewrite steps in the longest
innermost rewrite sequence from a term t, the notion of complexity Cplx (t♯) captures the maximum of
the number of nodes of all chain trees for a sharp term t♯. As we shall see, this complexity of a sharp
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term t♯ w.r.t. chain trees provides an upper bound on the derivation height of its unsharped version t
for the original TRS. One can lift Cplx to innermost runtime complexity for Dependency Tuples as a
function of term size, and this notion for Dependency Tuples will provide a bound on the innermost
runtime complexity of the original TRS.

Definition 3.8. (Cplx [14])
Let D be a set of DTs and R be a TRS. Let S ⊆ D and s♯ ∈ T ♯. For a chain tree T , |T |S ∈
N ∪ {ω} is the number of nodes in T labelled with a DT from S. We define Cplx ⟨D,S,R⟩(s

♯) =

sup{|T |S | T is a (D,R)-chain tree for s♯}. For terms s♯ without a (D,R)-chain tree, we define
Cplx ⟨D,S,R⟩(s

♯) = 0.

For automated complexity analysis with DTs, the following notion of DT problems is used as a
characterisation of DTs that we reduce in incremental proof steps to a trivially solved problem.

Definition 3.9. (DT Problem, Complexity of DT Problem [14])
Let R be a TRS, D be a set of DTs, S ⊆ D. Then ⟨D,S,R⟩ is a DT problem. Its complexity function
is irc⟨D,S,R⟩(n) = sup{Cplx ⟨D,S,R⟩(t

♯) | t ∈ T R
basic, |t| ≤ n}. For any TRS R, the DT problem

⟨DT (R),DT (R),R⟩ is called the canonical DT problem for R.

For a DT problem ⟨D,S,R⟩, the set D contains all DTs that can be used in chain trees – and whose
complexity we want to analyse. S contains the DTs whose complexity remains to be analysed. R
contains the rewrite rules for evaluating the arguments of DTs. Here we focus on simplifying S (thus D
and R are fixed during the process) but techniques to simplify D and R are available as well [14, 27].

Example 3.10. (Example 3.7 continued)
Our chain tree from Example 3.7 for the term s♯ = size♯(Tree(Zero,Nil,Nil)) has 4 nodes. Thus, we
can conclude that Cplx ⟨DT (R),DT (R),R⟩(s

♯) ≥ 4.

The main correctness statement in the sequential case summarises our earlier intuitions. It has a
special case for confluent TRSs, for which Dependency Tuples capture innermost runtime complexity
exactly. The reason that confluence (intuitively: results of computations are deterministic) is required is
that without confluence, there can also be chain trees that do not correspond to real computations and
lead to higher complexities; for an example, see [14, Example 11].

Theorem 3.11. (Cplx bounds Derivation Height for i→R [14])
Let R be a TRS, let t = f(t1, . . . , tn) ∈ T (Σ,V) such that all ti are in normal form (this includes
all t ∈ T R

basic). Then we have dh(t, i→R) ≤ Cplx ⟨DT (R),DT (R),R⟩(t
♯). If i→R is confluent,4 then

dh(t, i→R) = Cplx ⟨DT (R),DT (R),R⟩(t
♯).

4The proofs for Theorem 3.11 and Theorem 3.12 from the literature and for our new Theorem 4.9 and Theorem 4.13 require
only the property that the used rewrite relation has unique normal forms (w.r.t. reduction) instead of confluence. However,
to streamline presentation, we follow the literature [14] and state our theorems with confluence rather than the property of
unique normal forms for the rewrite relation. Note that confluence of a relation is a sufficient condition for unique normal
forms, and confluence coincides with the unique normal form property if the relation is terminating [24]. Additionally, there
is more readily available tool support for confluence analysis.
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Theorem 3.11 implies the following link between ircR and irc⟨DT (R),DT (R),R⟩, which also explains
why ⟨DT (R),DT (R),R⟩ is called the “canonical” DT problem for R:

Theorem 3.12. (Complexity Bounds for TRSs via Canonical DT Problems [14])
Let R be a TRS with canonical DT problem ⟨DT (R),DT (R),R⟩. Then we have ircR(n) ≤
irc⟨DT (R),DT (R),R⟩(n). If i→R is confluent, we have ircR(n) = irc⟨DT (R),DT (R),R⟩(n).

In practice, the focus is on finding asymptotic bounds for ircR. For example, Example 3.15 will
show that for our TRS R from Example 3.1 we have ircR(n) ∈ O(n2).

A DT problem ⟨D,S,R⟩ is said to be solved iff S = ∅: we always have irc⟨D,∅,R⟩(n) = 0. To
simplify and finally solve DT problems in an incremental fashion, complexity analysis techniques called
DT processors are used. A DT processor takes a DT problem as input and returns a (hopefully simpler)
DT problem as well as an asymptotic complexity bound as an output. The largest asymptotic complexity
bound returned over this incremental process is then also an upper bound for irc⟨DT (R),DT (R),R⟩(n)
and hence also ircR(n) [14, Corollary 21]. In all examples that we present in Section 3 and Section 4,
a single proof step with a DT processor suffices to solve the given DT problem. Thus, the complexity
bound that is found by this proof step is trivially the largest bound among all proof steps and directly
carries over to the original problem as an asymptotic bound. In general, several proof steps using
potentially different DT processors may be needed to find an asymptotic complexity bound for the
input TRS, and then an explicit check for the largest bound is needed.

For our examples in Section 3 and Section 4, we use the reduction pair processor using polynomial
interpretations [14]. This DT processor applies a restriction of polynomial interpretations to N [15] to
infer upper bounds on the number of times that DTs can occur in a chain tree for terms of size at most
n.

Definition 3.13. (Polynomial Interpretation, CPI)
A polynomial interpretation Pol maps every n-ary function symbol to a polynomial with vari-
ables x1, . . . , xn and coefficients from N. Pol extends to terms via Pol(x) = x for x ∈ V and
Pol(f(t1, . . . , tn)) = Pol(f)(Pol(t1), . . . ,Pol(tn)). Pol induces an order ≻Pol and a quasi-order
≿Pol over terms where s ≻Pol t iff Pol(s) > Pol(t) and s ≿Pol t iff Pol(s) ≥ Pol(t) for all
instantiations of variables with natural numbers.

A complexity polynomial interpretation (CPI) Pol is a polynomial interpretation where:

• Pol(Comn(x1, . . . , xn)) = x1 + · · ·+ xn, and

• for all f ∈ Σc, Pol(f(x1, . . . , xn)) = a1 · x1 + · · · + an · xn + b for some ai ∈ {0, 1} and
b ∈ N.

The restriction for CPIs regarding constructor symbols enforces that the interpretation of a con-
structor term t (as an argument of a term for which a chain tree is constructed) can exceed its size |t|
only by at most a constant factor. This is crucial for soundness. Using a CPI, we can now define and
state correctness of the corresponding reduction pair processor [14, Theorem 27].

Theorem 3.14. (Reduction Pair Processor with CPIs [14])
Let P = ⟨D,S,R⟩ be a DT problem, let ≿ and ≻ be induced by a CPI Pol. Let k ∈ N be the maximal
degree of all polynomials Pol(f ♯) for all f ∈ Σd. Let D ∪ R ⊆ ≿. If S ∩ ≻ ≠ ∅, the reduction
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pair processor returns the DT problem P ′ = ⟨D,S \ ≻,R⟩ and the complexity O(nk). Then the
reduction pair processor is sound, i.e., the maximum of the asymptotic upper bound it computes and
the complexity of P ′ is indeed an asymptotic upper bound on the complexity of its input P ; see also
[14, Definition 17].

Example 3.15. (Example 3.5 continued)
For our running example, consider the CPI Pol with: Pol(plus♯(x1, x2)) = Pol(size(x1)) = x1,

Pol(size♯(x1)) = 2x1 + x21,Pol(plus(x1, x2)) = x1 + x2,Pol(Tree(x1, x2, x3)) = 1 + x2 +
x3,Pol(S(x1)) = 1 + x1,Pol(Zero) = Pol(Nil) = 1. Pol orients all DTs in S = DT (R) with ≻
and all rules in R with ≿. Thus, with this CPI, the reduction pair processor returns the solved DT
problem ⟨DT (R), ∅,R⟩ and proves ircR(n) ∈ O(n2): since the maximal degree of the CPI for a
symbol f ♯ is 2, the upper bound of O(n2) follows by Theorem 3.14.

Polynomial interpretations such as those used in the examples in this paper can be found automat-
ically using parametric interpretation templates for each function symbol and SAT- or SMT-solvers
[16, 17] to find the parameter values.

For example, we might use a parametric interpretation Polp with Polp(plus
♯(x1, x2)) = p0 +

p1x1 + p2x2 + p3x
2
1 + p4x1x2 + p5x

2
2, Polp(S(x1)) = p6 + p7x1, and Polp(Com1(x1)) = x1. Here

all pi are parameters that range over N, with p7 additionally being restricted to {0, 1}. For the term
constraint plus♯(S(x), y) ≻ Com1(plus

♯(x, y)), we would get the following parametric polynomial
constraint that must be satisfied for all x, y ∈ N:

p0+p1(p6+p7x)+p2y+p3(p6+p7x)
2+p4(p6+p7x)y+p5y

2 > p0+p1x+p2y+p3x
2+p4xy+p5y

2

We simplify the expression and get:

p1p6 + p1p7x+ p3p
2
6 + 2p3p6p7x+ p3p

2
7x

2 + p4p6y + p4p7xy > p1x+ p3x
2 + p4xy

We group parametric coefficients for each monomial in x, y together. This yields:

(p1p6 + p3p
2
6) + (p1p7 + 2p3p6p7 − p1)x + (p3p

2
7 − p3)x

2 + p4p6y + (p4p7 − p4)xy > 0

The absolute positiveness criterion [32] allows us to reduce this ∃∀ problem to an ∃ problem such that
a solution for the latter problem is also a solution for the former problem:

p1p6 + p3p
2
6 > 0 ∧ p1p7 + 2p3p6p7 − p1 ≥ 0 ∧ p3p

2
7 − p3 ≥ 0 ∧ p4p6 ≥ 0 ∧ p4p7 − p4 ≥ 0

This problem can now be passed to a constraint solver for non-linear integer arithmetic, e.g., based
on SAT- or SMT-solving [16, 17]. In this example, the constraint solver might return a solution with
p1 = p6 = p7 = 1 and pi = 0 otherwise. This solution for our constraint system allows us to refine
Polp to (part of) the above CPI Pol by replacing the parameters pi with the values returned from the
constraint solver. The full CPI Pol is obtained by considering all term constraints simultaneously and
passing the constraint system to an integer constraint solver; for details, we refer to [16].
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4. Finding Upper Bounds for Parallel Complexity

In this section we present our main contribution: an application of the DT framework from innermost
runtime complexity to parallel-innermost rewriting.

The notion of parallel-innermost rewriting dates back at least to [8]. Informally, in a parallel-
innermost rewrite step, all innermost redexes are rewritten simultaneously. This corresponds to
executing all function calls in parallel using a call-by-value strategy on a machine with unbounded
parallelism [33]. In the literature [34], this strategy is also known as “max-parallel-innermost rewriting”.

Definition 4.1. (Parallel-Innermost Rewriting [9])
A term s rewrites innermost in parallel to t with a TRS R, written s i−→R t, iff s i→+

R t, and either (a)
s i→R t with s an innermost redex, or (b) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and for all 1 ≤ k ≤ n
either sk i−→R tk or sk = tk is a normal form.5

As common in parallel rewriting, the redexes that are rewritten are at parallel positions – that
is, no position is a prefix of another. The literature [34] also contains definitions of parallel rewrite
strategies where an arbitrary selection of one or more (not necessarily innermost) parallel redexes may
be replaced in the parallel rewrite step rather than all innermost redexes (which are always parallel).
In the innermost case, such “may” parallel rewriting would include (sequential) innermost rewriting:
rewrite only one innermost redex at a time. Thus, also the worst-case time complexity of “may” parallel
rewriting would be identical to that of sequential rewriting. To capture the possible speed improvements
enabled by parallel rewriting on a (fictitious) machine with unbounded parallelism, we have chosen a
“must” parallel rewriting strategy where all eligible redexes (here: innermost) must be rewritten (case
(b) of Definition 4.1 rewrites all arguments that are not in normal form).

Example 4.2. (Example 3.1 continued)
The TRS R from Example 3.1 allows the following parallel-innermost rewrite sequence, where
innermost redexes are colourised in an analogous way to Example 3.1:

size(Tree(Zero,Nil,Tree(Zero,Nil,Nil)))
i−→R S(plus( size(Nil) , size(Tree(Zero,Nil,Nil)) ))
i−→R S(plus(Zero,S(plus( size(Nil) , size(Nil) ))))
i−→R S(plus(Zero,S( plus(Zero,Zero) )))
i−→R S( plus(Zero,S(Zero)) )
i−→R S(S(Zero))

In the second and in the third step, two innermost steps happen in parallel (which is not possible
with standard innermost rewriting: i−→R ̸⊆ i→R). An innermost rewrite sequence without parallel
evaluation requires two more steps to reach a normal form from this start term, as shown in Example 3.1.
Note that switching from i→R to i−→R in general does not lead to such a “speed-up”: as we shall see in

5The use of “ ” in the notation i−→R was suggested by van Oostrom [35] to avoid confusion with the notation −→∥ R, which
is commonly used to denote rewriting 0 or more eligible parallel redexes [24]. In contrast, in this paper we require rewriting
all eligible (here: innermost) redexes in a step with i−→R, and at least one such redex must be rewritten in such a step.
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Theorem 4.16, the derivation height of a term does not necessarily decrease when i−→R is used instead
of i→R.

Note that for all TRSs R, i−→R is terminating iff i→R is terminating [9]. Example 4.2 shows that
such an equivalence does not hold for the derivation height of a term.

The question now is: given a TRS R, how much of a speed-up might we get by a switch from
innermost to parallel-innermost rewriting? To investigate, we extend the notion of innermost runtime
complexity to parallel-innermost rewriting.

Definition 4.3. (Parallel-Innermost Runtime Complexity pirc)
For n ∈ N, we define the parallel-innermost runtime complexity function as the maximum of all
derivations heights of parallel executions from basic terms of size at most n:

pircR(n) = sup{dh(t, i−→R) | t ∈ T R
basic, |t| ≤ n}.

In the literature on parallel computing [33, 6, 2], the terms depth or span are commonly used
for the concept of the runtime of a function on a machine with unbounded parallelism (“wall time”),
corresponding to the complexity measure of pircR. In contrast, ircR would describe the work of a
function (“CPU time”).

In the following, given a TRS R, our goal shall be to infer (asymptotic) upper bounds for pircR
fully automatically. Of course, an upper bound for (sequential) ircR is also an upper bound for pircR.
We will now introduce techniques to find upper bounds for pircR that are strictly tighter than these
trivial bounds.

To find upper bounds for runtime complexity of parallel-innermost rewriting, we can reuse the
notion of DTs from Definition 3.4 for sequential innermost rewriting along with existing techniques [14]
as illustrated in the following example.

Example 4.4. In the recursive size-rule, the two calls to size(l) and size(r) happen in parallel (they
are structurally independent) and take place at parallel positions in the term. Thus, the cost (number
of rewrite steps with i−→R until a normal form is reached) for these two calls is not the sum, but the
maximum of their individual costs. Regardless of which of these two calls has the higher cost, we
still need to add the cost for the call to plus on the results of the two calls: plus starts evaluating only
after both calls to size have finished, or equivalently, size calls happen before plus. With σ as the used
matcher for the rule and with t ↓ as the (here unique) normal form resulting from repeatedly rewriting a
term t with i−→R (the “result” of evaluating t), we have:

dh(size(Tree(v, l, r))σ, i−→R)

= 1 +max(dh(size(l)σ, i−→R), dh(size(r)σ,
i−→R)) + dh(plus(size(l)σ↓, size(r)σ↓), i−→R)

In the DT setting, we could introduce a new symbol ComParn that explicitly expresses that its arguments
are evaluated in parallel. This symbol would then be interpreted as the maximum of its arguments in an
extension of Theorem 3.14:

size♯(Tree(v, l, r)) → Com2(ComPar2(size
♯(l), size♯(r)), plus♯(size(l), size(r)))
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Although automation of the search for polynomial interpretations extended by the maximum function
is readily available [36], we would still have to extend the notion of Dependency Tuples and also adapt
all existing techniques in the Dependency Tuple framework to work with ComParn.

This is why we have chosen the following alternative approach, which is equally powerful on
theoretical level and enables immediate reuse of all techniques in the existing DT framework [14].
Equivalently to the above, we can “factor in” the cost of calling plus into the maximum function:

dh(size(Tree(v, l, r))σ, i−→R)

= max(1 + dh(size(l)σ, i−→R) + dh(plus(size(l)σ↓, size(r)σ↓), i−→R),

1 + dh(size(r)σ, i−→R) + dh(plus(size(l)σ↓, size(r)σ↓), i−→R))

Intuitively, this would correspond to evaluating plus(. . . , . . .) twice, in two parallel threads of execution,
which costs the same amount of (wall) time as evaluating plus(. . . , . . .) once. We can represent this
maximum of the execution times of two threads by introducing two DTs for our recursive size-rule:

size♯(Tree(v, l, r)) → Com2(size
♯(l), plus♯(size(l), size(r)))

size♯(Tree(v, l, r)) → Com2(size
♯(r), plus♯(size(l), size(r)))

To express the cost of a concrete rewrite sequence, we would non-deterministically choose the DT that
corresponds to the “slower thread”.

In other words, when a rule ℓ → r is used, the cost of the function call to the instance of ℓ is 1 +
the sum of the costs of the function calls in the resulting instance of r that are in structural dependency
with each other. The actual cost of the function call to the instance of ℓ in a concrete rewrite sequence
is the maximum of all the possible costs caused by such chains of structural dependency (based on the
prefix order > on positions of defined function symbols in r). Thus, structurally independent function
calls are considered in separate DTs, whose non-determinism models the parallelism of these function
calls.

The notion of structural dependency of function calls is captured by Definition 4.5. Basically,
it comes from the fact that a term cannot be evaluated before all its subterms have been reduced to
normal forms (innermost rewriting/call by value). This induces a “happens-before” relation for the
computation [37].

Definition 4.5. (Structural Dependency, Maximal Structural Dependency Chain Set MSDC )
For positions π1, . . . , πk, we call ⟨π1, . . . , πk⟩ a structural dependency chain for a term t iff π1, . . . , πk ∈
Posd(t) and π1 > . . . > πk. Here πi structurally depends on πj in t iff i > j. A structural de-
pendency chain ⟨π1, . . . , πk⟩ for a term t is maximal iff k = 0 and Posd(t) = ∅, or k > 0 and
∀π ∈ Posd(t),

(
π ≯ π1 ∧ (π1 > π ⇒ π ∈ {π2, . . . , πk})

)
. We write MSDC (t) for the set of all

maximal structural dependency chains for t.

In the formula specifying maximal structural dependency chains for k > 0, the first conjunct states
that the first element π1 must be the position of an innermost defined symbol, and the second conjunct
states that all positions of defined symbols above π1 must be part of the chain as well. In other words,
it is not possible to add further elements anywhere in a maximal structural dependency chain and



T. Baudon, C. Fuhs, L. Gonnord / On Complexity Bounds and Confluence of Parallel Term Rewriting 17

obtain a larger structural dependency chain. Note that MSDC (t) ̸= ∅ always holds: if Posd(t) = ∅,
then MSDC (t) = {⟨⟩}. Note also that since we consider maximality of structural dependency chains
w.r.t. subset inclusion rather than cardinality of the sets of their elements, MSDC (t) may contain
structural dependency chains with different numbers of elements, as we shall now see in Example 4.6.

Example 4.6. Let t = S(plus(size(Nil), plus(size(x),Zero))). In our running example, t has the
following structural dependencies: MSDC (t) = {⟨1.1, 1⟩, ⟨1.2.1, 1.2, 1⟩}. The chain ⟨1.1, 1⟩ cor-
responds to the nesting of t|1.1 = size(Nil) below t|1 = plus(size(Nil), plus(size(x),Zero)), so the
evaluation of t|1 will have to wait at least until t|1.1 has been fully evaluated.

If π structurally depends on τ in a term t, neither t|τ nor t|π need to be a redex. Rather, t|τ could
be instantiated to a redex and an instance of t|π could become a redex after its subterms, including the
instance of t|τ , have been evaluated.

We thus revisit the notion of DTs as Parallel Dependency Tuples, which now embed structural
dependencies in addition to the algorithmic dependencies already captured in DTs.

Definition 4.7. (Parallel Dependency Tuples PDT , Canonical Parallel DT Problem)
For a rewrite rule ℓ → r, we define the set of its Parallel Dependency Tuples (PDTs) PDT (ℓ → r):
PDT (ℓ → r) = {ℓ♯ → Comk(r|♯π1 , . . . , r|

♯
πk) | ⟨π1, . . . , πk⟩ ∈ MSDC (r)}. For a TRS R, let

PDT (R) =
⋃

ℓ→r∈R PDT (ℓ → r).
The canonical parallel DT problem for R is ⟨PDT (R),PDT (R),R⟩.

Example 4.8. For our recursive size-rule ℓ → r, we have Posd(r) = {1, 1.1, 1.2} and MSDC (r) =
{⟨1.1, 1⟩, ⟨1.2, 1⟩}. With r |1 = plus(size(l), size(r)), r |1.1 = size(l), and r |1.2 = size(r), we get the
PDTs from Example 4.4. For the rule size(Nil) → Zero, we have MSDC (Zero) = {⟨⟩}, so we get
PDT (size(Nil) → Zero) = {size♯(Nil) → Com0}.

Our goal is now to prove that with the canonical PDT problem for R as a starting point, we
can reuse the existing Dependency Tuple Framework to find bounds on parallel-innermost runtime
complexity, even though the DT Framework was originally introduced only with sequential innermost
rewriting in mind. This allows for reuse both on theory level and on implementation level. A crucial
step towards this goal is our main correctness statement:

Theorem 4.9. (Cplx bounds Derivation Height for i−→R)
Let R be a TRS, let t = f(t1, . . . , tn) ∈ T (Σ,V) such that all ti are in normal form (e.g., when
t ∈ T R

basic). Then we have dh(t, i−→R) ≤ Cplx ⟨PDT (R),PDT (R),R⟩(t
♯).

If i−→R is confluent, then dh(t, i−→R) = Cplx ⟨PDT (R),PDT (R),R⟩(t
♯).

To prove Theorem 4.9, we need some further definitions and lemmas. Intuitively, the notion of
maximal parallel argument normal form of a term t captures the result of reducing all its arguments to
such normal forms that the number of i−→R steps at root position will have “worst-case cost”.

Definition 4.10. (Argument Normal Form [14], Maximal Parallel Argument Normal Form)
A term t is an argument normal form iff t ∈ V or t = f(t1, . . . , tn) and all ti are in normal form.
A term t ⇓ is a maximal parallel argument normal form of a term t iff t ⇓ is an argument normal



18 T. Baudon, C. Fuhs, L. Gonnord / On Complexity Bounds and Confluence of Parallel Term Rewriting

form such that t i−→∗
R,>ε t ⇓ and for all argument normal forms t′ with t i−→∗

R,>ε t′, we have
dh(t′, i−→R) ≤ dh(t⇓, i−→R). Here u i−→∗

R,>ε v denotes a rewrite sequence with i−→R where all
steps are at positions > ε.

Example 4.11. Consider the TRS {a → b, a → c, f(b) → d, f(c) → f(d), f(d) → d}. The terms f(b)
and f(c) are both in argument normal form, and we have f(a) i−→∗

R,>ε f(b) and f(a) i−→∗
R,>ε f(c).

The term f(c) is a maximal parallel argument normal form of f(a) because for any other term t
that satisfies both of these criteria (argument normal form and f(a) i−→∗

R,>ε t), we always have
dh(t, i−→R) ≤ dh(f(c), i−→R).

The following lemma is adapted to the parallel setting from [14].

Lemma 4.12. (Parallel Derivation Heights of Nested Subterms)
Let t be a term, let R be a TRS such that all reductions of t with i−→R are finite. Then

dh(t, i−→R) ≤ max{
∑

1≤i≤k

dh(t|πi ⇓, i−→R) | ⟨π1, . . . , πk⟩ ∈ MSDC (t)}

If i−→R is confluent, then we additionally have:

dh(t, i−→R) = max{
∑

1≤i≤k

dh(t|πi ⇓, i−→R) | ⟨π1, . . . , πk⟩ ∈ MSDC (t)}

Proof:
By induction on the term size |t|. If |t| = 1, the statement follows immediately since t⇓ = t. Now
consider the case |t| > 1. Let n be the arity of the root symbol of t. In (parallel-)innermost rewriting, a
rewrite step at the root of t requires that the arguments of t have been rewritten to normal forms. Since
rewriting of arguments takes place in parallel (case (b) of Definition 4.1 applies), we have

dh(t, i−→R) ≤ dh(t⇓, i−→R) + max{ dh(t|j , i−→R) | 1 ≤ j ≤ n}

If i−→R is confluent, then t⇓ is uniquely determined and we have equality in the previous as well as in
the next (in)equalities.

As |tj | < |t|, we can apply the induction hypothesis:

dh(t, i−→R) ≤ dh(t⇓, i−→R)

+ max

max

 ∑
1≤i≤m

dh(t|j.τi ⇓, i−→R)

∣∣∣∣∣∣ ⟨τ1, . . . , τm⟩ ∈ MSDC (t|j)


∣∣∣∣∣∣ 1 ≤ j ≤ n


Equivalently:

dh(t, i−→R) ≤ max

dh(t⇓, i−→R) +
∑

1≤i≤m

dh(t|j.τi ⇓, i−→R)

∣∣∣∣∣∣ 1 ≤ j ≤ n

⟨τ1, . . . , τm⟩ ∈ MSDC (t|j)


= max

 ∑
1≤i≤k

dh(t|πi ⇓, i−→R)

∣∣∣∣∣∣ ⟨π1, . . . , πk⟩ ∈ MSDC (t)
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For the last equality, consider that the maximal structural dependency chains π1, . . . , πk of t
can have two forms. If the root of t is a defined symbol, we have ⟨j.τ1, . . . , j.τm, ε⟩ ∈ MSDC (t).
Otherwise dh(t⇓, i−→R) = 0 and thus ⟨j.τ1, . . . , j.τm⟩ ∈ MSDC (t). ⊓⊔

We now can proceed with the proof of Theorem 4.9.

Proof:
[of Theorem 4.9]

• As the first case, consider dh(t, i−→R) = ω. Since t is in argument normal form, the first rewrite
step from t must occur at the root. Thus, there are ℓ1 → r1 ∈ R and a substitution σ1 such
that t = ℓ1σ1

i−→R r1σ1 and dh(r1σ1,
i−→R) = ω. Hence, there is a minimal subterm r1σ1|π1

of r1σ1 such that dh(r1σ1|π1 ,
i−→R) = ω and all proper subterms of r1σ1|π1 terminate w.r.t.

i−→R. As σ1 must instantiate all variables with normal forms, we have π1 ∈ Posd(r1), i.e.,
r1σ1|π1 = r1|π1σ1. In the infinite i−→R-reduction of r1|π1σ1, all arguments are again reduced to
normal forms first, and we get a term t′ with dh(t′, i−→R) = ω. Since t′ is in argument normal
form, the first rewrite step from t′ must occur at the root. Thus, there are ℓ2 → r2 ∈ R and a
substitution σ2 such that t′ = ℓ2σ2

i−→R r2σ2 and dh(r2σ2,
i−→R) = ω. This argument can be

continued ad infinitum, giving rise to an infinite path of chain tree nodes

(ℓ♯1 → Comn1(. . . , r1|♯π1
, . . .) | σ1), (ℓ♯2 → Comn2(. . . , r2|♯π2

, . . .) | σ2), . . .

Thus, ℓ♯1σ1 = t♯ has an infinite chain tree, and Cplx ⟨PDT (R),PDT (R),R⟩(t
♯) = ω.

• Now consider the case where dh(t, i−→R) ∈ N. We use induction on dh(t, i−→R).

If dh(t, i−→R) = 0, the term t is in normal form w.r.t. R. Thus, t♯ is in normal form w.r.t.
PDT (R) ∪R, and Cplx ⟨PDT (R),PDT (R),R⟩(t

♯) = 0.

If dh(t, i−→R) > 0, since t is in argument normal form, there are ℓ → r ∈ R and a substitution
σ such that t = ℓσ i−→R rσ = u and

dh(t, i−→R) = 1 + dh(u, i−→R) (1)

As σ must instantiate all variables with normal forms, we have that u|π = rσ|π is in normal form
for all π ∈ Posd(u) \Posd(r). For these positions π, u|π⇓= u|π and dh(u|π, i−→R) = 0. From
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Lemma 4.12, we get:

dh(u, i−→R)

≤ max

 ∑
1≤i≤k

dh(u|πi ⇓, i−→R)

∣∣∣∣∣∣ ⟨π1, . . . , πk⟩ ∈ MSDC (u)


= max


∑

1≤i≤j

dh(u|πi ⇓, i−→R) +
∑

j+1≤i≤k

dh(u|πi ⇓, i−→R)

∣∣∣∣∣∣∣
⟨π1, . . . , πk⟩ ∈ MSDC (u)

π1, . . . , πj ∈ Posd(u) \ Posd(r)
πj+1, . . . , πk ∈ Posd(r)


= max


∑

1≤i≤j

dh(u|πi ,
i−→R) +

∑
j+1≤i≤k

dh(u|πi ⇓, i−→R)

∣∣∣∣∣∣∣
⟨π1, . . . , πk⟩ ∈ MSDC (u)

π1, . . . , πj ∈ Posd(u) \ Posd(r)
πj+1, . . . , πk ∈ Posd(r)


= max


∑

j+1≤i≤k

dh(u|πi ⇓, i−→R)

∣∣∣∣∣∣∣
⟨π1, . . . , πk⟩ ∈ MSDC (u)

π1, . . . , πj ∈ Posd(u) \ Posd(r)
πj+1, . . . , πk ∈ Posd(r)


(2)

Note that dh(u|π ⇓, i−→R) ≤ dh(u|π, i−→R) < dh(t, i−→R) holds for all π ∈ Posd(r). Thus,
with the induction hypothesis, (1) and (2), we get:

dh(t, i−→R)

= 1 + dh(u, i−→R)

≤ 1 + max


∑

j+1≤i≤k

Cplx ⟨PDT (R),PDT (R),R⟩(u|πi ⇓♯)

∣∣∣∣∣∣∣
⟨π1, . . . , πk⟩ ∈ MSDC (u)

π1, . . . , πj ∈ Posd(u) \ Posd(r)
πj+1, . . . , πk ∈ Posd(r)


(3)

Let ⟨π1, . . . , πk⟩ be an arbitrary maximal structural dependency chain for r. Then there exists
a corresponding chain tree for t♯ whose root node is (ℓ♯ → Comk(r1|π1 ⇓♯, . . . , rk|πk

⇓♯) | σ)
and where the children of the root node are maximal chain trees for u|π1 ⇓♯, . . . , u|πk

⇓♯. This
follows because for all 1 ≤ i ≤ k, we have r|πiσ = u|πi and so r|♯πiσ

i→∗
R u|πi ⇓♯. Together

with (3), this gives dh(t, i−→R) ≤ Cplx ⟨PDT (R),PDT (R),R⟩(t
♯), and for confluent i−→R we also

get dh(t, i−→R) = Cplx ⟨PDT (R),PDT (R),R⟩(t
♯).

⊓⊔

From Theorem 4.9, the soundness of our approach to parallel complexity analysis via the DT
framework follows analogously to [14]:
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Theorem 4.13. (Parallel Complexity Bounds for TRSs via Canonical Parallel DT Problems)
Let R be a TRS with canonical parallel DT problem ⟨PDT (R),PDT (R),R⟩. Then we have
pircR(n) ≤ irc⟨PDT (R),PDT (R),R⟩(n).

If i−→R is confluent, we have pircR(n) = irc⟨PDT (R),PDT (R),R⟩(n).

This theorem implies that we can reuse arbitrary techniques to find upper bounds for sequential com-
plexity in the DT framework also to find upper bounds for parallel complexity, without requiring any
modification to the framework. To analyse parallel complexity of a TRS R instead of sequential com-
plexity, we need to make only a single adjustment: the input for the DT framework is now the canonical
parallel DT problem for R (Definition 4.7) instead of the canonical DT problem (Definition 3.9).

Specifically, with Theorem 4.13 we can use the existing reduction pair processor with CPIs
(Theorem 3.14) in the DT framework to get upper bounds for pircR.

Example 4.14. (Example 4.4 continued)
For our TRS R computing the size function on trees, we get the set PDT (R) with the following PDTs:

plus♯(Zero, y) → Com0

plus♯(S(x), y) → Com1(plus
♯(x, y))

size♯(Nil) → Com0

size♯(Tree(v, l, r)) → Com2(size
♯(l), plus♯(size(l), size(r)))

size♯(Tree(v, l, r)) → Com2(size
♯(r), plus♯(size(l), size(r)))

The interpretation Pol from Example 3.15 implies pircR(n) ∈ O(n2). This bound is tight: consider
size(t) for a comb-shaped tree t where the first argument of Tree is always Zero and the third is always
Nil. The function plus, which needs time linear in its first argument, is called linearly often on data
linear in the size of the start term. Due to the structural dependencies, these calls do not happen in
parallel (so call k + 1 to plus must wait for call k).

Example 4.15. Note that pircR(n) can be asymptotically lower than ircR(n), for instance for the TRS
R of Section 2 with the following rules:

doubles(Zero) → Nil d(Zero) → Zero

doubles(S(x)) → Cons(d(S(x)), doubles(x)) d(S(x)) → S(S(d(x)))

The upper bound ircR(n) ∈ O(n2) is tight: from doubles(S(S(. . . S(Zero) . . .))), we get linearly many
calls to the linear-time function d on arguments of size linear in the start term. However, the Parallel
Dependency Tuples in this example are:

doubles♯(Zero) → Com0 d♯(Zero) → Com0

doubles♯(S(x)) → Com1(d
♯(S(x))) d♯(S(x)) → Com1(d

♯(x))

doubles♯(S(x)) → Com1(doubles
♯(x))

Then the following polynomial interpretation, which orients all DTs with ≻ and all rules from R
with ≿ so that the reduction pair processor returns a solved DT problem, proves pircR(n) ∈ O(n):



22 T. Baudon, C. Fuhs, L. Gonnord / On Complexity Bounds and Confluence of Parallel Term Rewriting

Pol(doubles♯(x1)) = Pol(d(x1)) = 2x1,Pol(d♯(x1)) = x1,Pol(doubles(x1)) = Pol(Zero) =
Pol(Cons(x1, x2)) = Pol(Nil) = 1,Pol(S(x1)) = 1 + x1.

Interestingly enough, Parallel Dependency Tuples also allow us to identify TRSs that have no
potential for parallelisation by parallel-innermost rewriting.

Theorem 4.16. (Absence of Parallelism by PDTs)
Let R be a TRS such that for all rules ℓ → r ∈ R, |MSDC (r)| = 1. Then:

(a) PDT (R) = DT (R);

(b) for all basic terms t0 and rewrite sequences t0 i−→R t1
i−→R t2

i−→R . . . , also t0
i→R t1

i→R
t2

i→R . . . holds (i.e., from basic terms, i−→R and i→R coincide);

(c) pircR(n) = ircR(n).

Proof:
Let R be a TRS such that for all rules ℓ → r ∈ R, |MSDC (r)| = 1.

We prove part (a) by showing that for each rule ℓ → r ∈ R, we have PDT (ℓ → r) = {DT (ℓ →
r)}. Let ℓ → r ∈ R. By construction of PDT , we get from |MSDC (r)| = 1 that |PDT (ℓ → r)| = 1.
|MSDC (r)| = 1 implies that Posd(r) is ordered by the prefix order > on positions. Thus, by using the
extension of > to the lexicographic order on positions ⋗ used as an ingredient for the construction of
DT (ℓ → r), we obtain the result for part (a).

We now prove part (b). Let t0 be a basic term for R with a rewrite sequence t0
i−→R t1

i−→R
t2

i−→R . . . . We show by induction over i that for all ti, ti contains at most one innermost redex.
For the base case, consider that the basic term t0 contains only a single occurrence of a defined

symbol, at the root. Thus, if t0 is a redex, it is also the unique innermost redex in t0.
For the induction step, assume that ti has at most one innermost redex. If ti has no redex, it is a

normal form, and we are done. Otherwise, ti has exactly one innermost redex at position τ , and in
the parallel-innermost rewrite step ti

i−→R ti+1 a rule ℓ → r with matcher σ replaces ti|τ = σ(ℓ) by
σ(r). The premise |MSDC (r)| = 1 implies that there is exactly one (empty or non-empty) maximal
structural dependency chain ⟨π1, . . . , πk⟩ ∈ MSDC (r).

Since the rewrite step ti
i−→R ti+1 uses (parallel-)innermost rewriting, σ(x) is in normal form

for all variables x. Thus, potential redexes in term ti+1 can only be at positions τ.π1, . . . , τ.πk. As
⟨π1, . . . , πk⟩ is a structural dependency chain, we have π1 > · · · > πk, which implies τ.π1 > · · · >
τ.πk. Thus, the term ti+1 has at most one innermost redex τπi. This concludes part (b).

Part (c) follows directly from part (b) and the definitions of pircR(n) and ircR(n). ⊓⊔

Thus, for TRSs R where Theorem 4.16 applies, no rewrite rule can introduce parallel redexes, and
specific analysis techniques for pircR are not needed.
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5. From Parallel DTs to Innermost Rewriting

As we have seen in the previous section, we can transform a TRS R with parallel-innermost rewrite
relation to a DT problem whose complexity provides an upper bound of pircR (or, for confluent i−→R,
corresponds exactly to pircR). However, DTs are only one of many available techniques to find bounds
for ircR. Other techniques include, e.g., Weak Dependency Pairs [25], usable replacement maps
[26], the Combination Framework [27], a transformation to complexity problems for integer transition
systems [28], amortised complexity analysis [30], or techniques for finding lower bounds [29]. Thus,
can we benefit also from other techniques for (sequential) innermost complexity to analyse parallel
complexity?

In this section, we answer the question in the affirmative, via a generic transformation from
Dependency Tuple problems back to rewrite systems whose innermost complexity can then be analysed
using arbitrary existing techniques.

We use relative rewriting, which allows for labelling some of the rewrite rules such that their
use does not contribute to the derivation height of a term. In other words, rewrite steps with these
rewrite rules are “for free” from the perspective of complexity. Existing state-of-the-art tools like
APROVE [18] and TCT [19] are able to find bounds on (innermost) runtime complexity of such rewrite
systems.

Definition 5.1. (Relative Rewriting)
For two TRSs R1 and R2, R1/R2 is a relative TRS. Its rewrite relation →R1/R2

is →∗
R2

◦ →R1

◦ →∗
R2

, i.e., rewriting with R2 is allowed before and after each R1-step. We define the innermost
rewrite relation by s i→R1/R2

t iff s →∗
R2

s′ →R1 s′′ →∗
R2

t for some terms s′, s′′ such that the proper
subterms of the redexes of each step with →R2 or →R1 are in normal form w.r.t. R1 ∪R2.

The set T R1/R2

basic of basic terms for a relative TRS R1/R2 is T R1/R2

basic = T R1∪R2
basic . The no-

tion of innermost runtime complexity extends to relative TRSs in the natural way: ircR1/R2
(n) =

sup{dh(t, i→R1/R2
) | t ∈ T R1/R2

basic , |t| ≤ n}

The rewrite relation i→R1/R2
is essentially the same as i→R1∪R2 , but only steps using rules from

R1 count towards the complexity; steps using rules from R2 have no cost. This can be useful, e.g., for
representing that built-in functions from programming languages modelled as recursive functions have
constant cost.

Example 5.2. Consider a variant of Example 3.1 where plus(S(x), y) → S(plus(x, y)) is moved to R2,
but all other rules are elements of R1. Then R1/R2 would provide a modelling of the size function that
is closer to the OCaml function from Section 1. Let Sn(Zero) denote the term obtained by n-fold appli-
cation of S to Zero (e.g., S2(Zero) = S(S(Zero))). Although dh(plus(Sn(Zero),Sm(Zero)), i→R1∪R2)
= n+1, we would then get dh(plus(Sn(Zero), Sm(Zero)), i→R1/R2

) = 1, corresponding to a machine
model where the time of evaluating addition for integers is constant.

Note the similarity of a relative TRS and a Dependency Tuple problem: only certain rewrite
steps count towards the analysed complexity. We make use of this observation for the following
transformation.
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Definition 5.3. (Relative TRS for a Dependency Tuple Problem, δ)
Let ⟨D,S,R⟩ be a Dependency Tuple problem. We define the corresponding relative TRS:

δ(⟨D,S,R⟩) = S/((D \ S) ∪R).

In other words, we omit the information that steps with our dependency tuples can happen only on
top level (possibly below constructors Comn, but above →R steps). (As we shall see in Theorem 5.8,
this information can be recovered.)

The following example is taken from the Termination Problem Data Base (TPDB) [38], a collection
of examples used at the annual Termination and Complexity Competition (termCOMP) [39, 40] (see
also Section 7):

Example 5.4. (TPDB, HirokawaMiddeldorp 04/t002)
Consider the following TRS R from category Innermost Runtime Complexity of the TPDB:

leq(0, y) → True if(True, x, y) → x

leq(S(x), 0) → False if(False, x, y) → y

leq(S(x), S(y)) → leq(x, y) −(x, 0) → x

mod(0, y) → 0 −(S(x),S(y)) → −(x, y)

mod(S(x), 0) → 0

mod(S(x), S(y)) → if(leq(y, x),mod(−(S(x), S(y)),S(y)),S(x))

This TRS has the following PDTs PDT (R):

leq♯(0, y) → Com0 if♯(True, x, y) → Com0

leq♯(S(x), 0) → Com0 if♯(False, x, y) → Com0

leq♯(S(x),S(y)) → Com1(leq
♯(x, y)) −♯(x, 0) → Com0

mod♯(0, y) → Com0 −♯(S(x),S(y)) → Com1(−♯(x, y))

mod♯(S(x), 0) → Com0

mod♯(S(x),S(y)) → Com2(leq
♯(y, x), if♯(leq(y, x),mod(−(S(x),S(y)), S(y)), S(x)))

mod♯(S(x), S(y)) → Com3(−♯(S(x),S(y)),mod♯(−(S(x),S(y)),S(y)),

if♯(leq(y, x),mod(−(S(x),S(y)),S(y)), S(x)))

The canonical parallel DT problem for R is ⟨PDT (R),PDT (R),R⟩. We get the relative TRS
δ(⟨PDT (R),PDT (R),R⟩) = PDT (R)/R.

Remark 5.5. One of the reviewers suggested that the use of if in Example 5.4 indicated that TRSs
with innermost rewriting were inherently unable to provide a faithful representation of the evaluation
strategy for conditional statements used in programming languages with call-by-value evaluation. The
reason was that in the recursive mod rule, the function calls in the subterm mod(−(S(x),S(y)), S(y))
are evaluated also if the call to leq(y, x) rewrites to False so that the “then”-branch of the conditional
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evaluation would never be needed. In contrast, a language like OCaml, C++, Rust, . . . would evaluate
the “then”-branch only after the leq(y, x) had evaluated to True.

There are several ways of dealing with this modelling issue in term rewriting. One way is to impose
a context-sensitive rewrite strategy [41] that “freezes” the second and third argument of if. Like this,
the evaluation of these arguments is delayed until after the result of evaluating the first argument is
known, and only the appropriate branch is evaluated.

Another way that does not necessitate a different rewrite strategy is to reorganise the rewrite rules
with a dedicated symbol cond for the specific conditional expression rather than using generic if rules.
In Example 5.4, we could replace the recursive mod rule with the following rules (and potentially
remove the if rules, which would no longer be needed):

mod(S(x),S(y)) → cond(leq(y, x), x, y)

cond(True, x, y) → mod(−(S(x), S(y)),S(y))

cond(False, x, y) → S(x)

In this way, an innermost rewrite sequence would require first evaluating the instance of leq(y, x)
to normal form, and depending on the result True or False, the corresponding cond rule will evaluate
(only) the corresponding branch of the earlier if statement. We refrained from doing so in Example 5.4
to keep the link with an existing TRS from the literature that reflects different modelling choices and
that our method should be able to analyse as well.

From the definition of relative TRS, we are now able to prove an upper bound (Theorem 5.6) as
well as a lower bound (Theorem 5.8) for parallel complexities.

Theorem 5.6. (Upper Complexity Bounds for δ(⟨D,S,R⟩) from ⟨D,S,R⟩)
Let ⟨D,S,R⟩ be a DT problem. Then

(a) for all t♯ ∈ T ♯ with t ∈ T R
basic, we have Cplx⟨D,S,R⟩(t

♯)≤ dh(t♯, i→S/((D\S)∪R)), and

(b) irc⟨D,S,R⟩(n)≤ ircS/((D\S)∪R)(n).

Proof:
We first show part (a) of the statement. For a DT Problem ⟨D,S,R⟩ and a term t♯ ∈ T ♯, consider
an arbitrary chain tree T . We will show that if |T |S = n, then also dh(t♯, i→S/((D\S)∪R)) ≥ n. We
consider two cases.

• First, n = ω. The set of all dependency tuples is finite, thus a finite term can only have a
finite number of immediate successors. Therefore, T is finitely branching, so there must be an
infinite path with infinitely many nodes of the form (u♯1 → Comn1(. . . , v

♯
1, . . .) | σ1), (u

♯
2 →

Comn2(. . . , v
♯
2, . . .) | σ2), . . . such that u♯1 → Comn1(. . . , v

♯
1, . . .), u

♯
2 → Comn2(. . . , v

♯
2, . . .),

. . . ∈ D. For infinitely many i1 < i2 < i3 < . . . , we also have u♯i → Comni(. . . , v
♯
i , . . .) ∈ S,

and for all i, we have v♯iσi
i→∗
R u♯i+1σi+1. Then we also have a corresponding infinite rewrite



26 T. Baudon, C. Fuhs, L. Gonnord / On Complexity Bounds and Confluence of Parallel Term Rewriting

sequence

t♯ = u♯1σ1
i→∗
S/((D\S)∪R) C1[u

♯
i1
σi1 ]

i→S C1[Comni1
(. . . , v♯i1 , . . .)σi1 ]

i→∗
(D\S)∪R C2[u

♯
i2
σi2 ]

i→S C2[Comni2
(. . . , v♯i2 , . . .)σi2 ]

i→∗
(D\S)∪R . . .

for some contexts C1, C2, . . . (which result from rewrite steps with rules from D).

• Now consider the case n ∈ N. We use induction. For n = 0, the statement trivially holds. For
the induction step, let n > 0.

The (potentially infinite) chain tree T has m subtrees T ′
i with roots (u♯i → Comqi(v

♯
i,1, . . . , v

♯
i,qi

) |
σi) such that u♯i → Comqi(v

♯
i,1, . . . , v

♯
i,qi

) ∈ S and the path in the chain tree from the root to

(u♯i → Comqi(v
♯
i,1, . . . , v

♯
i,qi

) | σi) has no outgoing edges from a node with a DT in S .

We show two separate statements in the induction step, which together let us conclude that
dh(t♯, i→S/((D\S)∪R)) ≥ |T ′

1|S + · · ·+ |T ′
m|S = n:

For each T ′
i , the term u♯iσi has dh(u♯iσi,

i→S/((D\S)∪R)) ≥ |T ′
i |S . (4)

There are contexts C1, . . . , Cm such that
t♯ i→∗

S/((D\S)∪R) Comm(C1[u
♯
1σ1], . . . , Cm[u♯mσm]).

(5)

On (4): Let i ∈ {1, . . . ,m} be arbitrary and fixed, let u = ui, let σ = σi, let T ′ = T ′
i (to ease

notation). T ′ is a chain tree for uσ and its root is (u♯ → Comq(v
♯
1, . . . , v

♯
q) | σ). Let this node

have children N1 = (w♯
1 → Comr1(. . .) | µ1), . . ., Nq = (w♯

q → Comrq(. . .) | µq). For the
corresponding trees T ′′

j with Nj at the root, we have |T ′′
j |S < |T ′|S ≤ n by construction, so

the induction hypothesis is applicable to the terms w♯
jµj , and we get dh(w♯

jµj ,
i→S/((D\S)∪R))

≥ |T ′′
j |S for all 1 ≤ j ≤ q. We construct a rewrite sequence with i→S/((D\S)∪R) using at least

1 + |T ′′
1 |S + · · ·+ |T ′′

q |S = |T ′|S steps with a rule from S as follows:

u♯σ i→S Comq(v
♯
1σ, . . . , v

♯
qσ)

i→∗
R Comq(w

♯
1µ1, . . . , v

♯
qσ)

i→∗
R . . .

i→∗
R Comq(w

♯
1µ1, . . . , w

♯
qµq)

With this rewrite sequence, we obtain (4) using the induction hypothesis:

dh(u♯σ, i→S/((D\S)∪R))

≥ 1 + dh(w♯
1µ1,

i→S/((D\S)∪R)) + · · ·+ dh(w♯
qµq,

i→S/((D\S)∪R))

≥ 1 + |T ′′
1 |S + · · ·+ |T ′′

q |S
= |T ′|S
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On (5): Let the root of T be (ℓ♯ → Comp(r
♯
1, . . . , r

♯
p) | ν). With a construction similar to the one

used in the case n = ω, we get:

t♯ = ℓ♯ν i→D Comp(r
♯
1ν, . . . , r

♯
pν)

i→∗
(D\S)∪R Comp(C1[u

♯
1σ1], . . . , r

♯
pν)

i→∗
(D\S)∪R . . .

i→∗
(D\S)∪R Comp(C1[u

♯
1σ1], . . . , Cm[u♯mσm])

for some contexts C1, . . . , Cm (which result from rewrite steps with rules from D). Note that
here it suffices to reduce only in those subterms with a symbol f ♯ at their root that are on a path
to one of the Ci[u

♯
iσi], and depending on the tree structure, each r♯jν may yield 0 or more of these

m terms (note that p and m are not necessarily equal).

This concludes the induction step and hence the overall proof of part (a).

Part (b) follows from part (a), as shown in the following:

irc⟨D,S,R⟩(n) = sup{Cplx ⟨D,S,R⟩(t
♯) | t ∈ T R

basic, |t| ≤ n} by Definition 3.9

≤ sup{dh(t♯, i→S/((D\S)∪R)) | t ∈ T R
basic, |t| ≤ n} by part (a)

≤ sup{dh(s, i→S/((D\S)∪R)) | s ∈ T R∪D
basic , |s| ≤ n}

= ircS/((D\S)∪R)(n)

⊓⊔

Example 5.7. (Example 5.4 continued)
For the relative TRS PDT (R)/R from Example 5.4, the tool APROVE uses a transformation to integer
transition systems [28] followed by an application of the complexity analysis tool COFLOCO [42, 43]
to find a bound ircPDT (R)/R(n) ∈ O(n) and to deduce the bound pircR(n) ∈ O(n) for the original
TRS R from the TPDB. In contrast, using the techniques of Section 4 without the transformation to a
relative TRS from Definition 5.3, APROVE finds only a bound pircR(n) ∈ O(n2).

Intriguingly, we can use our transformation from Definition 5.3 not only for finding upper bounds,
but also for lower bounds on pircR.

Theorem 5.8. (Lower Complexity Bounds for δ(⟨D,S,R⟩) from ⟨D,S,R⟩)
Let ⟨D,S,R⟩ be a DT problem. Then

(a) there is a type assignment s.t. for all ℓ → r ∈ D ∪ R, ℓ and r get the same type, and for all
well-typed t ∈ T D∪R

basic , Cplx ⟨D,S,R⟩(t
♯) ≥ dh(t, i→S/((D\S)∪R)), and

(b) irc⟨D,S,R⟩(n) ≥ ircS/((D\S)∪R)(n).

Proof:
We first consider the proof for part (a).
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We use the following (many-sorted first-order monomorphic) type assignment Θ with two sorts α
and β, where the arities of the symbols are respected (note that here all arguments of a given symbol
have the same type):

Θ(f) = α× · · · × α → α for f in ΣR

Θ(f ♯) = α× · · · × α → β for f ♯ a sharp symbol

Θ(Comk) = β × · · · × β → β

With this type assignment, for all rules ℓ → r ∈ D ∪ R, ℓ and r are well typed and have the same
type: if ℓ → r ∈ R, then all occurring symbols have the same result type α, which carries over
to ℓ and r. And if ℓ → r ∈ D, then ℓ and r have type β. To see that ℓ and r are well typed,
consider that every term ℓ has the shape f ♯(s1, . . . , sn), where f ♯ has result type β and expects all
arguments to have type α, while all si contain only subterms of type α. Similarly, r has the shape
Comk(f

♯
1(t1,1, . . . , t1,n1), . . . , f

♯
k(tk,1, . . . , tk,nk

)). Comk has result type β and expects all arguments
to have type β. This is the case since all f ♯

i have result type β. And all f ♯
i , which are right below the

root, expect their arguments ti,j to have result type α. This is the case by construction.
In the following, we consider basic terms that are well typed according to Θ as start terms. For

our relative TRS S/((D \ S) ∪R), we have the following two kinds of well-typed basic terms that we
need to consider:

Case 1: t = f(t1, . . . , tn) with f ∈ Σd and t1, . . . , tn ∈ T (Σc,V). This term and all its subterms
are of type α. Thus, this term can be rewritten by rules from R, but not by rules from D
(and S), which all have type β. As rewriting preserves the type of terms, t is a normal form
w.r.t. the relations i→Θ(S/((D\S)∪R)) and i→S/((D\S)∪R), and dh(t, i→S/((D\S)∪R)) = 0. Since
Cplx ⟨D,S,R⟩(s) ≥ 0 regardless of s, the claim follows for this case.

Case 2: t = f ♯(t1, . . . , tn) with f ∈ Σd and t1, . . . , tn ∈ T (Σc,V). If t is a normal form, there is no
tree, and dh(t, i→S/((D\S)∪R)) = 0 = Cplx ⟨D,S,R⟩(t).

Otherwise, we can convert any i→S∪((D\S)∪R) =
i→D∪R rewrite sequence to a (D,R)-chain tree

T for t such that dh(t, i→S/((D\S)∪R)) = |T |S , including any rewrite sequence that witnesses
dh(t, i→S/((D\S)∪R)) in the following way:

As t is a basic term, the first step in the rewrite sequence rewrites at the root of the term. Since only
rules from D are applicable to terms with f ♯ at the root, this step uses a DT s♯ → Comk(. . .) from
D. With σ as the used matcher for the rewrite step, we obtain the root node (s♯ → Comk(. . .) | σ).

Now assume that we have a partially constructed chain tree T ′ for the rewrite sequence so far,
which we have represented up until the term s that resulted from a i→D step.

If there are no further i→D steps in the rewrite sequence, we have completed our chain tree T = T ′

as the remaining i→R suffix of the rewrite sequence does not contribute to dh(t, i→S/((D\S)∪R))
(only steps using rules from S ⊆ D are counted).
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Otherwise, our remaining rewrite sequence has the shape s i→∗
R u i→D v i→m

D∪R . . . for some
m ∈ N∪{ω}. The step u i→D v takes place at position π, using the DT p♯ → Coml(q

♯
1, . . . , q

♯
l ) ∈

D and the matcher µ.

We can reorder the rewrite steps s i→∗
R u by advancing all i→R steps at positions τ > π, yielding

s i→∗
R,>π s′ i→∗

R, ̸>π u. (This reordering is possible in our innermost setting.) Here i→R,>π

denotes an innermost rewrite step using rules from R at a position τ > π, and i→R,̸>π denotes an
innermost rewrite step using rules from R at a position τ ′ ̸> π. Now we change our remaining
rewrite sequence to s i→∗

R,>π s′ i→D u′ i→∗
R,̸>π v i→m

D∪R . . . . Let Comk(q
′♯
1 , . . . , q

′♯
k )δ = s|π.

Since the s′ i→D u′ rewrite step has not been encoded yet, there is a j such that q′♯j δ
i→R

p♯µ has not yet been used in the construction. Therefore, there exists a node N = (p′♯ →
Comk(q

′♯
1 , . . . , q

′♯
k ) | δ) where for some j, the subterm q′♯j δ in the DT of N has not yet been used

for this purpose in the construction before. We encode the subsequence s i→∗
R,>π s′ i→D u′ by

adding the node (p♯ → Coml(q
♯
1, . . . , q

♯
l ) | µ) to T ′ as a child to N .

We obtain the chain tree T ′′, which we extend further by encoding the rewrite sequence u′ i→∗
R, ̸>π

v i→m
D∪R . . . following the same procedure.

Since our construction adds a node with a DT from S in the first component of the label whenever
the rewrite sequence uses a rule from S , we have dh(t, i→S/((D\S)∪R)) = |T |S as desired. This
concludes the proof for part (a).

We now prove part (b).

Innermost runtime complexity is known to be a persistent property w.r.t. type introduction [44].
For our relative TRS S/((D \ S) ∪R), this means that we may introduce an arbitrary (many-
sorted first-order monomorphic) type assignment Θ for all symbols in the considered signature
such that the rules in R∪D are well typed. We obtain a typed relative TRS Θ(S/((D\S)∪R)),
and ircΘ(S/((D\S)∪R))(n) = ircS/((D\S)∪R)(n) holds. Thus, only basic terms that are well typed
according to Θ need to be considered as start terms for ircS/((D\S)∪R). We write Θ(T D∪R

basic ) for
the set of well-typed basic terms for S/((D \ S) ∪R).

We use the type assignment Θ from part (a) to restrict the set of basic terms as start terms. With
this type assignment, we obtain:

ircS/((D\S)∪R)(n)

= ircΘ(S/((D\S)∪R))(n) by [44]

= sup{dh(t, i→S/((D\S)∪R)) | t ∈ Θ(T R∪D
basic ), |t| ≤ n} by Definition 5.1

≤ sup{Cplx ⟨D,S,R⟩(t
♯) | t ∈ Θ(T R∪D

basic ), |t| ≤ n} by part (a)

≤ sup{Cplx ⟨D,S,R⟩(t
♯) | t ∈ T R∪D

basic , |t| ≤ n} drop types ⇒ more start terms

≤ irc⟨D,S,R⟩(n)
⊓⊔

Theorem 5.6 and Theorem 5.8 hold regardless of whether the original DT problem was obtained
from a TRS with sequential or with parallel evaluation. So while this kind of connection between DT
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(or DP) problems and relative rewriting may be folklore in the community, its application to convert a
TRS whose parallel complexity is sought to a TRS with the same sequential complexity is new.

Example 5.9. (Example 5.7 and Example 6.13 continued)
We continue Example 5.7. Theorem 5.8 implies that a lower bound for ircPDT (R)/R(n) of the relative
TRS PDT (R)/R from Example 5.4 carries over to ⟨PDT (R),PDT (R),R⟩ and, presuming that

i−→R is confluent, also to pircR(n) of the original TRS R from the TPDB. APROVE uses rewrite
lemmas [29] to find the lower bound ircPDT (R)/R(n) ∈ Ω(n). Together with Example 5.7, we have
automatically inferred that this complexity bound is tight if we can also prove confluence of i−→R:
pircR(n) ∈ Θ(n). We shall see the missing confluence proof for i−→R in Section 6.

Note that Theorem 4.13 requires confluence of i−→R to derive lower bounds for pircR from
lower complexity bounds of the canonical parallel DT problem. So to use Theorem 5.8 to search
for lower complexity bounds with existing techniques [29], we need a criterion for confluence of
parallel-innermost rewriting. Section 6 shall be dedicated to proposing two sufficient syntactic criteria
for confluence that can be checked automatically.

6. Confluence of parallel-innermost rewriting

Recall that confluence of a relation → means that whenever we have t1 →∗ t2 and t1 →∗ t3, there
is also some t4 with t2 →∗ t4 and t3 →∗ t4. In other words, if → is confluent, any non-determinism
between steps with → that temporarily leads to different outcomes can always be undone to reach a
common object. Methods for analysis of confluence have been a topic of interest for many years (see,
e.g., [45, 46, 47] for early work), motivated both by applications in theorem proving and as a topic of
study in its own right. In recent years, the development of automated tools for confluence analysis
of (sequential) term rewriting has flourished. This is witnessed by the Confluence Competition [48],
which has been running annually since 2012 to compare state-of-the-art tools for automated confluence
analysis. However, we are not aware of any tool at the Confluence Competition that currently supports
the analysis of parallel-innermost rewriting.

As an alternative, it would be tempting to use an existing tool for confluence analysis of standard
rewriting, possibly restricted to innermost rewriting, as a decidable sufficient criterion for confluence of
parallel-innermost rewriting. However, the following example shows that this approach is in general
not sound.

Example 6.1. (Confluence of i→R or →R does not Imply Confluence of i−→R)
To see that we cannot prove confluence of i−→R just by using a standard off-the-shelf tool for confluence
analysis of innermost or full rewriting [48], consider the TRS R = {a → f(b, b), a → f(b, c), b →
c, c → b}. For this TRS, both i→R and →R are confluent. However, i−→R is not confluent: we can
rewrite both a i−→R f(b, b) and a i−→R f(b, c), yet there is no term v such that f(b, b) i−→∗

R v and
f(b, c) i−→∗

R v. The reason is that the only possible rewrite sequences with i−→R from these terms are
f(b, b) i−→R f(c, c) i−→R f(b, b) i−→R . . . and f(b, c) i−→R f(c, b) i−→R f(b, c) i−→R . . . , with no
terms in common.
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Thus, in general a confluence proof for →R or i→R does not imply confluence for i−→R. Yet it
seems that other criteria on i→R or →R may be sufficient: intuitively, the reason for non-confluence for

i−→R in Example 6.1 is the non-termination of i→R.

Proposition 6.2. Let R be a TRS whose innermost rewrite relation i→R is terminating. Then i→R is
confluent iff i−→R is confluent.

The next proposition is motivated by applying techniques for proving confluence of i−→R, as
developed in this paper, to proving confluence of i→R.

Proposition 6.3. Let R be a (not necessarily terminating) TRS. If i−→R is confluent, then i→R is
confluent.

We conjectured Proposition 6.2 first in our informal extended abstract [49, Conjecture 1] and
Proposition 6.3 in the preliminary conference version of this paper [13, Conjecture 1]. We are grateful
to van Oostrom for providing proofs for both statements [35] and closing our conjectures.

6.1. Confluence of i−→R for non-overlapping rules

We recall the standard notions of uniformly confluent and deterministic relations, which are special
cases of confluent relations. In the following, we will use these notions to identify sufficient criteria for
confluence of parallel-innermost term rewriting.

Definition 6.4. A relation → is uniformly confluent iff s → t and s → u imply that t = u or that there
exists an object v with t → v and u → v, and → is deterministic iff for every s there is at most one t
with s → t.

Let us work towards a first sufficient criterion for confluence of parallel-innermost rewriting.
Confluence means: if a term s can be rewritten to two different terms t1 and t2 in 0 or more steps, it is
always possible to rewrite t1 and t2 in 0 or more steps to the same term u. For i−→R, the redexes that
get rewritten are fixed: all innermost redexes simultaneously. Thus, s can rewrite to two different terms
t1 and t2 only if at least one of these redexes can be rewritten in two different ways using i→R.

Towards a sufficient criterion for confluence of parallel-innermost rewriting, we introduce the
following standard definitions used in confluence analysis:

Definition 6.5. (Unifier, Most General Unifier, see also [24])
Two terms s and t unify iff there exists a substitution σ (called a unifier of s and t) such that sσ = tσ.
A unifier σ of s and t is called a most general unifier of s and t iff for all unifiers δ of s and t there
exists some substitution δ′ such that (sσ)δ′ = sδ = tδ = (tσ)δ′.

Critical pairs capture the local non-determinism that arises if a given redex may be rewritten by
different rewrite rules or at different positions in the same redex. They are defined with the help of most
general unifiers to determine which instances of left-hand sides may lead to local non-determinism.
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Definition 6.6. (Critical Pair, Critical Peak, Critical Overlay [45], see also [24])
For a given TRS R, let ℓ → r, u → v ∈ R be rules whose variables have been renamed apart and let π
be a position in u such that ℓ|π /∈ V . If π = ε, we require that ℓ → r and u → v are not variants of the
same rule, i.e., that we cannot obtain ℓ → r by renaming variables in u → v. If ℓ and u|π unify with
most general unifier σ, then we call uσ[rσ]π ⋊ vσ a critical pair, resulting from the critical peak (i.e.,
local non-determinism) between the steps uσ →R vσ and uσ = uσ[ℓσ]π →R uσ[rσ]π. If π = ε, we
call the critical pair uσ[rσ]π ⋊ vσ = rσ ⋊ vσ a critical overlay, and we may write rσ ⋊⋉ vσ.

A critical peak is the concrete local non-determinism for rewriting a term in two different ways
(with overlapping redexes, or using different rewrite rules). It results in a critical pair that describes this
non-determinism in an abstract way. Finite TRSs have only finitely many critical pairs, which is very
useful for analysis of confluence.

Example 6.7. Consider the (highly artificial, but illustrative) TRS R = {f(a) → b, f(x) → c, a → d}.
The rewrite relation →R of this TRS is not confluent: for example, we can rewrite f(a) →R b using
the first rule and f(a) →R c using the second rule, and neither b nor c can be rewritten any further.

We have the following critical pairs/overlays for R:

b ⋊⋉ c from the first and second rule
c ⋊⋉ b from the first and second rule

f(d)⋊ b from the first and third rule

The left-hand sides of the first and the second rule, f(a) and f(x), unify at the root position ε with the
most general unifier σ = {x 7→ a}. Thus, these two rules have a critical pair, and since the unification
was at root position, this critical pair is also a critical overlay. If we instantiate both rules using σ, we
get f(a) → b and f(a) → c. The right-hand sides of these instantiated rules are b and c, and they are
the components of the critical overlays b ⋊⋉ c and c ⋊⋉ b.

Note that every critical overlay comes together with its mirrored version: if two different rules
ℓ1 → r1 and ℓ2 → r2 unify at the root position (and can thus both be used for rewriting a redex
ℓ1σ = ℓ2σ at the root), there is a symmetry and thus a choice which of the terms r1σ and r2σ to write
on the left and which one on the right of the critical overlay. This is why the first and second rule
together produce two critical overlays.

Now let us consider our first and our third rule. The left-hand side f(a) of the first rule has at its
position 1 the non-variable subterm a that unifies with the left-hand side of the third rule, a, using the
identity substitution as the most general unifier. Thus, we consider the instantiated left-hand side of the
first rule, f(a), as the redex that may be rewritten either at position 1 with the third rule, to f(d), or at
the root with the first rule, to b. This leads to the critical pair f(d)⋊ b.

Note that critical pairs that are not critical overlays do not have the symmetry mentioned earlier:
the “inside” rewrite step at position π > ε is always written on the left.

Definition 6.8. (Non-Overlapping)
A TRS R is non-overlapping iff R has no critical pairs.

A sufficient criterion that a given redex has a unique result from a rewrite step is given in the
following.
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Lemma 6.9. ([24], Lemma 6.3.9)
If a TRS R is non-overlapping, s →R t1 and s →R t2 with the redex of both rewrite steps at the same
position, then t1 = t2.

In other words, for non-overlapping TRSs, rewriting a specific redex has a deterministic result. In a
parallel-innermost rewrite step s i−→R t, we rewrite all innermost redexes in s at the same time, so the
choice of redexes to use is also deterministic. Together, this means that in a rewrite step s i−→R t, the
term t is uniquely determined for s, so the relation i−→R is deterministic as well.

With the above reasoning, this lemma directly gives us a sufficient criterion for confluence of
parallel-innermost rewriting by determinism.

Corollary 6.10. (Confluence of Parallel-Innermost Rewriting)
If a TRS R is non-overlapping, then i−→R is deterministic and hence confluent.

Remark 6.11. The reasoning behind Corollary 6.10 can be generalised to arbitrary parallel rewrite
strategies where the redexes that are rewritten are fixed, such as (max-)parallel-outermost rewriting
[34].

Remark 6.12. Note that in contrast to similar confluence criteria for full rewriting →R [46, 47], here
R is not required to be left-linear (i.e., R may have rewrite rules where the left-hand side has more
than one occurrence of the same variable).

Corollary 6.10 is similar to a result by Gramlich for (uniform) confluence of (sequential) innermost
rewriting i→R for non-overlapping TRSs that are not necessarily left-linear [50, Lemma 3.2.1, Corollary
3.2.2]. For parallel-innermost rewriting, we have the stronger property that i−→R is even deterministic:
for innermost rewriting with i→R, there is still the non-deterministic choice between different innermost
redexes, whereas the used redexes for a step with i−→R are uniquely determined.

Example 6.13. The TRSs R from Example 3.1, Example 4.15, and Example 5.4 are all non-overlapping,
and by Corollary 6.10 their parallel-innermost rewrite relations i−→R are confluent. Thus, also the tight
complexity bound pircR(n) ∈ Θ(n) in Example 5.9 is confirmed.

So, in those cases we can actually use this sequence of transformations from a parallel-innermost
TRS via a DT problem to an innermost (relative) TRS to analyse both upper and lower bounds for the
original. Conveniently, these cases correspond to programs with deterministic small-step semantics,
our motivation for this work!

Example 6.14. Corollary 6.10 already fails for such natural examples as a TRS with the following
rules to compute the maximum function on natural numbers:

max(Zero, x) → x

max(x,Zero) → x

max(S(x), S(y)) → S(max(x, y))

Here we can arguably see immediately that the overlap between the first and the second rule, at root
position, is harmless: if both rules are applicable to the same redex, the result of a rewrite step with
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either rule will be the same (max(Zero,Zero) i−→R Zero). Indeed, the resulting critical pair has the
form max(Zero,Zero)⋊max(Zero,Zero), with both components of the critical pair the same.

6.2. Confluence of i−→R with trivial innermost critical overlays

Critical pairs like max(Zero,Zero)⋊max(Zero,Zero) where both components are identical are also
called trivial. If a critical pair is trivial, it means that the non-determinism in the choice of rules or
positions in the redex does not lead to a non-determinism in the result of the two rewrite steps described
abstractly by the critical pair. For the purposes of confluence, such critical pairs are always harmless. For
example, for analysing confluence of Example 6.14, the critical pair max(Zero,Zero)⋊max(Zero,Zero)
can be ignored.

For innermost rewriting, critical pairs resulting from an overlap between a redex with another redex
as a subterm can be ignored as well: the outer redex is not enabled for an innermost rewrite step. For
example, in Example 6.7, the critical pair f(d)⋊ f(b) can be ignored. The reason is that for innermost
rewriting, here everything is deterministic: only the rewrite step f(a) i→R f(d) is innermost, but the
rewrite step f(a) →R b is not. Thus, for confluence of innermost rewriting it suffices to consider critical
overlays, which describe rewriting a redex at the same position of a term using two different rewrite
rules, and we can ignore all other critical pairs.

Moreover, for innermost rewriting, we can even ignore those critical overlays that can result only
from non-innermost rewrite steps, such as the two critical overlays b ⋊⋉ c and c ⋊⋉ b in Example 6.7:
the term f(a) that causes these critical overlays in a critical peak cannot be rewritten innermost at the
root because the subterm a must be rewritten first.

This considerations give rise to the following definitions (see, e.g., [50]):

Definition 6.15. (Trivial critical pair)
Critical pairs of the form t⋊ t are called trivial.

Definition 6.16. (Innermost critical overlay)
A critical overlay s ⋊⋉ t resulting from a critical peak ℓσ = uσ →R s and ℓσ = uσ →R t is called
innermost for R iff we also have ℓσ = uσ i→R s and ℓσ = uσ i→R t.

Gramlich combines the above observations on critical pairs in his PhD thesis [50] to the following
sufficient criterion for (uniform) confluence of innermost rewriting:

Theorem 6.17. ([50], Theorem 3.5.6)
Let R be a TRS such that all innermost critical overlays of R are trivial. Then i→R is uniformly
confluent and hence confluent.

We can apply a similar reasoning to Theorem 6.17 to get a stronger criterion for i−→R being
deterministic.

Theorem 6.18. (Parallel-innermost confluence from only trivial innermost critical overlays)
Let R be a TRS such that all innermost critical overlays of R are trivial. Then i−→R is deterministic
and hence confluent.
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Theorem 6.18 subsumes Corollary 6.10: if there are no critical pairs at all, then there are also no
non-trivial innermost critical overlays.

Proof:
We prove that the relation i−→R is deterministic if all innermost critical overlays of R are trivial. To
this end, we will show that if t0 i−→R t1 and t0

i−→R t2, we have t1 = t2.
Assume t0

i−→R t1 and t0
i−→R t2 for some terms t0, t1, t2. Since the rewrite step is parallel-

innermost, all used redexes are fixed: all the innermost redexes. Let s0 be an arbitrary innermost redex
in t0. If s0 i→R s1 and s0

i→R s2 implies s1 = s2, the statement t1 = t2 would directly follow.
Thus, assume s0

i→R s1 and s0
i→R s2. As these rewrite steps are innermost, rewriting must take

place at the root of s0. Assume that two different rules ℓ → r, u → v ∈ R with variables renamed
apart are used for these rewrite steps (otherwise the claim follows directly). Let δ, θ be substitutions
such that s0 = uδ i→R vδ = s1 and s0 = ℓθ i→R rθ = s2.

There are corresponding critical peaks uσ i→R vσ and ℓσ i→R rσ with σ a most general unifier of
u and ℓ. Since the rewrite steps are innermost, the critical peak gives rise to innermost critical overlays
vσ ⋊⋉ rσ and rσ ⋊⋉ vσ.

As σ is a most general unifier of u and ℓ, we have s0 = uδ = uσδ′ and s0 = ℓθ = ℓσθ′ with
δ′(x) = θ′(x) for all variables x ∈ V(uδ)∪V(ℓθ). Thus, s1 = vδ = vσδ′ and s2 = rθ = rσθ′ = rσδ′.
As the critical overlays are trivial by precondition of our theorem, we have vσ = rσ and hence also
s1 = vσδ′ = rσδ′ = s2. This concludes our proof. ⊓⊔

Example 6.19. Since the only innermost critical overlay max(Zero,Zero) ⋊⋉ max(Zero,Zero) for the
TRS R from Example 6.14 is trivial, i−→R is confluent.

Example 6.20. Since none of the critical overlays in the TRS R from Example 6.7 is innermost, i−→R
is confluent.

Remark 6.21. From Theorem 6.18 one may be tempted to claim that i−→R is deterministic iff i→R is
uniformly confluent. The “⇒” direction clearly holds. But for the “⇐” direction consider the following
counterexample: R = {a → b, a → c, b → d, c → d}. The relation i→R is uniformly confluent, but

i−→R with a i−→R b and a i−→R c is not deterministic.

With Corollary 6.10 and Theorem 6.18 we have proposed two sufficient criteria for proving
confluence of parallel-innermost rewriting for given TRSs that can be automated using syntactic
checks only, without any search problems. These criteria specifically capture TRSs corresponding to
deterministic programs.

7. Implementation and Experiments

Implementation. We have implemented the contributions of this paper in the automated termination and
complexity analysis tool APROVE [18]. We added or modified about 730 lines of Java code, including

• the framework of parallel-innermost rewriting;
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• the generation of parallel DTs (Theorem 4.13);

• a processor to convert them to TRSs with the same complexity (Theorem 5.6, Theorem 5.8);

• the confluence tests of Corollary 6.10 and of Theorem 6.18.

As far as we are aware, this is the first implementation of a fully automated inference of complexity
bounds for parallel-innermost rewriting. A preliminary implementation of our techniques in APROVE
participated successfully in the new demonstration category “Runtime Complexity: TRS Parallel
Innermost” at termCOMP 2022 and 2023.

This implementation is now part of the APROVE release versions and can be downloaded or used
via a web interface [18]. The input format is an extension of the human-readable text format that was
used to represent TRSs in early versions of the TPDB. For example, a file size.trs for Example 3.1
would have the content shown in Figure 2.

(GOAL COMPLEXITY)

(STARTTERM CONSTRUCTORBASED)

(STRATEGY PARALLELINNERMOST)

(VAR v l r x y)

(RULES

size(Tree(v, l, r)) -> S(plus(size(l), size(r)))

size(Nil) -> Zero

plus(Zero, y) -> y

plus(S(x), y) -> S(plus(x, y))

)

Figure 2. Input file for Example 3.1.

In this format, we can designate a rewrite rule as a relative rule, as in Example 5.2, by writing “->=”
instead of “->”.

Experiments. To demonstrate the effectiveness of our implementation, we have considered the 663
TRSs from category Runtime Complexity Innermost Rewriting of the TPDB, version 11.2 [38].6

This category of the TPDB is the benchmark collection used at termCOMP to compare tools that infer
complexity bounds for runtime complexity of innermost rewriting, ircR. To get meaningful results, we
first applied Theorem 4.16 to exclude TRSs R where pircR(n) = ircR(n) trivially holds. We obtained
294 TRSs with potential for parallelism as our benchmark set. We conducted our experiments on the
STAREXEC compute cluster [51] in the all.q queue. The timeout per example and tool configuration
was set to 300 seconds. Our experimental data with analysis times and all examples are available
online [52].

As remarked earlier, we always have pircR(n) ≤ ircR(n), so an upper bound for ircR(n) is
always a legitimate upper bound for pircR(n). Thus, we include upper bounds for ircR found by

6Version 11.3 of the TPDB was released in July 2022, but does not contain changes over version 11.2 for the category
Runtime Complexity Innermost Rewriting.



T. Baudon, C. Fuhs, L. Gonnord / On Complexity Bounds and Confluence of Parallel Term Rewriting 37

Tool O(1) ≤ O(n) ≤ O(n2) ≤ O(n3) ≤ O(n≥4) avg. time (s)

TCT ircR 4 32 51 62 67 202.9
APROVE ircR 5 50 111 123 127 193.8

APROVE pircR Section 4 5 70 125 139 141 222.0
APROVE pircR Sections 4 & 5 5 70 125 140 142 211.5

TCT pircR Section 5 4 46 66 79 80 189.7
APROVE pircR Section 5 5 64 99 108 108 219.8

Table 1. Upper bounds for runtime complexity of (parallel-)innermost rewriting

the state-of-the-art tools APROVE and TCT [53, 19] from termCOMP 20217 as a “baseline” in our
evaluation. We compare with several configurations of APROVE and TCT that use the techniques
of this paper for pircR: “APROVE pircR Section 3” also uses Theorem 4.13 to produce canonical
parallel DT problems as input for the DT framework. “APROVE pircR Sections 3 & 4” additionally
uses the transformation from Definition 5.3 to convert a TRS R to a relative TRS PDT (R)/R and
then to analyse ircPDT (R)/R(n) (for lower bounds only together with a confluence proof either via
Corollary 6.10 or via Theorem 6.18, as indicated where relevant). We also extracted each of the
TRSs PDT (R)/R and used the files as inputs for the analysis of ircPDT (R)/R by APROVE and TCT
from termCOMP 2021. “APROVE pircR Section 4” and “TCT pircR Section 4” provide the results
for pircR obtained by analysing ircPDT (R)/R (for lower bounds, only where i−→R had been proved
confluent).

Table 1 gives an overview over our experimental results for upper bounds. For each configuration,
we state the number of examples for which the corresponding asymptotic complexity bound was
inferred. A column “≤ O(nk)” means that the corresponding tools proved a bound ≤ O(nk) (e.g., the
configuration “APROVE ircR” proved constant or linear upper bounds in 50 cases). Maximum values
in a column are highlighted in bold. We observe that upper complexity bounds improve in a noticeable
number of cases, e.g., linear bounds on pircR can now be inferred for 70 TRSs rather than for 50
TRSs (using upper bounds on ircR as an over-approximation), an improvement by 40%. Note that this
does not indicate deficiencies in the existing tools for ircR, which had not been designed with analysis
of pircR in mind – rather, it shows that specialised techniques for analysing pircR are a worthwhile
subject of investigation. Note also that Example 3.15 and Example 4.14 show that even for TRSs
with potential for parallelism, the actual parallel and sequential complexity may still be asymptotically
identical, which further highlights the need for dedicated analysis techniques for pircR.

Improvements from ircR to pircR can be drastic: for example, for the TRS TCT 12/recursion 10,
the bounds found by APROVE change from an upper bound of sequential complexity of O(n10) to a
(tight) upper bound for parallel complexity of O(n). This TRS models a specific recursion structure,
with rules {f0(x) → a} ∪ {fi(x) → gi(x, x), gi(S(x), y) → b(fi−1(y), gi(x, y)) | 1 ≤ i ≤ 10}, and

7For analysis of ircR, both tools participated in termCOMP 2022 with their versions from termCOMP 2021.
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Tool confluent ≥ Ω(n) ≥ Ω(n2) ≥ Ω(n3) ≥ Ω(n≥4)

APROVE pircR Sections 4 & 5,
confluence by Corollary 6.10

165 116 22 5 1

APROVE pircR Sections 4 & 5,
confluence by Theorem 6.18

190 133 22 5 1

TCT pircR Section 5,
confluence by Corollary 6.10

165 112 0 0 0

TCT pircR Section 5,
confluence by Theorem 6.18

190 131 0 0 0

APROVE pircR Section 5,
confluence by Corollary 6.10

165 140 21 5 1

APROVE pircR Section 5,
confluence by Theorem 6.18

190 159 21 5 1

Table 2. Lower bounds for runtime complexity of parallel-innermost rewriting

is highly amenable to parallelisation. This TRS resembles a classical “syntactically vectorisable loop”.
In such cases, vectorisation indeed accelerates the program by this order of magnitude. Our analysis
captures this kind of acceleration, however we should keep in mind that apart from vectorisation, even
perfect “thread-based” parallelisation on N cores does not achieve N times acceleration, due to the cost
of context switching. Our complexity result should be taken as an estimation of “parallelism potential”.

We observe that adding the techniques from Section 5 to the techniques from Section 4 leads to
only few examples for which better upper bounds can be found (one of them is Example 5.7).

Table 2 shows our results for lower bounds on pircR. Here we evaluated only configurations
including Definition 5.3 to make inference techniques for lower bounds of ircR applicable to pircR.
The reason is that a lower bound on ircR is not necessarily also a lower bound for pircR (the whole
point of performing innermost rewriting in parallel is to reduce the asymptotic complexity!), so using
results by tools that compute lower bounds on ircR for comparison would not make sense. As a
precondition for applying our approach to lower bounds inference for pircR for a TRS R, we also need
to find a proof for confluence of i−→R. The confluence criterion of Corollary 6.10 is applicable to 165
TRSs in our benchmark set, about 56.1% of the benchmark set. Our new contribution Theorem 6.18
proves confluence of i−→R for a superset of 190 TRSs, about 64.6% of our benchmark set. This
indicates that the search for more powerful criteria for proving confluence of parallel-innermost term
rewriting is worthwhile.

Regarding lower bounds, we observe that non-trivial lower bounds can be inferred for 140 out of
the 165 examples proved confluent via Corollary 6.10, and for 159 out of the 190 examples proved
confluent via Theorem 6.18. This shows that our transformation from Section 5 has practical value
since it produces relative TRSs that are generally amenable to analysis by existing program analysis
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Tool Θ(1) Θ(n) Θ(n2) Θ(n3) Total

APROVE pircR Sections 4 & 5,
confluence by Corollary 6.10

5 27 0 3 35

APROVE pircR Sections 4 & 5,
confluence by Theorem 6.18

5 33 0 3 41

TCT pircR Section 5,
confluence by Corollary 6.10

4 19 0 0 23

TCT pircR Section 5,
confluence by Theorem 6.18

4 22 0 0 26

APROVE pircR Section 5,
confluence by Corollary 6.10

5 33 0 3 41

APROVE pircR Section 5,
confluence by Theorem 6.18

5 41 0 3 49

Table 3. Tight bounds for runtime complexity of parallel-innermost rewriting

tools. It also shows that the more powerful confluence analysis by Theorem 6.18 improves also the
inference of lower complexity bounds. Finally, Table 3 shows that for overall 49 TRSs, the bounds that
were found are asymptotically precise.8

However, the nature of the benchmark set also plays a significant role for assessing the applicability
of criteria for proving confluence. Therefore, we also considered COPS [54], the benchmark collection
used in the Confluence Competition [48]. As a benchmark collection for our second experiment to
assess our confluence analysis, we downloaded the 577 unsorted unconditional TRSs of COPS.9 While
the TRSs in this subset of COPS are usually analysed for confluence of full rewriting, we analysed
whether the TRSs are confluent for parallel-innermost rewriting (which currently does not have a
dedicated category in COPS). Our implementation determined that 60 of the 577 TRSs (about 10.4%)
are non-overlapping, which implies parallel-innermost confluence by Corollary 6.10. In contrast,
Theorem 6.18 finds 274 confluence proofs (about 47.5%), a significantly better result.

Still, the success rate for this benchmark set is significantly lower than for the examples from the
TPDB. This is not surprising: COPS collects TRSs that provide a challenge to confluence analysis
tools, whereas the analysed subset of the TPDB contains TRSs which are interesting specifically for
runtime complexity analysis and often correspond to programs with deterministic results.

Runtime of the analysis. Table 1 shows the (mean) average time used by the respective tool

8Unfortunately, the implementation of our confluence check used in the experiments for the conference version [13] had a
bug that caused it to consider some TRSs confluent where Corollary 6.10 was not applicable (specifically, overlaps due to
certain non-trivial critical overlays were not detected as such). Overall, 21 TRSs were considered confluent even though
Corollary 6.10 could not be applied, and 18 of the lower bounds claimed in the experimental evaluation of [13] were affected.
This bug has now been fixed.
9The download took place on 29 May 2023.
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configurations to analyse their inputs for (parallel-)innermost runtime complexity (the search for upper
and lower bounds was run concurrently). With the used timeout of 300 seconds, all configurations
needed between 180 and 240 seconds on average per example. It may perhaps be surprising that even
the fastest configuration used over 180 seconds per example. The likely reason is that determining
the asymptotic runtime complexity of a rewrite system is an optimisation problem: as long as the
highest lower bound and the lowest upper bound found so far do not coincide, there is the possibility
that applying further techniques in the analysis may lead to tighter bounds. Thus, complexity analysis
tools like APROVE and TCT are usually configured to exhaust most of the available time by a search
for upper and lower bounds, finishing their search only when (a) the current upper and lower bound
coincide and can be reported as the best possible result, (b) all available techniques for the given
configuration have been tried, or (c) the timeout is almost reached and the current result can be reported
as the best result obtained within the given timeout. Indeed, in our experiments with a timeout of 300
seconds, both APROVE and TCT have runtimes between 290 and 300 seconds on many benchmarks.

Regarding the confluence-only analysis, on most TRSs in our collection both used criteria usually
return a result within a few milliseconds. We believe that this very quick result is due to the fact
that our criteria are purely syntactic and do not involve any search problems. For Corollary 6.10, the
highest runtime on our benchmark suite was observed for Frederiksen Glenstrup/int (183 rewrite
rules) with 76 ms on a computer with an Intel Core i7-10750H CPU @ 2.60GHz. For Theorem 6.18,
the highest runtime was observed for Transformed CSR 04/LISTUTILITIES complete noand GM

(407 rewrite rules) with 135 ms on the same computer. Our implementation is not particularly optimised,
so we anticipate that the criteria can be made to scale to larger examples as well.

8. Related Work, Conclusion, and Future Work

Related work. We provide pointers to work on automated analysis of (sequential) innermost runtime
complexity of TRSs at the start of Section 5, and we discuss the apparent absence of work on confluence
of parallel-innermost rewriting in Section 6. We now focus on automated techniques for complexity
analysis of parallel/concurrent computation.

Our notion of parallel complexity follows a large tradition of static cost analysis, notably for
concurrent programming. The two notable works [55, 5] address async/finish programs where tasks are
explicitly launched. The authors propose several metrics such as the total number of spawned tasks
(in any execution of the program) and a notion of parallel complexity that is roughly the same as ours.
They provide static analyses that build on techniques for estimating costs of imperative languages with
functions calls [56], and/or recurrence equations. Recent approaches for the Pi Calculus [2, 3] compute
the span (our parallel complexity) through a new typing system. Another type-based calculus for the
same purpose has been proposed with session types [7].

For logic programs, which – like TRSs – express an implicit parallelism, parallel complexity can
be inferred using recurrence solving [4].

The tool RAML [57] derives bounds on the worst-case evaluation cost of first-order functional
programs with list and pair constructors as well as pattern matching and both sequential and parallel
composition [6]. They use two typing derivations with specially annotated types, one for the work and
one for the depth (parallel complexity). Our setting is more flexible w.r.t. the shape of user-defined
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data structures (we allow for tree constructors of arbitrary arity), and our analysis deals with both data
structure and control in an integrated manner.

Conclusion and future work. We have defined parallel-innermost runtime complexity for TRSs
and proposed an approach to its automated analysis. Our approach allows for finding both upper and
lower bounds and builds on existing techniques and tools. Our experiments on the TPDB indicate that
our approach is practically usable, and we are confident that it captures the potential parallelism of
programs with pattern matching.

Parallel rewriting is a topic of active research, e.g., for GPU-based massively parallel rewrite
engines [11, 12]. Here our work could be useful to determine which functions to evaluate on the
GPU. More generally, parallelising compilers which need to determine which function calls should
be compiled into parallel code may benefit from an analysis of parallel-innermost runtime complexity
such as ours.

DTs have been used [58] in runtime complexity analysis of Logically Constrained TRSs (LCTRSs)
[20, 21], an extension of TRSs by built-in data types from SMT theories (integers, arrays, . . . ). This
work could be extended to parallel rewriting. Moreover, analysis of derivational complexity [59] of
parallel-innermost term rewriting can be a promising direction. Derivational complexity considers the
length of rewrite sequences from arbitrary start terms, e.g., d(d(. . . (d(S(Zero))) . . . )) in our motivating
example (2, Example 4.15), which can have longer derivations than basic terms of the same size. Finally,
towards automated parallelisation we aim to infer complexity bounds w.r.t. term height (terms = trees!),
as suggested in [10].

For confluence analysis, an obvious next step towards more powerful criteria would be to adapt
the classic confluence criterion by Knuth and Bendix [45]. By this criterion, a TRS R has a confluent
rewrite relation →R if it is terminating and for each of its critical pairs t1 ⋊ t2, there exists some
term s such that t1 →∗

R s and t2 →∗
R s (i.e., t1 and t2 are joinable). Termination can in many cases

be proved automatically by modern termination analysis tools [39], and for terminating TRSs, it is
decidable whether two terms are joinable (by rewriting them to all possible normal forms and checking
whether a common normal form has been reached). This criterion has been adapted for confluence of
innermost rewriting [50, Theorem 3.5.8] via critical overlays t1 ⋊⋉ t2. A promising next step would be
to investigate if further modifications are needed for proving confluence of parallel-innermost rewriting.

Towards handling larger and more difficult inputs, it would be worth investigating to what extent
confluence criteria for (parallel-)innermost rewriting can be made compositional [60, 61] or integrated
into the Confluence Framework [62]. This would allow combinations of different confluence criteria to
work together by focusing on different parts of a TRS for the overall confluence proof.

In a different direction, formal certification of the proofs found using the techniques in this paper
would be highly desirable. Unfortunately, automated tools for program verification such as APROVE
are not immune to logical errors in their programming. For TRSs, many proof techniques for properties
such as termination, complexity bounds, and confluence have been formalised in trusted proof assistants
such as COQ or ISABELLE/HOL [63, 64, 65, 66]. Based on these formalisations, proof certifiers have
been created to check proof traces (for a given property). Such proof traces are usually generated
by automated tools specialised in finding proofs, such as APROVE, whose source code has not been
formally verified. The certifier then either verifies that the proof trace indeed correctly instantiates the
formalised proof techniques for the given TRS, or it points out that this was not the case (ideally with a
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pointer to the specific step in the proof trace that could not be verified).
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