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A B S T R A C T

Plants and algae play a crucial role in the earth’s ecosystems. Through photosynthesis they convert light energy
into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic
organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also
unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and
phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical,
cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant
and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composi-
tion, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is
crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics
analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this
knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and
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environmental applications. This aligns with the main challenges for society, upholding the natural resources of
our planet and respecting their limits.

1. Introduction

Photosynthetic organisms such as higher plants, microalgae, and
seaweeds (i.e., macroalgae) are a rich source of a complex variety of
lipids. Due to their evolutionary history (for a review see [1]), plants and
algae contain a wide diversity of lipids including phospholipids (PLs),
neutral lipids (di- and triglycerides), and specific classes of lipids such as
glycoglycerolipids, glycosyl inositol phosphoryl ceramides (GIPCs),
betaine lipids (BLs) and phytosterols, that are commonly absent in most
non-photosynthetic organisms. The glycerolipids (PLs, glycer-
oglycolipids, BLs) are enriched in omega-3 (ω-3) and omega-6 (ω-6)
fatty acids (FAs), and thus these molecules have attracted interest of
several sectors such as food and animal feed industries, health, green
chemistry and energy sectors. The global availability of plants and algae,
their enormous biodiversity, high productivity and ability to consume
CO2 are driving the research into understanding and analysing the lipid
metabolism of these organisms.

The analysis of lipids in plants and algae is a challenge due to the
complexity and diversity of the composition of the lipids and their
modifications (e.g. hydrolysis or oxidation), and also because lipid
composition seems to be quite specific for plants and algae [2]. Addi-
tionally, lipid composition is sensitive to the effects of environmental
changes, which drive a significant adaptation and dynamic remodeling
of the corresponding lipidome. Biotic and abiotic stress factors such as
fluctuations of temperature, salinity, light intensity, exposure to heavy
metals, eutrophication and their combination determine the content and
composition of plant and algal lipids [3–8]. Changes in lipid classes, in
particular their fatty acid composition, are currently an attractive di-
rection in the quest for the specific biomarkers of ecological adaptations
but can also be of interest for the production of biomass enriched in
certain added value lipids for targeted applications. Therefore, to deci-
pher plant and algal lipid metabolism (for a review see [9]) and
composition, it is important to further develop analytical tools that
allow the study and full coverage of the lipidome in these organisms.

Due to the high variability in the lipid composition of different
species of plants and algae, significant efforts have beenmade to develop
analytical procedures for efficient extraction of their lipids and analysis
of their lipidomes. In the current era of Omics, lipidomics aims to target
the knowledge related to lipids by covering the large-scale study of the
structure and function of lipids and their interaction with other lipid and
non-lipid molecules in biological samples, as well as unraveling lipid
changes, namely the response to alterations in biotic and abiotic con-
ditions [10,11]. Nowadays, lipidomics approaches using mass spec-
trometry technologies are the methodologies most used in the profiling
and identification of lipid signatures. A new set of innovative mass
spectrometry methods will facilitate the identification of the specific
lipid species by addressing significant challenges related to complex
chemical structures and low detection limits. Additionally, considering
the screening methods needed for industrial applications, a tailored
methodology, that can provide accurate results with short preparation
time and low trial costs, will significantly advance the field.

Total lipid extracts or specific lipids isolated either from terrestrial
plants, marine plants and algae are promising compounds for a wide
spectrum of industrial uses. They are recognized as valuable phyto-
chemicals for a multitude of applications in e.g., food, feed, nutraceutics,
pharmaceutical, and cosmeceutical industries as well as the energy
sector as a potential feedstock for biofuels. Thus, the identification of the
lipidome of marine plants and algae (micro- and macroalgae) is essential
to enhance the valorization of these compounds and foster innovative
plant and algal-based solutions for food, biotechnological and industrial
applications. Additionally, a critical point for algal lipid production is to

select algal species with suitable lipid composition and yield. Therefore,
to identify the best species/strains and culture conditions, analytical and
detection techniques suitable for rigorous lipidomic analysis are ur-
gently needed.

This review provides an overview of the different lipids present in
plants and algae with the most recent extraction and lipidomic strate-
gies. The potential use of these lipids and their fatty acids as important
nutrients, biomarkers of ecological and climatic adaptations, and the
future perspective for industrial applications are widely discussed un-
derlying the particularities of plant and algal lipids, as an appealing
source of smart omega lipids.

2. Plant and algae lipids: structural diversity and functions

The lipids identified in plants and algae comprise a diversity of
different lipid classes, ranging from the basic units, such as FAs and free
sterols to more complex ones, like phospholipids (PLs), triglycerides
(TGs), betaine lipids (BLs) and glycolipids. While some lipids are shared
between animals and plants/algae, like TGs, sphingolipids (SPs) or PL,
others can be found mainly in algae, as BLs, or in photosynthetic or-
ganisms, as glycoglycerolipids, which can be found in chloroplasts/
complex plastids. In the next sections, the main classes of lipids found in
plants and algae are presented, and their chemical structure, biosyn-
thesis, biological relevance and main methods of analysis are described.

2.1. Fatty acids

2.1.1. Classical fatty acids
FAs are carboxylic acids with acyl chains of different lengths, mainly

with an even number of carbon atoms, between 12 and 24 carbons, but
other chain length or odd numbers of carbons can be found, but in minor
abundance. By convention, from 14 to 18 carbons, FA are called long
chain fatty acid (LCFA) and above 20 carbons, they are called very long
chain fatty acid (VLCFA), because in plant LCFA are synthesized in the
plastid, whereas VLCFA are elongated from LCFA in the endoplasmic
reticulum (ER) [12]. FAs can be saturated (SFA), or with one (mono-
unsaturated FA, MUFA) to several double bonds (n = 2–6) (poly-
unsaturated FA, PUFA). The most common PUFAs are further classified
into three types, the omega-3 (ω-3), omega-6 (ω-6) and omega-9 (ω-9)
FA, depending on the location of double bonds in the carbon chain [13]
(Fig. 1).

FA are the basic components of membrane lipids such as the PL,
glycolipid and SP, of neutral lipids as TG and wax esters (WE), and of
extracellular lipid polyesters such as cutin, suberin and sporopollenin,
but the composition of FA within these lipid categories differs. In both
algae and plants, FA play an important role in membrane structure and
function, as they are involved in the fluidity of the lipid bilayer, its
flexibility and selective permeability [16,17]. They provide energy to
fuel the metabolic processes of the cell and act as signal transduction
mediators [18].

The synthesis of long chain (14 to 18 carbons) FAs in algae and plants
occurs in the plastids and cytosol and is mediated by the type II fatty acid
synthase complex (FAS) [19]. FA synthesis typically starts from acetyl
coenzyme A (CoA) and its carboxylation to malonyl-CoA extends the
carbon chain. On the other hand, the polyketide synthase (PKS), local-
ized in the cytosol, synthesizes either polyketides from acetyl-CoA in
plants or some very long chain (VLC) PUFAs (as FA 20:5 or 22:6) in algae
such as dinoflagellates [20]. In plants, VLCFA (from 20 up to 38 carbon
atoms) result from the activity of the endoplasmic reticulum (ER)-
associated multi-enzymatic fatty acid elongase (FAE) complexes [21].
FA desaturation generally produces cis double bonds and occurs in both
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plastid and endoplasmic reticulum (ER), whereas elongation to VLCFA
mainly happens in the ER. Both activities are highly influenced by
environmental conditions [16,22]. However, one specific desaturation
producing trans double bonds occurs in eukaryotic photosynthetic or-
ganisms on 16:0 in the sn-2 position of the phosphatidylglycerol in
chloroplast to produce 16:1Δ3t [23]. In plant and algae, fatty acid can
also be elongated in the ER from acyl-CoA exported from the chloroplast
by the fatty acid elongase (FAE) complex [21,24]. Overall, fatty acid
diversity is wider than what is described in this review and depends on
the organisms and the environment [25].

The glycerolipids of algae and plants contain esterified SFA, MUFA or
PUFA [18,19]. As an overall observation, marine algae, similarly to
marine organisms are generally rich in VLC (above 20 carbons) PUFA,
whereas freshwater algae and plants are rich in long chain (16 and 18
carbons) PUFA [9]. For instance, the freshwater green microalgae
Chlamydomonas reinhardtii, Chlorella vulgaris and Scenedesmus obliquus
contain SFAs with chain lengths from 14 to 18, mono-, di-, and poly-
unsaturated FAs [16], while marine microalgae are generally rich in
VLC-PUFA [9]. As an example, the diatom Phaeodactylum tricornutum is
rich in FA 16:0, 16:1 and 20:5 [14] whereas the macroalga Sargassum
oligocystum is rich in FA 16:0, 18:1 and 20:4, with a high proportion of
SFA [28]. In land plants the FA that are esterified to glycerolipids (GLs)
usually have a high amount of the essential ω-3 (FA 18:3, ALA) and are
lacking VLC ω-3 PUFA (FA 20:5 and 22:6). FA are mainly present in
esterified form; only a small amount of FAs are present in their free form
(free FAs) in plants and algae due to their toxicity [29]. A high content of
free FA can be found in some cases after harvest unless lipases are
inactivated by heat treatment [30].

FA are usually analyzed by gas chromatography (GC) coupled with
flame-ionization detector (GC-FID) or with mass spectrometry (GC–MS)
after derivatization. The FA should be derivatized to obtain their methyl
esters before GC analysis, namely by transmethylation in alkaline con-
ditions or methylation in acidic conditions [31].

2.1.2. Unusual fatty acids
In addition to the above classical FAs found in plants and algae, an

extreme diversity of unusual FAs, i.e. FAs with additional modification
such as methyl branches, trans double bonds, conjugated (i.e. non-
methylene interrupted) double bonds, acetylenic triple bonds, oxida-
tions (presence of a hydroxy, keto or epoxy group) or cyclic structures

(like cyclopropane or furan), has been described in plants and algae. For
example, more than 450 different FA structures have been found in the
storage lipids of seeds or other non-membrane lipids of vascular plants
[25]. Many of these unusual FAs have a very high-value for specific
industrial applications, thus numerous research projects have been
devoted to the engineering of their production in common oilseed crops
(reviewed in [32]). These intense research efforts have led to the
elucidation of several very peculiar biosynthetic pathways which cannot
be described in the present review (see [33] for details). Like classical
FA, unusual FA are best characterized using GC.

2.1.3. Hydroxy fatty acids
Hydroxy FAs are characterized by a hydroxyl group in the acyl chain

and can be found esterified to different lipids. Although they are often
referred as to unusual FAs, some of them are ubiquitously found, and
hydroxylation of the acyl chain can define some degree of specificity to
certain lipid classes. In plants, the membrane glycerolipids usually do
not contain a specific FA hydroxylation signature [34]. In contrast,
membrane SPs contain a specific hydroxylation signature on the second
carbon of the acyl-chain. This hydroxylation produces α-hydroxy FA
(referred to as hFA), also called 2-hydroxy-fatty acids (referred to as
2OH-FA). In Arabidopsis thaliana, hFA can represent up to around 90% of
the total SP pool [34,35]. Importantly, the hFA signature is not found in
other pools of membrane lipids. The fatty acid hydroxylases (FAH1 and
FAH2) and the cytochrome b5 (Cb5s) are required for efficient α-hy-
droxylation with FAH1 being more specific to VLC-FA while FAH2
selectively hydroxylates palmitic acid [35,36]. As a note, hVLCFAs are
predominant in the pool of SPs with up to 30 carbon atoms [37]. At the
functional level, it was shown that α-hydroxylation is important for
stress response in Arabidopsis and immunity in rice [35,36,38]. The
α-hydroxylation is known to be important for the interaction of SPs with
sterols and the formation of ordered microdomains within the plasma
membrane [39,40].

Besides the presence in membrane lipids, hydroxy FA accumulate in
oils of some plant species. For example, in the seed oil of the Euphor-
biaceae castor, about 90% of FAs in the TG pool are the hydroxy FA
ricinoleic acid [41]. These FAs are usually synthesized by a divergent
FAD2 desaturase in which a few amino acid substitutions are responsible
for hydroxylation instead of desaturation [42].

In terrestrial plants, another predominant group of non-membrane

Fig. 1. Main classical fatty acid in plants and algae. This list is not exhaustive and there are many other desaturated fatty acids such as 16:4 in Chlamydomonas
reinhardtii, 18:5 in Ostreococcus tauri or in dinoflagellate and longer saturated fatty acids such as 24:0 in Phaeodactylum tricornutum [9,14,15]. Plant fatty acid
diversity is well detailed in the plant fatty acid database https://plantfadb.org/.
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lipids that contain a noticeable hydroxylation signature are extracellular
lipid barriers, and more particularly the cutin, suberin and sporopol-
lenin polyesters. The presence of high levels of ω-hydroxy fatty acids
(hydroxylation at the terminal carbon, referred to as ωFA), α, ω-dicar-
boxylic fatty acids (presence of two carboxyl groups, referred to as DCA
compounds), and sometimes of polyhydroxy-fatty acids allows the
carboxyester-linkage of these monomers and the reticulation of the
polyesters [43]. In comparison to the cutin polyester, suberin contains
usually substantially more ω-hydroxy VLC-FAs [44]. The enzymes pro-
ducing these hydroxy FAs are part of the cytochrome P450 family. In
Arabidopsis, CYP86A1 and CYP86A8 ω-hydroxylates unsaturated C16-
C18 FAs while CYP86B1 ω-hydroxylates VLC-FAs [45–47]. In-chain
hydroxylation is catalyzed by members of the CYP77 subfamily, such
as CYP77A6 which is involved in the production of 10,16-dihydroxy
palmitic acid in Arabidopsis flowers [48].

Finally, hydroxyl FAs are also found in lipokines, which are branched
fatty acid ester of hydroxy fatty acids (FAHFA) (Fig. 2). These bioactive
lipids discovered in 2014 by Yore and collaborators in mammals [49],
and shown to exhibit anti-diabetic and anti-inflammatory effects. More
recently, they were shown to be possibly involved in cancer [50].
FAHFAs have been qualitatively and quantitatively detected in cereals,
vegetables and fruits and recently in fermented brown rice and rice bran
with Aspergillus oryzae [51]. The quantification of FAHFAs is performed
by LC-MS in the negative ion mode, as [M-H]− ions, due to the easy
deprotonation of carboxyl groups [52].

To conclude, the type of hydroxylation (α,ω or in-chain) combined
with the length of the acyl-chain could serve as a signature or a hallmark
to channel different types of FAs to distinct lipid pools such as SPs, cutin
or suberin. Targeting a substrate towards a specific pathway is a very
attractive idea to explain how plants coordinate the spatial distribution
of different lipid classes within a tissue or in a developing new organ,
such as during the lateral root formation.

Hydroxy FAs are highly sought as chemical feedstock for industrial
applications (for the production of polymers, plasticizers, surfactants or
detergents, …). In particular, estolides (i.e. oligomeric fatty acid esters)
represent very promising bio-lubricants for the oil and in cosmetic in-
dustries (reviewed in [53]). They are usually analyzed by GC–MS. As for
FAs, they should be derivatized to obtain methyl esters and trime-
thylsilyl derivatized to improve thermal and hydrolytic stability and GC
separation [34].

2.1.4. Fatty acid derived waxes
FAs are also found in the cuticular waxes covering the epidermal

cells of the aerial parts of all land plants, either as minor components, as
in Arabidopsis, or as major components, as in sorghum. Cuticular waxes
are complex mixtures of VLC aliphatic components, all derived from
saturated, unsaturated and branched VLCFAs. In the ER of epidermal
cells, long-chain FA are elongated by the FAE complexes (up to 38
carbon atoms) and converted into aldehydes, alkanes, secondary alco-
hols and ketones through the alkane-forming pathway, or to primary
alcohols and wax esters through the alcohol-forming pathway (reviewed
in [54]). Wax components are then transported in a directional manner
from the ER to the plasma membrane before being secreted to cover the
cell wall of epidermal cells facing the external environment. Since each

class contains various chain-lengths, these complex mixtures are best
analyzed after sialylation by GC-FID or GC–MS.

2.2. Complex lipids

2.2.1. Glycerolipids
Complex glycerolipids (GLs), widely distributed in higher plants and

algae, belong to different categories: membrane lipids (PLs, glycolipids
and BL) and TG that are present in lipid droplets. The glycolipids are
present only in photosynthetic organisms and BLs are present in algae,
bryophytes and some fungi and are absent in seed plants. Glycerolipids
share a common structural feature of a glycerol backbone esterified to 1
or 2 fatty acyl chains at sn-1 and sn-2 position and linked at sn-3 position
to a polar head group for membrane lipids or another FA for TGs (Fig. 3).

2.2.1.1. Glycerophospholipids. The PL category, commonly referred to
as glycerophospholipids, has a polar head linked to the sn-3 position of
the glycerol with a phosphate group and a polar moiety linked to the
phosphate group. This polar group is specific of each PL class, defining
the different classes of PL, like phosphatidylcholine (PC), phosphati-
dylethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol
(PG), phosphatidylinositol (PI) and cardiolipin (CL), or phosphatidic
acid (PA) in the case of non-substituted phosphate (Fig. 4) [55]. The lyso
forms of each PL class, corresponding to the PL esterified with only one
FA, are also found (e.g., LPC, LPE). PL are synthesized in the ER, how-
ever PG is also synthesized in the chloroplast [9,56,57]. They are mainly
carriers of PUFAs in plants and especially in algae, where they are
greatly esterified with ω-3 PUFAs [58–60]. SFAs and MUFAs are also
found in PL lipid species but in lower quantity. PL are the main building
blocks of extraplastidial cell membranes and act as key signaling mol-
ecules. They are important to maintain cell integrity and function, and
regulate several aspects of plant and algae development, defense against
external stressful conditions and adaptation to biotic and abiotic factors.
For example, plasticity of the lipidome of cell membrane is important to
cope with alteration of environmental conditions, as temperature,
salinity or nutrient stress among other stressors [61,62].

2.2.1.2. Glycoglycerolipids. In the glycolipid category, a glycosidic polar
head group is linked to the sn-3 position of the glycerol. There are three
main classes of glycolipids in higher plants and algae (Fig. 5), depending
on the sugar moiety and include neutral glycolipids, the galactolipids
mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively)
as predominant one, and an acidic, anionic glycolipid class, the sulfo-
lipid sulfoquinovosyldiacylglycerol (SQDG). Oligogalactolipids (mainly
tri or tetraGDG) can also be present in plants and algae with two routes
of synthesis: successive galactosylation by DGDG synthase (DGD) or
transgalactosylation from MGDG by the GL:GL galactosyltransferase
(GGGT/SFR2). While the first route appeared early in the evolution
(cyanobacteria), the second evolved associated to the process of ter-
restrialization in the streptophytes [63]. Another glycolipid class with a
glucuronic acid-containing head group, the glucuronosyldiacylglycerol
(GlcADG), has been reported but with low abundance and has been
associated with response to phosphate starvation [64]. The lyso forms of
glycolipids (i.e., MGMG, DGMG and SQMG) have been detected, but
with lower abundance compared with the diacyl forms. In plants, GL are
synthesized in the chloroplasts via so-called prokaryotic and eukaryotic
biosynthetic pathways [9,56,57]. While in the prokaryotic pathway, all
the reaction steps take place within the chloroplast (the plastidial
pathway), there is a cross talk between the ER and the chloroplast in the
eukaryotic (extraplastidial) biosynthetic pathway. Lipid migration be-
tween these organelles can occur, with transfer of some PL from the ER
into the chloroplast with a key role as precursors of GL [57]. The
eukaryotic and prokaryotic pathways in algae are more complex to
follow due to less substrate specificity of the ER lysophosphatidic acid
acyltransferase [65].

Fig. 2. Example of a FAHFA with the chemical structure of the 16:0-(5-O-18:0)
named the 5-PAHSA discovered in rice [51].
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The neutral glycolipids, MGDGs and DGDGs are mainly esterified
with two PUFAs, while SQDGs contain commonly a SFA or MUFA and a
PUFA [66]. Glycolipids are the main components of chloroplast mem-
branes along with PG, although other minority PL are present on the
outer envelope of plastidial membranes in plants [67]. The glycolipids
and plastidial PG are also important to the assembly of the photosyn-
thetic systems and thus have a crucial role in the photosynthesis process
and on chloroplast function [68]. GL profile changes with nutrition
limitation and with variation in light intensity and quality. For example,
phosphate limitation was reported to increase GL such as the DGDG and
SQDG [4]. In plants, a decrease in PL was observed under phosphate
limitation and a translocation of DGDGs to extraplastidial membranes,
which was suggested to contribute to balance the lack of PL in these
membranes [14]. The plasticity of GL was also reported with different
light intensities in macroalgae Codium tomentosum and Bryopsis plumosa
(Bryopsidales, Chlorophyta), showing that high light-acclimation
induced an accumulation of lyso-glycolipids [69,70]. In Arabidopsis
thaliana, the ratio DGDG/MGDG is important to preserve membrane
structure under temperature stress such as freezing [71] or heat stress
[72].

2.2.1.3. Betaine lipids. BLs are a category of lipids with a betaine moiety
linked by an ether bond to the sn-3 position of the glycerol backbone.

They are mainly found in algae and in lower plants, and not reported in
seed plants [73]. There are three main classes of BLs (Fig. 6), 1,2-diacyl-
glyceryl-(N,N,N trimethylhomoserine) (DGTS), 1,2-diacylglyceryl-3-O-
2′-(hydroxymethyl)-(N,N,N-trimethyl)-β-alanine (DGTA) and 1,2-diacyl-
glyceryl-3-O-carboxy-(hydroxymethyl)-choline (DGCC). Their lyso
forms have also been detected. BLs are synthesized in the ER, DGTS by
the reaction of DAG with S-adenosylmethionine [9], while DGTA, is
supposed to be synthesized from DGTS [74]. BL are much less studied
than PL and GL in plants and algae. They are mainly located in extrap-
lastidial cell membranes and seem to replace PC in the case of phosphate
limitation. Although quite unusual, BL were also found in chloroplast
envelope membranes in a few algae, such as Chlamydomonas reinhardtii
[61,75] and Isochrysis galbana [76], probably as a surrogate of PC found
in the outer membrane of chloroplast envelope [77]. Specific BL classes
can be found in evolutionary distinct algal clades [78]. In seaweeds,
DGTS species were found in red (Rhodophyta) and green (Chlorophyta)
seaweeds, while DGTA was found in brown (Ochrophyta) seaweeds in
high abundance. Nevertheless, DGTS can be a minor class in algae from
Ochrophyta phylum [79]. In the case of microalgae, a quite diversified
distribution of BL was found in different species and phyla. For example,
Cañavate et al. reported that the DGTS, DGTA and DGCC showed a
dissimilar profile in several microalgae species and could be used as a
chemotaxonomic tool [78].

Fig. 3. Glycerolipid structures. Membrane glycerolipids including phospholipids, glycolipids and betaine lipids) (on the left) consist of a glycerol backbone (in blue)
with two fatty acids (in yellow) esterified on the sn-1 and sn-2 positions and a variable polar head R (in green) on the sn-3 position. The triacylglycerides, often
present in lipid droplets (on the right), contain three fatty acids esterified on the glycerol backbone. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Main structures of the phospholipids found in photosynthetic organisms. The glycerol backbone as well as radicals R1 and R2 corresponding to the fatty acid
in sn-1 and sn-2 position are in black. The polar head containing a phosphate is in red. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 5. Main structures of the glycolipids found in photosynthetic organisms. The glycerol backbone as well as radicals R1 and R2 corresponding to the fatty acid in
sn-1 and sn-2 position are in black. The polar head containing a sugar is in colour.
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2.2.1.4. Head group-acylated lipids. Head group-acylated lipids found in
plants and algae include extra-plastidic head-group acylated lipids, such
as N-acyl phosphatidylethanolamine (NAPE) and N-acylethanolamines
(NAE), and every classical chloroplast lipids, namely the acylated
MGDG, DGDG, SQDG and PG namely respectively acMGDG, acDGDG,
acSQDG and acPG (Fig. 7) [80–82]. Although these lipid classes have
already been identified in plants and/or algae, they remain to be sys-
tematically analyzed.

NAPE is a minor but ubiquitous class of membrane glycer-
ophospholipids in plants. NAPE derived from direct acylation of phos-
phatidylethanolamine (PE), bearing a third FA attached to the
ethanolamine polar head group through an amide bond [83,84]. The
length and saturation degree of the three acyl chains greatly varies
among NAPE molecular species. This triacylated PE was already iden-
tified in cereal grains (e.g., wheat, barley, oats), legumes, nuts, fruits,
vegetables, and oils (e.g., hemp oil) [85] as well as in seeds like lupin
seeds (Lupinus luteus) [86]. However, its synthesis can also be induced
under stress conditions [87,88], with NAPE being the precursor for the
formation of the lipid mediators NAEs after hydrolysis. NAEs were also
identified in cereals, vegetables, nuts, oils (e.g., hemp oil, EVOO, palm
oil) and legumes [85]. Despite being recognized as important structural
and bioactive molecules, the role of these N-acyl lipids in plants is less
characterized than in mammals. NAPE and NAE participate in plant
growth and development processes such as seed germination, seedling
establishment and growth, roots elongation, as well as in plant defense
against pathogens as reviewed in [83,89].

Head group-acylated galactolipids have a third acyl group enzy-
matically esterified to the carbon at the 6′-hydroxyl group of the
galactose. AcMGDG was detected in wheat (Triticum aestivum) and to-
mato (Solanum lycopersicum) leaves [90] as well as in red [91] and
brown seaweeds [92], while acDGDG was detected in brown seaweeds
[92], and acPG in oat seeds [93]. AcSQDG was detected in Chlamydo-
monas reinhardtii and Phaeodactylum tricornutum [14,82]. These head-
group acylated lipids are formed as a common response under stress
conditions [90,94]. For example, acMGDG was identified after heat
stress [95], wounding, bacterial infection, and freezing [90]. The length
and saturation degree of the three acyl chains vary between plant and
algal species [90,96] and with biotic or abiotic stress [90]. Interestingly,
oxylipin-containing acyl-MGDG and acyl-PG were found in Arabidopsis
thaliana leaves after freeze-thawing [96] and hypersensitive response
[94], respectively. The biological properties and roles of head group-
acylated chloroplast lipids remain to be disclosed.

2.2.1.5. Triacylglycerols. TG is a family of glycerolipids that, unlike
membrane glycerolipids, do not have a polar head at the sn-3 position
but a third esterified FA on the glycerol backbone (Fig. 3) [97]. TG
molecules can therefore present symmetries (enantiomer) making it
difficult to differentiate between the sn-1 and sn-3 position. The regio-
selectivity of TGs is a crucial point because the industrial properties of
these high added value molecules differ according to the esterification
position of the FAs [98]. In addition, the biophysical properties of TGs
(high hydrophobicity, low polarity) make the accumulation of these

DGTS DGCCDGTA

Fig. 6. Structure of the three known betaine lipids. DGTS: 1,2 diacylglyceryl-3-O-4′-(N,N,N-trimethyl)-homoserine, DGTA: 1,2-diacylglyceryl-3-O-2′-(N,N,N-tri-
methyl)-β-alanine, DGCC: 1,2-diacylglyceryl-3-O-carboxy-(hydroxymethyl)-choline). R1 and R2 correspond to the fatty acid esterified at the sn-1 and sn-2 positions,
respectively.

Fig. 7. Head group-acylated lipids found in plants and algae. NAPE, N-acyl phosphatidylethanolamine; NAE, N-acylethanolamine; acMGDG, acylated monoga-
lactosyldiacylglycerol; acDGDG, acylated digalactosyldiacylglycerol; acSQDG, acylated sulfoquinovosyldiacylglycerol; acPG, acylated phosphatidylglycerol.
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molecules difficult in biological membranes. They are synthesized
mainly in the ER and stored in lipid droplets [99] but some TGs have
been reported in the plastid and stored in plastoglobules [100]. How-
ever, TGs accumulate preferentially in cytosolic lipid droplets, budding
from the outer leaflet of the ER in yeast and mammals [101] or the
outermost membrane of the plastid in several microalgae species
[102–104], with other neutral lipophilic components (e.g., sterols,
pigments, etc.) when environmental conditions become unfavorable (e.
g., nutritional deficiency, quality and intensity of light, high tempera-
ture, etc.) [14,102,105,106]. Thus, oleaginous microalgae, such as the
diatom Phaeodactylum tricornutum [14,104] or the Thraustochytrids (e.
g., Auranthiochytrium limacinum) [107], accumulate a large quantity but
also a wide qualitative range (SFA, MUFA or VLC-PUFA) of TGs under
nutrient deficiency. The TAG accumulation has become a real cross-
disciplinary research (fundamental and applied) hub passing from
human health, food, feed and green chemistry (e.g. biodiesel produc-
tion) [97,108].

The different lipid categories, such as PL, glycolipids, BL and TG, are
characterized by a great chemical diversity, not only due to the different
classes that can be found, but also since the same categories or classes
can be present in different relative contents and with different FA pro-
file, depending on the plant and alga species and also on the environ-
mental conditions [26,62]. Although a phylum trend can be seen, as
shown recently for seaweed and for microalgae, it seems that the polar
lipidome is quite species-specific [79]. Furthermore, the lipid profile is
quite dissimilar between different tissues of plants as shown for Arabi-
dopsis [109] and as across life cycle stages, as shown for Porphyra dioica
[110]. Therefore, complex lipids are nowadays profiled to target the
species-specific lipidome using lipidomic approaches based on LC-MS
analysis.

2.2.2. Sterols
Phytosterols (sterols, ST) are amphiphilic isoprenoid lipids that are

built from simple C5 isoprenic units condensed into the C30H50O linear
sterol precursor 2,3-oxidosqualene. These triterpenoids (sterols) are
initially formed by the action of lanosterol or cycloartenol synthases,
which then define lanostane and cycloartane scaffolds (Fig. 8A). Com-
mon structural features of sterols are a C3β-hydroxy group, a tetracyclic
(1,2-cyclopentanoperhydrophenanthrene) ring system and an aliphatic
side chain at C17β. The structural diversity of the sterolome found in
plants and algae is primarily caused by the number of unsaturation(s) in
the tetracyclic ring (Δ0 (stanols), Δ5-, Δ7-, or Δ5,7-sterols) and the type of
side chain bearing 8 to 10 carbons and additional unsaturation(s)

(Fig. 8B) [111,112]. Phytosterols are structural membrane components
acting as reinforcers and regulators of membrane dynamics. As such,
sterols exhibit strong actions on membrane associated biological pro-
cesses. In addition, distinct functions in plant growth and development
have been described for 24-methylsterols and 24-ethylsterols. The di-
versity and complexity of sterol profiles in plants and algae has also
marked implications in the adaptation to environmental constraints
[113,114].

Phytosterols are the precursors of a class of polyhydroxylated com-
pounds called brassinosteroids which are well described in plants as
major growth regulators (hormones). Phytosterols are also widespread
in conjugated forms, the steryl conjugates that include the steryl gly-
cosides (and acylated steryl glycosides) and the fatty acid steryl esters.
Other conjugates like esters of ferulic acid are restricted to species from
the Poaceae family [115,116]. Sterols esterified with FAs have an
important role in cellular homeostasis [117].

Diversification of sterol pathways and profiles in plants and algae
results in distinct types of 24-alkylsterols that differ by their side chain
(C8, C9, C10) and the stereochemistry at C24, which has phylogenetic
implications [118]. 24-methyl- and 24-ethylsterols are found in all
groups, 24α-alkylsterols are typical of higher plants whereas 24β-
alkylsterols are usually found in algae. Likewise, isofucosterol is a plant
sterol, whereas fucosterol is common in ochrophyte algae (e.g., Phaeo-
phyceae and Bacillariophyceae). Sterols bearing a Δ5,7 diene system on
the tetracyclic moiety are common in green algae (e.g., Chlorella, Chla-
mydomonas) but never found in plants, which display Δ5 and/or Δ7-
sterols depending on the family/genera. Sometimes, similar sterols are
produced in very diverging lineages due to evolutionary convergence,
like with cholesterol being the most abundant sterol in multicellular red
algae and being the backbone of specialized metabolites in Solanaceae
[119]. Specialized sterol structures have been described in di-
noflagellates, a group of endosymbionts that supply cnidarians hosts
(sterol-auxotroph) with sterols [120]. C23-methylsterols and other so-
called non-canonical sterols are mostly found in the oceans [121].

Sterol (ST) profiles from plants and algae are identified by GC
methods after derivatization. GC–MS enables clear-cut identification of
many structural sterols [111,122]. GC-FID is also a widespread method
for sterol profiling and quantification. Steryl esters of FAs and steryl
glycosides are analyzed by LC-MS methods with various ionization
systems (electrospray ionization (ESI), atmospheric pressure photoion-
ization (APPI), atmospheric pressure chemical ionization (APCI))
[113,123–125]. Classical thin layer chromatography (TLC) techniques
allow the separation of free sterols and sterol conjugated forms, which

Fig. 8. Sterols in plants and algae. A, Diversification of sterol pathways and profiles in plants and algae – a simple view. B, Sterol structure nomenclature.
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can be analyzed as sterol moieties by GC after deconjugation [126].

2.2.3. Sphingolipids
Sphingolipids (SLs) are a structurally diverse group of lipids con-

taining hundreds of species with important roles in cellular membranes
and biological processes. They are ubiquitous in all eukaryotic cells and
are found also in some bacteria (for recent reviews of SL in plants, see:
[37,127,128]. The basic structure of SLs is a hydrophobic amino alcohol
carbon chain, known as a long-chain (sphingoid) base (LCB), containing
at least two hydroxyl groups and an amine group. The LCB can be
acylated to a FA through the amine group to form a ceramide, and
ceramides can be further modified to more complex forms by the
addition of polar headgroups, such as glycosyl and phosphate-
containing groups (see Fig. 9). Plant SLs are commonly divided into
four classes: LCBs, ceramides (Cer), glucosylceramides (GlcCers) and
glycosyl inositol phosphoryl ceramides (GIPCs), which differ in their
abundance in plant or algal cells by orders of magnitude [129].

Both the LCB and FA moieties can vary in their length and can un-
dergo hydroxylation and/or desaturation. LCB length is usually between
16 and 20 carbons with up to four double bonds and possible hydrox-
ylation at the C-4 position [130–132]. FA length is usually between 14
and 26 carbons with up to two double bonds and a possible hydroxyl-
ation at the C-2 position [132–135].

SLs are critical components of the plasma membrane but also part of
the endomembrane system where they are synthesized, and some traces
have been found in the tonoplast, mitochondria and the chloroplasts in
response to stress [128].

SLs in plants are mainly composed of di- (‘d’) and trihydroxylated
(‘t’) LCB with 18 carbons, with up to two double bonds at the Δ4 (trans)
and Δ8 (cis/trans) positions. The FA component is mostly hydroxylated
(‘h’) and can contain a double bond at the n-9 position [129,130].
GlcCers are commonly enriched with dihydroxylated LCB and C16 FA,
while GIPCs are enriched in trihydroxylated LCB and longer FA (≥ C20)
[134,136,137].

The study of SLs in algae is as extensive as that in terrestrial plants;
nevertheless, studies have shown that algal SL are more structurally
diverse, although usually less abundant than in higher plants [138]. The

most studied SLs in both micro- and macroalgae are ceramides and
GlcCers, while GIPCs are rarely reported, but usually identified in red
algae [139–142]. Algal SLs are mainly composed of di- and trihy-
droxylated LCB with 18 carbons, with a possible branched methyl group
at the C-9 position and up to four double bonds. The FA component can
be hydroxylated and can contain up to two double bonds
[131,132,141,143].

In plants, SLs are estimated to account for 30 to 40% of the plasma
membrane lipids [136,144], of which the most abundant are the highly
polar, anionic GIPCs and the GlcCers [129,144,145]. Thus, SLs are a
critical component of the plant plasma membrane, affecting its fluidity
and biophysical order. Together with sterols, SLs form ordered nano-
domains, sometimes termed ‘lipid rafts’, which are involved in envi-
ronmental sensing and stress response. As a major component of plasma
membranes, SLs are significant in mitigating abiotic stress (e.g., thermal
stress, salt stress, drought or hypoxia), both in plasma membrane
remodeling and as signaling mediators [146,147]. Specifically, hy-
droxylation and desaturation of the FA and/or LCB moieties of the
ceramide influence the thermodynamic properties of the membrane
[148,149].

Plant SLs are also involved in multiple cellular, developmental and
stress-response processes, including lipid bilayer fusion, cytokinesis,
vesicle trafficking, plant development and defense [128,150]. Further-
more, they serve a regulatory role through the ceramides/LCB rheostat
that regulates cell fate, where ceramides and LCBs are able to trigger cell
death, while their phosphorylated form promotes cell survival or pro-
liferation [151]. SL intermediates are involved in host-pathogen in-
teractions, as part of the innate response mechanism [38,152].
Furthermore, some fungal and bacterial plant pathogens produce toxins
that modulate SL metabolism. Specifically, during necrotrophic in-
teractions, an increase in LCB abundance because of pathogenic myco-
toxins induces cell death, while inhibition of LCB synthesis by biotrophic
toxins prevents it.

The functional role of algal SL is largely understudied. Specific
GlcCers were found to induce programmed cell death during viral
infection of Emiliania huxleyi [143]. In addition, resistance and suscep-
tibility to viruses were correlated with the presence or absence of

Fig. 9. Structure of glucosylceramides (GlcCers, top) and glycosyl inositolphosphoceramides (GIPCs, bottom) reported as plant and alga SLs. Dashed lines mark
potential modifications of ceramide structure. * marks that the position of the double bond or methyl is not determined. Purple background indicates Long-chain
bases (LCB), red background indicates fatty acyl chain, and yellow background indicates the headgroup. Green background indicates additional modifications of
the headgroup. GlcNAc, N-Acetylglucosamine; GlcA, glucuronic acid. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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specific SL species [153–155], suggesting their involvement in confer-
ring these phenotypes. However, further functional studies are war-
ranted to better understand the role of SL in algal response to biotic and
abiotic stress. SLs are usually analyzed by LC-MS, and are well detected
in the positive ion mode MS analysis. Phosphate-containing SLs, like
GIPCs, can be detected both in the positive and negative ion mode MS
analysis. Other analytical methods include TLC or HPLC coupled with
evaporative light-scattering detection (ELSD). HPLC coupled with UV or
fluorescent detector can be used for LCB analysis, after deacylation (for
complex SLs) and modification of the free amine by the addition of a
chromophore (reviewed by [156]).

2.3. Epilipids: oxidized and nitrated lipids

2.3.1. Oxidized lipids
Several PUFAs, essential for living organisms, are present in land

plants and algae, among them, α-linolenic acid (ALA, 18:3 n-3), an ω-3
PUFA. This PUFA is composed of eighteen carbon atoms and possesses
three carbon‑carbon double bonds. Other PUFAs have been only iden-
tified in marine algae, such as arachidonic acid (AA or ARA, 20:4(ω-6)).
Their double bonds form skipped diene structures (two double bonds
separated by a methylene group (-CH2-) are prompted to peroxidation,
which lead to the formation of oxygenated metabolites, named oxylipins
[157,158].

The oxygenated lipid species of membrane complex lipids have been
identified in plants and algae and seem to play a role in the adaptive
mechanism to combat both abiotic and biotic stress. Oxidized (ox) PL
(PC, PE, PG, PI, PS) and glycolipids (MGDG, DGDG) were identified in
barley roots as a defense mechanism against salinity [159]. Some oxPL
(PC, PE and PG), oxidized glycolipids (MGDG and SQDG) and BLs (DGTS
and MGTS) have been identified in the lipidome of a few microalgae,
such as Chlorella vulgaris [58], Chlorococcum amblystomatis [160],
Chrysotila pseudoroscoffensis [161], Cyanidioschyzon merolae [162], Gal-
dieria sulphuraria [163] and in brown, red and green macroalgae, such as
Laminaria digitata [129], Palmaria palmata [79] and Codium tomentosum
[164]. Even when molecules are similar to what exists in other

organisms, their biosynthesis routes are partially distinct [165].
Oxidized lipid species of PC, LPC and SL classes have also been identified
in olive seed oil [10]. However, their roles and biosynthesis are still
unclear.

Actually, two biosynthetic routes are known, and in both radicals can
easily abstract one hydrogen atom on the methylene of the PUFAs to
produce a reactive species that will undergo further oxidative steps
when reacting with molecular oxygen. Radicals may be an amino acid
derived radical from enzyme active sites (e.g., tyrosyl radical in cyclo-
oxygenase (COX) or dioxygenase (DOX) [166]), or smaller free radicals
(e.g., OH● coming from Fenton reaction). Once this first hydrogen
abstracted, the radical peroxidation cascade will proceed whether in the
active site of the enzymes, leading to enzymatic oxylipins, or in the lipid
membrane, leading to non-enzymatic oxylipins. It should be mentioned
that both pathways (enzymatic and non-enzymatic) might involve
common intermediates such as fatty acid-hydroperoxides. To summa-
rize, two main families of oxylipins might be formed depending on the
mechanism involved, enzymatic (Fig. 10) or non-enzymatic (Fig. 11)
ones.

Figure 10 represents a summary of the enzymatic biosynthetic
pathways and highlights the main families of enzymatic oxylipins
discovered until now. ALA is one of the main PUFAs in plants and algae
and some oxylipins described in Fig. 10 are specific to plants and algae
(underlined). Enzymatic derived oxylipins, such as LOX-derived oxy-
lipins, are involved in various physiological processes and have impor-
tant roles in the adaptation of plants and algae [167]. Several analytical
methods have also identified the different types of oxylipins produced in
plants [168], and thanks to chemical synthesis or biocatalysis, that have
increased the quantities and numbers of oxylipins available, whichmade
biological studies easier.

As for the PUFAs, oxylipins have been found in a myriad of plants as
well as in various parts of the plant (leaves, roots) [169–171]. Regarding
aquatic plants, fresh and marine algae particularly, oxylipins have been
discovered in several brown, red, and green macroalgae [169,172,173]
and some microalgae (diatoms) [174]. Jasmonic acid (JA) and its de-
rivatives, among which the phytohormone jasmonoyl-isoleucine, are

Fig. 10. Enzymatic pathways of PUFAs’ oxidations and some examples of ALA-oxylipins. Underlined the main ALA-enzymatic oxylipins found in plants and algae.
LOX = lipoxygenase, DOX = dioxygenase, POX = Peroxygenase, EAS = Epoxy Alcohol Synthase, EH = Epoxide Hydrolase, DES = Divinyl Ether Synthase, AOS =

Allene Oxide Synthase, AOC = Allene Oxide Cyclase, HPL = HydroPeroxide Lyase, HI = Hexenal Isomerase.
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important for plant response to pathogens are mainly found in seed
plants [175]. While the signal transducing machinery seems conserved
at least in bryophytes, the COI1 receptor is not bound by jasmonoyl-
isoleucine, but by the JA precursor dinor-OPDA in the liverwort
Marchantia polymorpha [176]. JA and/or methyl-jasmonate (Me-JA)
were detected in some macroalgae, such as Gelidium latifolium [177] and
in microalgae such as Chlorella [178] as well as Dunaliella [179]. The
physiological role of those molecules is not proven, but other oxylipins,
like derivatives of arachidonic acid, are clearly involved in induced
chemical defences [180].

Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are C18 oxy-
lipins, formed inside the membrane. However, there is evidence that
enzymatic formation can also occur inside the lipid membrane [181]. If
attached to the membrane such as in phospholipids or galactolipids,
they are released by enzymes (e.g. phospholipases or acyl hydrolases).

Also, as described for the enzymatic oxylipins, ALA possesses labile
hydrogens, leading through a radical cascade to oxylipins. For both
PhytoPs and PhytoFs, the biosynthetic route starts with the abstraction
of a hydrogen on one of the bisallylic positions (C11 or C14), that forms
a pentadienyl radical which reacts with O2. The resulting hydroperoxyl
radical (Fig. 11) performs a 5-exo-trig cyclization leading to a 1,2-diox-
olanylcarbinyl radical. A second 5-exo-trig cyclization produces a bicy-
clic endoperoxide, which, after another reaction with molecular oxygen,
reduction and hydrolysis gives PhytoPs [157] On the other hand, from
the 1,2-dioxolanylcarbinyl radical, a bisepoxide can be formed leading
to the formation of PhytoFs after addition of water, reduction and hy-
drolysis. [182]

PhytoPs have been detected in various matrices. PhytoPs were
highlighted in diverse food (e.g., beans, chocolate, and wine) and
especially in nuts, seeds and vegetable oils [183]. In algae, PhytoPs were
observed for the first time in 2015 by Barbosa et al. in 24 macroalgae
species (3 Chlorophyta (green algae), 16 Phaeophyta (brown algae) and
5 Rhodophyta (red algae) [184]. In 2018, Lupette et al. studied the
diatom Phaeodactylum tricornutum under oxidative stress [174], and
despite the low concentration of ALA (2% of total fatty acids) in
Phaeodactylum tricornutum cells, PhytoPs were the main non-enzymatic
oxylipins in stressed cells.

In plants, Parchmann and Mueller have detected PhytoPs in four
plant species belonging to Solanaceae, Fabaceae, Apocynaceae and
Poaceae families [185]. Since then, they were found in pollen birch
using GC–MS with derivatization and liquid chromatography coupled
with tandem mass spectrometry (LC-MS/MS) without derivatization
where ent-16-B1t-PhytoP turned out to be the most abundant [186,187].
In 2016, 8 PhytoPs were identified and quantified by Yonny et al. in
melon leaves exposed to high temperatures [188]. They showed that

levels of PhytoPs were from 1.6 to 2.2 times higher on stressed samples
than in control samples. Very recently, they were also found in Arabi-
dopsis under photo-oxidative stress conditions by Rac et al. [189]. The
quantity of some PhytoPs considerably increased when the leaves were
exposed to light.

As for PhytoPs, obtaining PhytoFs by extraction is difficult and
chemical synthesis has been employed. To date, a unique strategy has
been developed and three PhytoFs were obtained [190]. The synthetized
ent-16-(RS)-13-epi-ST-Δ14–9-PhytoF was further identified and quanti-
fied in seeds and nuts (e.g., pine, walnut, chia and flax), thanks to its
obtention by chemical synthesis [191]. In addition, PhytoFs were also
identified and quantified in melon leaves submitted to thermal stress,
Arabidopsis and pollen birch [187–189]. Finally, a study by Vigor et al.
focused on two red and four brown marine macroalgae reports the
abundance of ent-16-(RS)-9-epi-ST-Δ14–10-PhytoF under copper stress
conditions compared to all isoprostanoids [192].

These oxylipins are currently mainly detected thanks to targeted
lipidomic, using LC-MS/MS techniques [193]. However, immunological
or GC–MS techniques were also developed [194–196].

2.3.2. Nitrated lipids
Nitro-fatty acids (NO2-FAs) are well-known products of the reaction

between free or esterified FA and reactive nitrogen species [197]. Free
NO2-FA were already reported in the lipidome of plants, but not yet in
algae. The nitro derivative of linoleic acid (NO2-LA) was identified in
both cell-suspension cultures and seedlings of the model plant Arabi-
dopsis thaliana [198,199], in the roots, leaves and subcellular (mito-
chondrial and peroxisomal) fractions from pea (Pisum sativum) [198],
and in leaves from rice (Oryza sativa) plants [200]. Additionally, both
the nitro derivative of conjugated linoleic acid (NO2-cLA) and the nitro
derivative of oleic acid (NO2-OA) were found in extra-virgin olive oil
(after TAG hydrolysis by pancreatic triacylglycerol lipase) and in fresh
olives (protein cysteine adducts of NO2-OA), respectively [201]. NO2-
OA was also found in seeds and differently developed seedlings of
oilseed rape (Brassica napus) [202]. However, nitrated PL, that were
already detected in mammals’ cells and tissues, remain to be identified
in both plants and algae. NO2-FAs in plants have been identified by
untargeted and targeted lipidomics approaches bases on LC-MS analysis.

NO2-FAs play key signaling roles during plant growth and develop-
ment but also in plant defense responses under biotic and abiotic stress
conditions such as mechanical wounding, low temperature, and cad-
mium or salinity stress [199]. The physiological roles of NO2-FA can be
mediated by their ability to release nitric oxide (NO) or by electrophilic
adduction to targeted proteins [203]. In fact, protein cysteine adducts of
NO2-OA were detected in fresh olives [201].

Fig. 11. Non-enzymatic pathways of PUFA oxidations.
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3. Analytical workflows for lipid analysis

The high diversity and complexity of plant and algal lipids leads to
distinct lipid profiles, which vary greatly among organisms [79], with
life cycle [110] and developmental stages [109], and with the growing
environmental (e.g., geographic origin [204–207] or season of har-
vesting [10,208]) and culture conditions [58,209]. Therefore, the
analysis of these complex chemical structures that can be detected in
total lipid extracts of plants and algae and the estimation of their
amounts requires the utilization of different but complementary
analytical methods. The following section summarizes the workflows
and the principal analytical techniques used for the identification and
quantification of lipids from plants and algae.

Lipid analysis workflow (Fig. 12, Table 1) includes the following
steps: collection/ harvesting and preservation, preparation of samples
(including lipid extraction and fractionation), methods for lipid analysis,
and data analysis and interpretation.

3.1. Harvesting and preservation

Plant and algal material possess very active lipases, mainly phos-
pholipase D for plants producing phosphatidic acid (PA) [210] and
phospholipase A1 for algae generating free fatty acid and lysolipid
[211]. Therefore it is important to use an appropriate harvesting and
storage process to avoid any degradation of lipids. For plants, significant
accumulation of PA will be a sign of lipid degradation, whereas for algae
it is indicated by an accumulation of free FA.

Wounding activates phospholipase D in plant within minutes [210].
To avoid phosphatidic acid accumulation in tissues after cutting, sam-
ples need to be frozen in liquid nitrogen very quickly and then stored at
− 80 ◦C. For microalgae, harvesting is a costly part of the process that
involves dewatering. Different techniques are available such as coagu-
lation and flocculation, flotation, centrifugation and filtration [212] and
as for plants, to avoid lipid degradation and free FA accumulation,
freezing the biomass in liquid nitrogen and storing it at − 80 ◦C is
advised. Another strategy would be to subject the fresh plants or algal
material to thermal processing (10min at 100 ◦C in a water bath) before
storage at − 20 ◦C, to limit lipolysis before extraction [213].

3.2. Extraction and fractionation

Due to the high variability in the lipid composition of the different

species of plants and algae, significant efforts have been made to address
analytical procedures for an efficient extraction of their lipids. For the
extraction of lipids, there are two significant challenges to overcome:
extraction efficiency with minimal lipid degradation, and removal of
non-lipid contents.

To avoid degradation, lipases activity is blocked during the extrac-
tion process by boiling the sample in alcohol or by addition of a sec-
ondary alcohol such as isopropanol [66,214]. Another strategy would be
to carry out the entire extraction process under cold conditions [215].
For the extraction efficiency, a key challenge is the low recovery rates of
lipids for some plants or algae, which has been attributed to the rigidity
of algae or plants matrices, which delay the release of compounds.
Additionally, the components present in the cell matrix have a signifi-
cant influence on the efficiency and yield of lipid extraction. Sample pre-
treatment appears as a critical step in an effective extraction procedure
[216]. Procedures involving lyophilization, inactivation of lipases, and
methods for cell-disruption are described to affect largely the yield of
extraction and the extractability of the different lipid classes in several
plant and microalga species [217,218]. Recently other suitable pre-
treatment methods before extraction or the application of different
combinations of novel techniques such as enzyme-assisted, microwave-
assisted, ultrasound-assisted, supercritical fluid, and pressurized liquid
extraction have been pointed to enhance the recovery of target lipids for
industrial applications [219]. The influence of these pre-treatments
depends largely on the solvent mixture employed, thus testing these
effects is highly recommended.

Two strategies are adopted for the extraction method: either a global
extraction or a targeted extraction for specific class analysis. For global
extraction, the extraction efficiency needs to be as similar as possible for

Fig. 12. Workflow summarizing the main steps for lipid analyses in plants and algae.

Table 1
Analytical methods used for identification and quantification of the different
lipid categories identified in plants and algae.

Plant and algal lipids Analytical method

Fatty acids GC–MS; GC-FID; FTIR
Hydroxy fatty acids GC–MS; LC-MS; FTIR
Waxes GC-FID and/or GC–MS
Suberin and cutin polyesters GC–MS
Glycerolipids TLC coupled to colorimetry, LC-MS, NMR; FTIR
Sterols GC–MS; GC-FID; TLC; LC-MS; FTIR
Sphingolipids LC-MS; FTIR
Oxidized lipids GC–MS; LC-MS
Nitrated lipids LC-MS
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all the lipid classes that need to be analyzed. This aspect makes the
standardization of the lipid extraction protocols a difficult task [220]
due to the great heterogeneity of plant and algal lipids and cells. The
standard methods commonly used are biphasic methods based on mix-
tures of different organic and alcoholic solvents (organic phase) and an
aqueous phase. Classical methods use chloroform and methanol as
organic solvent and are based on the Folch [221] and the Bligh and Dyer
methods [222]. A similar method using MTBE (methyl-tert-butylether)
was more recently developed with the advantage of having the organic
phase above the aqueous phase instead of more classical methods with
chloroform being under the water phase [223]. All these methods have
been adapted for plants and algae, depending on the organism
[218,224] (Fig. 12).

For more targeted purposes, mixtures with better extraction effi-
ciency for neutral than polar lipids have been used with different per-
formance depending on the alga or plant species, such as hexane/
methanol, hexane/ethanol, hexane/isopropanol, and cyclohexane/1-
butanol [224]. In some cases, extractions were performed by using
Soxhlet, pressurized liquids, and supercritical extraction, but showing
dissimilar extractability of the different lipid classes. Low polarity sol-
vents are more proper for the extraction of neutral lipids while polar
lipids, such as glycolipids and PL present in chloroplasts and other
cellular membranes are more effectively extracted using more polar
solvents, such as ethanol or methanol [224]. In recent years, direct
extraction of microalgal biomass using non-toxic and environmentally
friendly polar solvents such as ethanol or supercritical CO2, as well as
using hexane and acetone has been described as an efficient protocol to
extract neutral and polar lipids together [58,225,226].

For specific lipid classes, such as GIPCs, oxidized and nitrated lipids,
phosphatidylinositol phosphate, specialized methods have been devel-
oped. For example, GIPCs are insoluble in traditional lipid extraction
solvents, such as chloroform/methanol and may be extracted using
other methods through a monophasic procedure [39]. For hydroxy fatty
acids, different protocols have been reported depending on the matrix
[49–52]. For biological studies a classical Bligh & Dyer liquid-liquid
extraction, under acidic conditions, using citric acid led to increase
the yield of extraction. From rice powder, Watanabe et al. [227] used
ultrapure water followed by methanol, then shook for 1 h and centri-
fuged. The organic phase was purified by liquid-liquid extraction and
the upper ether phase containing the hydroxylated fatty acids evapo-
rated to dryness.

The total lipid extracts can be further quantified by gravimetry and/
or analyzed directly by MS or LC-MS. Nevertheless, total lipid extracts
can be submitted to fractionation or enrichment steps aiming to obtain
purified or enriched fractions of the different lipid classes using the solid
phase extraction (SPE) technique [204,228,229] or thin layer chroma-
tography (TLC) [230,231]. In SPE extraction, total lipid extract is frac-
tionated in different lipid-rich fractions according to their polarity, such
as fraction rich in neutral lipids, fraction rich in pigments, fraction rich
in glycolipids and fraction rich in phospholipids and betaine lipids. Lipid
extracts from plants or algae are usually fractionated using glass or
plastic columns containing silica gel or aminopropyl as stationary phase
(e.g., SPE–Si, NH2-SPE cartridges), which can be used separately or
sequentially [229]. Sequential elution solvent systems can be adapted to
obtain fractions enriched in lipids or specific lipids. The column is
conditioned with a solvent (e.g., n-hexane or heptane) to activate the
stationary phase, prior to the application of total lipid extract. After-
wards, a sequential elution of different solvents is applied to obtain lipid
fractions. For example, to fractionate algal lipid extracts, silica gel col-
umns are used with the following sequential solvent system: chloroform
to obtain the neutral lipid rich fraction, diethyl ether/acetic acid (98:2,
v/v) for pigments, acetone/methanol (9:1, v/v) for fraction rich in gly-
colipids and methanol to obtain the fraction containing PLs and BLs
[204,228,232,233].

TLC was one of the first separation methods introduced for lipid
analysis and can be used for lipid class identification or fractionation.

TLC is a versatile method, is easy to perform, and does not require
expensive instrumentation. In this chromatographic technique, the sta-
tionary phase is spread as a thin layer on a plate of glass or aluminum foil
whereas the mobile phase is a liquid which moves by capillarity along
the plate. As a result, the analyzed sample is separated into spots/bands
with different migration distance on the layer (measured as retention
factor, Rf value) depending on the molecular structure of the analyte
[31,234]. In the analysis of plant and alga glycerolipids, the most widely
used TLC stationary phase is silica gel, with various solvent systems as a
mobile phase depending on the polarity of studied lipids, e.g. hexane- or
chloroform:methanol based mixtures for neutral or more polar lipid
classes, respectively. The separation of lipids will be performed ac-
cording to their affinity with the stationary or mobile phases [235].
Incorporation of silver ions in the layer (the so-called silver ion TLC, Ag-
TLC) causes additional molecular interactions which ensure separation
of lipid molecules depending on the number, configuration (cis/trans) or
even isomeric positions of their double bonds. Ag-TLC has been applied
for analysis mainly of fatty acids and TGs [236]. Likewise, silica gel (or
Kieselguhr) layer coated with C18 chains can be used for reversed-phase
TLC (RP-TLC) with mobile phase composed of polar solvents including
water, methanol, acetonitrile, etc. [237]. Classical TLC techniques allow
also the separation of free sterols and sterol conjugated forms [238]. TLC
techniques can be applied in preparative or analytical modes [239,240].
On the other hand, analytical TLC is used for qualitative or quantitative
analysis the latter performed by densitometry of charred lipid spots or
by flame ionization detection in Iatroscan system [241]. Fully auto-
mated TLC, namely the high-performance TLC (HPTLC by CAMAG or
BIONIS equipments) allows coupling even to mass spectrometry.

After extraction, with or without further purification by TLC or SPE,
lipid extracts can be analyzed by different approaches, from simple
methods such as colorimetry to much complex methods like mass
spectrometry coupled to chromatography (e.g., GC–MS, LC-MS), but
also with more global, non-destructive and less conventional methods
such as FTIR, NMR and Raman microscopy.

3.3. Analytical methods used for the identification and quantification of
lipids

3.3.1. Colorimetric quantitative methods
Colorimetric methods are used for the quantification of total lipids

and specific lipid classes (total PL, GL) from samples (e.g., biomass,
cells), lipid extracts and fractions. Although the total lipids amount is
frequently estimated by gravimetry after total lipid extraction, colori-
metric methods have been developed to reduce the time consumed for
lipid extraction by performing lipid determination directly in the sam-
ples (e.g., freeze dried biomass, or oils), being the most common the
sulfo-phospho-vanillin (SPV) assay [242,243]. This colorimetric method
is based on the formation of a chromogen by initial reaction of lipids
with concentrated sulfuric acid followed by generation of a pink chro-
mophore after vanillin addition [244]. For example, the SPV assay was
employed for the quantification of lipids in dried biomass of microalgae
and vegetable oils, using calibration curves prepared with commercial
oils and absorbance measurement at 530 nm [242].

The total content of PL in total extracts or in purified PL fractions,
can be obtained using the Bartlett and Lewis method [245]. This method
quantifies the organic phosphates released after acid hydrolysis of PL
with perchloric acid and subsequently mixed with water and sodium
molybdate to create a complex phosphate-molybdate. This procedure
should be performed in a hood designed for perchloric acid use. After
addition of ascorbic acid, the absorbance of the samples is measured at
797 nm. The amount of PL is estimated by multiplying the phosphate
amount per the conversion factor 25, that would be the ratio between
the average molecular weight of PL and phosphorus molecular weight
[246]. Another method for determining PL without using perchloric acid
is the phosphate assay described by Ames [247]. This method involves
using a solution of magnesium nitrate in 95% alcohol. The mixture with
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the sample is then taken to dryness by shaking the tube in flame. After
adding HCl and heating to hydrolyze to phosphate, a mixture of ascorbic
acid and ammonium molybdate is added. The absorbance is then
measured at 820 nm for determination of total phosphate.

The quantification of glycolipids, either in total lipid extracts or
fractions, may be estimated from the sugar amount determined using the
orcinol colorimetric method [248]. A proportion of dry lipid samples is
mixed with the orcinol solution (0.2% in 70% H2SO4) and heated to
promote the hydrolysis of the glycolipids and the formation of sugar
derivatives (with absorbance at 505 nm). D-glucose is commonly used as
standard to obtain the calibration curve. The conversion factor 100/35
(ca. 2.8) is used to estimate the glycolipids amount in the samples [249].

3.3.2. Gas chromatography coupled to mass spectrometry (GC–MS) or
flame ionization detector (GC-FID)

GC and GC–MS represent powerful tools for the quantitative and
structural analysis of plant and algal lipids. As most lipids are not vol-
atile, the analytes need to be derivatized to enable the transition of the
molecules into the gas phase [250]. GC coupled with FID or MS are
primarily in use for the separation and identification of FA, long chain
base of SPs and phytosterols.

For FA analysis, FA residues (acyl groups) first undergo a de-
esterification reaction to detach them from neutral and polar lipids,
followed by transesterification to methanol, forming methyl esters. This
reaction could be achieved on lipid extract or directly on the biomass
[251]. Fatty acid methyl esters (FAMEs) with relatively low molecular
weight are volatile and can then be analyzed using a GC system (GC–MS
or GC-FID). This reaction is catalyzed by either a strong base or a strong
acid, usually using NaOH or HCl or H2SO4, respectively [251]. FAMEs
could be also converted into DMOX derivative and analyzed using
GC–EI-MS to position the unsaturation on the carbon backbone [252].
For GC column selection, due to the high variety of fatty acid in plants
and algae, columns of the highest polarity (e.g. CP-Sil 88™, BPX70™, or
SP-2340™), are preferred [253].

Sterols are usually analyzed as either trimethylsilyl (TMS) ethers or
as sterol acetates, which improves their volatility, peak shape, and
response factors, compared to analysis of underivatized sterols
[254,255]. In contrast to those used in fatty acid analysis, GC columns
from low to medium polarity (e.g. DB-1™, or HP-5MS™) are preferred
[111,122].

Derivatizations are usually reactions in which a significant amount of
unreacted material remain in equilibrium. However, all FAs and STs
have similar propensity to react with the derivatizing agents, so the lack
of complete conversion of the compounds to the derivatized form does
not present a problem. So, if a non-derivatized internal standard, absent
from the sample (usually a FA with an odd carbon chain or cholestane),
is added to the sample prior to the derivatization step, the overall fatty
acid or sterol contents can then be calculated according to its relative
peak area.

For SL long chain base analysis, a rapid three-step protocol involving
the release of LCB from biological samples, their oxidation into alde-
hydes, and the subsequent separation on medium polarity column such
as HP-5MS™ followed by identification/quantification of these alde-
hydes by GC–MS was developed by Cacas et al. [256].

Waxes are also analyzed by GC-FID and GC–MS on a HP-1™ column
after a rapid chloroform extraction of plant tissues to extract soluble
surface lipids [257]. Suberins and cutins are obtained after a thorough
extraction of soluble lipids of plant tissues in increasing hydrophobicity
solvents, the residue composed of suberin and cutin is further hydro-
lyzed by hot acidic methanol hydrolysis before being derivatized and
analyzed by GC–MS on a HP-5MS™ column [44].

GC–MS allows untargeted analysis, due to the use of MS libraries and
identification of molecular ion and MS fragmentation pattern and
electron impact mass spectra, while GC-FID is usually used for targeted
analysis. In GC-FID identification/annotation is only based on retention
time and/or retention index. The separation and annotation of structural

isomers can be particularly challenging and requires a good separation
technique alongside using other annotation tools mentioned [252].
However, the linear range of the FID is better than the MS and allows
quantification with higher accuracy when compounds are present in a
wide dynamic range [258], as reported in olive oils, where FA 18:1 can
represent more than 80% of total fatty acid and FA 16:1 represents less
than 1% [259].

3.3.3. Lipidomic analysis

3.3.3.1. Direct infusion (DI) mass spectrometry (MS). Analysis of lipid
extracts by direct infusion (DI) using ESI-MS instruments is limited by
higher ion suppression effects compared to the LC-MS analysis, as well as
the existence of isomeric lipids, impacting the sensitivity and selectivity
of the analysis [260]. Whereas DI-MS is preferred in the analysis of
purified lipid fractions, e.g., TG of olive oil [261], DI-MS can also be used
in shotgun approaches for targeted lipid analysis. It is a very fast tech-
nique, compared with LC-MS, which is especially advantageous for
routine analysis, e.g. as proposed for quality control of seed oils [262].
DI-MS analysis of lipid extracts is commonly used for targeted ap-
proaches, where the focus is the detection and quantification of a panel
of specific lipid molecular species. For that, semi-targeted MS ap-
proaches with precursor ion scan (PIS) or neutral loss scan (NLS) are
used for analysis of specific classes, e.g. in wild-type cotton (Gossypium
hirsutum) [263]. The advantage of this approach is that it is targeted to a
lipid class, but not to every lipid molecular species as it would be for
multiple reactionmonitoring (MRM) scanmode. This is possible because
the lipid classes are not eluted on different chromatographic peak with
different retention time. However, quantification can also be performed
by MRM [260], as reported for the analysis of lipid changes after leaf
wounding in Arabidopsis thaliana [264]. An additional advantage of DI
over LC methods is the scan time which is not constrained by the elution
time of a chromatographic peak, allowing much more multiple reaction
monitoring (MRM) and therefore molecule detection and/or quantifi-
cation than in LC-MS. A non-targeted approach could be also used for
lipid discovery, but it would require high resolution mass spectrometry
and accurate databases with plant or alga lipids. Due to the non-
exhaustive presence of plants and alga lipids in databases, even if it
improved a lot recently in database such as LIPIDMAPS or SwissLipids,
the correct annotation is quite often difficult and requires an in-house
database [265].

3.3.3.2. Liquid chromatography coupled to mass spectrometry. Liquid
chromatography (LC)–mass spectrometry (MS) using non-targeted ap-
proaches are commonly used in plant [10,266,267] and alga (macro-
algae [164,204,228,266,268,269] and microalgae [160,270–272])
lipidomic studies. LC-MS enables the separation of the lipid molecules
before injection into the mass spectrometer, overcoming the ion sup-
pression effects of DI. Reverse phase (RP)-LC-MS, normal phase (NP)-LC-
MS, and hydrophilic interaction liquid chromatography (HILIC)-MS
have been used for plant and algal lipid analysis, in different MS in-
struments. The columns used in LC-MS analysis vary in length, diameter,
and particle size of the stationary phase as well as on the mobile phase’s
flow rate and composition (predominantly solvents compatible with ESI,
such as methanol, acetonitrile) [273]. In NP-LC-MS [139] or HILIC-MS
[10,141,160,164,204,228,267–272,274–277], the elution of the lipid
molecules is based on their polar head moiety, separating the lipid
molecules by lipid classes found in the lipidome of plants
[10,139,267,274,276,277] and algae [141,160,164,204,228,268–270
,272,275]. These columns are generally used for the analysis of samples
with low amounts of neutral lipids (e.g., TGs) [62]. In RP-LC-MS, lipid
molecules are separated based on the length, unsaturation degree, and
position of the double bond of FA chains. Thus, RP-LC-MS enables the
separation of lipid species and not separation of the different lipid
classes [62]. The RP columns used in lipidomics of plants and algae
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contain different modified sorbents (mainly C8 [278–282], C18
[218,283] and C30 [274,277] hydrocarbon chains). RP-LC-MS ap-
proaches have the advantage of allowing the separation of isomers and
isobaric lipid species present in lipidome of plants and algae [62]. The
lipid species esterified with longer and SFA chains have increased
retention times (RT) (elute later) than lipid species bearing shorter and
PUFA chains. Also, polar lipid species show shorter RT than neutral
lipids [62]. RP-LC-MS is suitable for the analysis of polar and neutral
lipids, but the chromatographic peaks of some lipid species from distinct
lipid classes can overlap, making their accurate identification a difficult
task [62]. Of note, a two-dimensional chromatographic setup coupling
both RP and HILIC was already employed in the analysis of lipid extracts
from rice samples (Oryza sativa L.) [276].

Development of supercritical fluid chromatography (SFC) is also an
interesting approach for lipidomic analysis. SFC is considered a hybrid
of GC and LC and has many advantages, such as high separation effi-
ciency, low organic solvent consumption, and short analysis time. It is
particularly well suited for the analysis of low-polarity compounds, such
as lipids, because supercritical CO2 is a non-polar solvent, often
compared with hexane. Algae lipids could be separated and identified by
SFC-ESI-MS with a NP column and the addition of ethanol as co-solvent
for elution gradient [284].

LC is easy to combine with ESI, the predominant ionization tech-
nique in mass spectrometers used in LC-MS approaches for lipid analysis
nowadays [11]. High resolution or triple quadrupole mass spectrome-
ters are routinely used allowing respectively untargeted and targeted
analysis. Untargeted LC-ESI-MS strategies are mostly done using data
dependent acquisition (DDA) and/or data independent acquisition (DIA)
modes (as recently reviewed by [11,62]. These acquisition methods
generate a large amount of information that can be analyzed with the
support of bioinformatic tools (e.g., MS-DIAL, MZmine, Lipostar).
Identification is based on RT, exact mass, and MS/MS matching.
Nevertheless, it is a good practice to validate the information provided
by the software with a manual analysis of tandem MS spectra and/or, if
available, with a lipid extract of known composition, because the lipid
molecules present in plants and algae are poorly represented in lipid
databases [62,66]. However, these techniques have the advantage of
allowing the identification of hundreds of lipid molecular species from
several classes, and thus to obtain a comprehensive view of the lipidome
of plants and algae [62]. Nevertheless, quantification remains a chal-
lenge due to the lack of pure and well-characterized commercial stan-
dards for GL and BL and so most of the data reported in the literature are
from relative quantification [62].

Targeted LC-MS approaches are used mainly on model organisms.
Indeed, it is based on a list of MRM transition and therefore on a finished
list of molecules to be analyzed. Therefore, the lipidome needs to be
known before using this type of analysis [11,66]. Nowadays, LC-MS is
mainly used for glycerolipid analysis but could be used also for fatty acid
steryl esters, steryl glycosides and GIPC [113,123,285].

3.3.3.3. Quantification by mass spectrometry. Quantification by mass
spectrometry is a challenge that should not be underestimated. Indeed,
the molecule ionization efficiency is dependent of the matrix, the chain
length, the number of unsaturation, the nature of the polar head, etc.
[286]. Therefore, accurate quantification in lipidomics requires a
method to control the variability of lipid extraction, ionization effi-
ciency and systemic drift in the mass spectrometer. The addition of in-
ternal standards to the samples makes it possible to compensate for these
sources of variability [287]. Ideally, internal standards should have the
same chemical and physical properties as the lipids to be quantified, but
distinguishable in mass spectra. Therefore, a stable-isotope labelled in-
ternal standard for each lipid species is the preferred option for accurate,
but also costly, quantification [286]. However, lipidomic experiments
measure several hundred of lipid molecules and stable-isotope labelled
molecules are not available for each lipid molecule. In practice, it is

common to use one or two internal standards for each lipid class, which
are absent in the studied lipid extract, usually with odd or short chain
[288].

For lipids, we can distinguish two cases: simple lipids; such as sterols
and FA with their derivatives, and complex lipids; such as sphingolipids
or glycerolipids. In the former, pure analytical standards are available to
prepare calibration curves. In the last, hundreds of molecular species for
each family can be detected for complex lipids in a biological sample
with very few analytical standards commercially available. Under these
circumstances, no calibration curves for each molecular species could be
obtained, and because detection is sensitive to the nature of the mole-
cule (especially with FAs), the absolute quantification will not be
possible. To circumvent the discrepancy of ionization efficiency and the
absence of available labelled standard for all lipid molecules, a quanti-
fied control (QC) sample can be used to normalize and correct the
quantification. This QC corresponds to a known lipid extract mimicking
the studied samples, quantified once by TLC plus GC-FID, and then
systematically run with the samples to be analyzed by LC-MS/MS [66].
This method was established and validated for at least five kinds of or-
ganisms covering plants, microalgae and yeasts: Arabidopsis thaliana,
Nannochloropsis sp.,Phaeodactylum tricornutum, Aurantiochytrium limaci-
num and Saccharomyces cerevisiae.

3.3.4. Mass spectrometry imaging (MSI)
Mass spectrometry imaging (MSI) is a technique used to map the

spatial-temporal distribution of metabolites and proteins. It has been
gradually applied in plant research in the past two decades, allowing
researchers to investigate the distribution of biomolecules in all major
plant organs and to track compositional changes in response to biotic
and abiotic stresses (for recent reviews, see: [289–291]). MSI has been
extensively used to study plant lipids, among them PLs, sulfolipids, SLs,
and TGs [292,293]. Very few studies have used MSI to analyze algal
lipids [154].

The three ionization techniques most used for MSI analysis are
matrix-assisted laser desorption ionization (MALDI), desorption elec-
trospray ionization (DESI) and secondary ion MS (SIMS). They differ in
their spatial resolution, sensitivity, analysis speed and sample prepara-
tion procedure [290,294]. Most studies of plant lipids use MALDI-MS
and DESI-MS [295]. Despite the high special resolution obtained in
SIMS experiments (around 100 nm), the nanoscale SIMS (NanoSIMS)
instruments ionize molecule by fragmenting them at masses below 200
Da and is therefore not suitable for lipid analysis. [234].

MALDI is a soft ionization technique performed either under vacuum
or under ambient conditions, in which a chemical matrix coats the
sample and promotes ionization of the metabolites through absorbing
UV or IR laser energy [297,298]. It is currently the most widely used
technique for studying lipid distribution and biochemistry in plant
samples, with current state-of-the-art MALDI-MS instruments reaching a
spatial resolution of a few micrometers and better sensitivity [299,300].
Sample preparation requires sectioning of the samples into thin slices
that are then coated by the matrix. In plants, cryosectioning is
commonly used to prepare tissue slices of leaves, flowers and fruits,
whereas in microalgae dried cultures grown on a solid medium were
previously used [154,294]. Matrix selection can greatly affect the
detection of various lipid classes [301].

DESI is also a soft ionization method, performed under ambient
conditions. It does not require a matrix but operates through the gen-
eration of charged microdroplets. The microdroplets are in direct con-
tact with the sample surface, causing desorption of the metabolites
[302]. The spatial resolution of DESI is lower than MALDI (usually
10–50 μm), however, it requires little sample preparation, making it
suitable for surface analysis of lipids in soft plant tissues, such as petals
and leaves, as well as direct analysis of algal cultures grown on solid
medium [154,303]. Different solvents can be used to extract and ionize
different lipid classes [304–306].

Recent advancements in MSI instrumentation and methodologies,
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such as MALDI-2 and Tof-SIMS, incorporation of ion mobility and par-
allel MS andMS/MS imaging, hold promise to improve the detection and
annotation of diverse lipid classes [296,307,308]. Applying them to
plants and algae can greatly improve our understanding of the cellular
lipid composition and the involvement of lipids in biological processes.

3.3.5. Applications of Raman microscopy for lipidomics of microalgae
Confocal Raman microscopy (CRM) is a contactless, non-invasive,

and often non-destructive imaging method that combines the molecu-
lar specificity of Raman spectroscopy with the spatial resolution of
confocal optical microscopy. CRM provides chemical images of the cells
without specific staining or demanding preparatory procedures. The
main advantage of CRM and related techniques consists in a simple and
fast sample preparation, as well as multiplexing capability, i.e., identi-
fying neutral lipids in the context of other storing bodies and intracel-
lular structures (Fig. 13).

The first use of CRM for microalgae dates to forty years ago [309],
however the routine usage in studies of algal lipids [310–312] has lag-
ged due to problems caused by the inherent fluorescence of chlorophylls,
and for a long time was limited only to carotenoids that provide suffi-
ciently strong Raman signals to overcome this problem. Recent tech-
nological and methodological progress enabled the detection of
chemical compounds exhibiting much weaker Raman scattering under
the condition that within the cells they form densely packed or crys-
talline inclusions. CRM as well as macroscopic Raman spectroscopy are
commonly used to detect and quantify neutral lipids (triacylglycerols)
[313–319], often concurrently with starch [315,318,320], poly-
phosphates [321,322] or other biomolecules [323–325]. Since Raman
signal is linear with concentration, CRM is suitable also for quantitative
studies of lipids. The Raman estimates were often compared and vali-
dated by standard bulk quantification analyses, such as enzymatic

analysis [320,321], GC–MS [315,317,318,326], LC-MS [313,314],
gravimetry [327] or Nile Red staining [316] as a reference method for
lipid quantification.

Raman techniques can also be used for a contact-less estimation of a
mean unsaturation of algal lipids [310,314,317,327–330], and of other
corresponding parameters, such as thawing temperature, mean number
of C––C bonds and their ratio to CH2 groups in FAs [328,330]. To esti-
mate iodine value and other corresponding characteristics, the ratio of
Raman bands of C––C stretching (1650–1660 cm− 1) and CH2 bending
(1440–1445 cm− 1) of microalgal lipids can be used
[310,314,317,327–330] (Fig. 13). In vitro acquired spectra of 5–11
model fatty acids with different number of double bonds and chain
lengths have been used to construct linear calibration curves for the
saturation characteristics [310,314,317,327–330]; for thawing tem-
perature estimation, a sigmoidal calibration curve was constructed
[328,330]. Wu et al. compared thawing temperature of algal lipids ob-
tained by Raman measurement and by calorimetry, and the two agreed
within 1 ◦C [328].

Algal lipids were often studied in connection with carotenoids
sequestered in the lipid droplets. The distributions of astaxanthin and
lipids during Haematococcus pluvialis encystment were studied by Li
et al. [331], and carotenoid concentration in lipid bodies has been
quantified via the ratio of carotenoid and lipid bands [332]. Lipid bodies
have also been imaged and quantified via advanced methods of Raman
spectroscopy, e.g., using 2D and 3D coherent anti-Stokes Raman mi-
croscopy (CARS) [326,327], stimulated Raman spectroscopy (SRS)
[333] and laser-trapping Raman spectroscopy (LTRS) [314,328,334].
Fatty acid composition of algal lipid bodies was also revealed by
decomposing the Raman spectra of cellular lipids to spectra of the three
or four most abundant fatty acids and compared with values obtained by
GC–MS [317,329]. Apart from algal lipids, botryococcenes, liquid

Fig. 13. Schematic illustrating the use of confocal Raman microscopy as a practical tool providing information on the composition of lipid bodies of microalgae in
situ, in the context of other energy- and nutrient-storing biomolecules. Based on the characteristic Raman spectra of individual chemical components (panel A: yellow
- neutral lipids, grey/white - floridean starch, red - crystalline guanine, green - plastids), Raman chemical image of a single cell Amphidinium carterae was constructed
(the same colour code as in panel A). Spectral differences in the Raman spectra of lipid bodies of different microalgal species acquired in situ, i.e., at the single-cell
level and without laborious extraction, reflect differences in their chemical composition, especially the different average degrees of saturation (panel B: see variable
intensity ratio of the 1658 and 1442 cm− 1 Raman bands). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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hydrocarbons produced by Botryococcus braunii, were also studied by
CRM [309,312].

3.3.6. Fourier-transform infrared spectroscopy (FTIR)
Fourier transform infrared (FTIR) spectroscopy is an excellent

alternative method as an accurate method for lipid quantification in
biomass, when screening for the best lipid producing species and opti-
mizing their growth conditions. In lipid extract, infrared spectroscopy
methods can be used for identification and for semi- or quantitative
estimation of fatty acids, TGs, edible oils, etc., as well as for search of
strains capable of accumulating or overproducing these particular me-
tabolites [335–338].

FTIR spectroscopy is used as a label-free and fast analytical method
providing objective and reliable information in a relatively non-invasive
way. The main advantages of FTIR spectroscopy are as follows: (i)
minimal sample pre-treatment and no chemical treatment, thus avoiding
secondary reactions, (ii) significantly lower sample amounts that can be
analyzed using ATR-FTIR (Attenuated Total Reflectance-FTIR), or FTIR-
microspectroscopy using a miniature diamond anvil cell, (iii) presenta-
tion of all constituents of interest in a single spectrum, and (iv) capacity
of high-throughput analysis and screening of a large number of samples
[335,339,340]. FTIR spectrum of bio-samples provides information on a
range of vibrationally active functional groups: O–H, N–H, C––O,
=C–H, –CH2, –CH3, C–O–C and > P=O, in cells, isolated macromole-
cules, chemical constituents, biopolymers, nucleic acids, proteins, car-
bohydrates, lipids, etc. [341–344]. Chemical bonds within the
functional groups of biochemical molecules have distinct vibrational
properties, and thanks to that the relative amounts of these macromol-
ecules can be well identified in spectrum. The principal components of
the cell in the FTIR spectrum (Fig. 14) are identified by their absorption
bands at: 1080 cm− 1 for carbohydrates, 1250 cm− 1 for nucleic acids,
~1660 and ~ 1550 cm− 1 for proteins (the bands Amide I and Amide II
stretching vibrations of C––O bond of amide and bending vibrations of
the N–H bond, respectively), triplet bands in the region of 2800–3000
cm− 1 (C–H stretching in CH3 and CH2) for the total lipids/fatty acids.
The peak at 1744 cm− 1 is assigned to C––O of esters/ester carbonyl and
~ 3014 cm− 1 to olefinic HC––CH stretching mode, typical of unsatu-
rated fatty acids [336,341,342,345].

It should be noted that the infrared spectrum of biomass, as a
multicomponent system, represents a superposition of the cell compo-
nents, and the snapshot (Fig. 14) reflects the distribution of

macromolecular pools. The environmental stoichiometry of nutrients
influences the relative abundance of organic pools in the cells of micro-,
macroalgae, or phytoplankton cells that can be easily detected and
analyzed by FTIR spectroscopy.

3.3.7. Nuclear magnetic resonance (NMR)
Nuclear magnetic resonance (NMR) is an emerging and powerful tool

in lipidomic approaches. NMR does not require laborious or complex
steps of sample preparation (e.g., fractionation, chromatographic sepa-
ration, derivatization, or labelling). Both liquid and solid samples can be
analyzed by NMR. This is a non-destructive quantitative spectroscopic
technique, enabling further analysis of the same samples by other
techniques, such as LC-MS or GC–MS. However, the major drawback of
NMR is the high amount of sample necessary for each analysis [347].

In the latest years, proton (1H NMR) and carbon nuclear magnetic
resonance (13C NMR) have been applied in the screening of algal lipids,
namely for structural characterization and determination of the lipid
content. 1H NMR was used for the identification and quantification of
free FAs and different glycerolipids species, including TGs, glycolipids
and PLss from oleaginous microalgae, namely Thalassiosira weissflogii,
Cyclotella cryptica and Nannochloropsis salina [348]. Both 1H NMR and
13C NMR were applied to evaluate the changes on the neutral and polar
lipids content as well as in the unsaturated fatty acid profile of two
microalgae, Scenedesmus ecornis and Chlorella vulgaris cultivated under
different media [349]. Lipid extracts obtained from the red macroalga
Gracilaria longa were also characterized by 1H NMR and 13C NMR. The
1H NMR spectra provided information on the quantitative estimation of
cholesterol and phosphatidylcholine/total lipid molar ratio, while 13C
NMR allowed identifying STs, chlorophylls, carotenoids, and glycolipids
as well as to determine the position of the double bonds on the FAs
[350]. 1H, 13C, and 31P NMR have also been extensively used for the
analysis of plant-derived oils, such as olive oil, to evaluate composition,
quality and authentication [351,352]. For example, 31P NMR was used
for the identification, characterization, and quantification of the
different PL classes while one- and two-dimensional 1H NMR allowed
the screening of the composition of fatty acids esterified in lipid classes
(PL, TG) [353]. Finally, 31P NMR could be used simply to quantify PL in
lipid extract [354].

NMR could also be used for in vivo or biophysical analysis. For
example, by 1H pulse field gradient nuclear magnetic resonance, the
size, the lipid content and the connections between lipid droplets have

Fig. 14. A - Overlapping absorbances of the macromolecular components in the FTIR spectrum: carbohydrates, DNA, proteins, and lipids, in artificial mixture; B -
FTIR spectrum of microalgae Tetraselmis chuii biomass and the spectral sum of standards (one of each class) in concentrations estimated by quantitative analysis (%
dry weight), as in [346].
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been measured in Phaeodactylum tricornutum cells [103]. By 31P and 13C
NMR, the phase behavior of membrane composed of PL, GIPC and gal-
actolipid was explored [39,355].

4. Plant and algal lipids: industrial applications

Why is it important to study lipid metabolism and profiling in plants
and algae from a societal perspective? There are several reasons: health,
nutrition, sustainable production of valuable compounds and green
chemistry. From a nutritional point of view, several FAs are considered
essential due to that they are poorly synthesized by human cells. The
current main dietary source for VLC-PUFA is fish oil. Alternative and
more sustainable sources of nutritional, healthy and bioactive lipids
have to be found to fulfill the high societal demand for these compounds.
Marine algae fresh microalgae, and other marine protists are likely
candidates. Today, they are emerging as interesting alternatives for the
production of a number of valuable compounds, including VLC-PUFA
(human health), squalene (cosmetic industry), carotenoids and pig-
ments and lecithins (phospholipids) (food industry). Plants and algae are
the sustainable source of lipids for plant-based diets and replace animal
compounds in a wide range of industries. Plants and algae are also
promising vehicles for the development of non-petroleum chemistry. In
this context, a chemistry based on renewable lipids from plants or algae
could replace the non-sustainable use of fossil carbon, and indirectly
contribute to the reduction of CO2 emissions.

4.1. Plants and algae as a source of valuable lipids for food and feed

Plant and algal lipid applications in the food and feed industry are
broad, from an edible foodstuff as its whole up to the production of a
highly specialized molecule. As a raw material, edible plant lipids
include mostly oils, liquid at room temperature, comprised mainly of
unsaturated FA in a TG structure. The most abundant vegetable oils from
a nutritional point of view worldwide are olive, sesame, palm, rapeseed
(canola), soybean, sunflower, and corn, while oil from other origins (e.
g., almond, safflower) although available, is less common [356]. Algal
oil is only recently becoming available as an edible oil [357,358].
Additionally, common vegetable fats (solid at room temperature), with
saturated FA as the main component, include shea, coconut, and cocoa,
as well as vegetable oil margarines and vanapasti (vegetable ghee).
Some plant lipids, e.g., jojoba and carnauba, are waxes, structured as an
ester of a fatty acid and a fatty alcohol, and have various uses as food
additives. e.g., for coatings [359]. Plant lipids also play a crucial role as
raw material for other processes, including baking, frying, roasting and
emulsifying [360,361]. As food ingredients, lipids significantly
contribute to both food texture and flavor, providing characteristic
mouthfeel, as well as precursors for aroma formation.

From a nutritional perspective, food lipids supply the human body
with nutrients required for proper functioning, including essential FAs
(ω-6 LA and ω-3 α-ALA). Algal eicosapentaenoic acid (EPA) and doco-
sahexaenoic acid (DHA) are the backbone for very long chain ω-3 PUFA
synthesis in the human body. Lipids also allow the uptake of fat-soluble
vitamins (A, D, E, K), phytosterols and carotenoids, compounds high-
lighted for their beneficial health effects [362]. From a health-related
perspective, research has established the detrimental effects of satu-
rated and trans FA consumption, and its negative effects on cardiovas-
cular health [363]. This is as opposed to mono and PUFA, which have
been positively correlated with cardiovascular and coronary proper
functioning, as well as longevity [364].

Lipidomics research in food and feed enables developing improved
foodstuff with favorable nutritional and functional properties, mainly
through transgenic modifications [364], altering the composition of
edible oils. Such applications can direct lipid metabolism towards
accumulation of desirable FA, e.g., VLC ω-3 PUFAs, EPA, and DHA in
commercial crops, e.g., canola and camelina, providing sustainable
plant-based sources for these FA [364,365]. Due to consumer reproval of

GMO, these approaches are mainly used for feed [366,367]. Another
implication is profiling and designing high-oleic crops, increasing oleic
acid content and improving their health contribution [368,369].
Profiling of commercial oils is of value in itself, providing information
regarding nutritional lipids [370] and also enabling identifying
underutilized sources of edible oils [369,371,372]. Another significant
contribution of lipidomics is the identification and quantification of
oxidized lipids in common oils and evaluating them as dietary sources of
oxylipins, e.g., when consumed raw or heated [373]. Lipidomic research
also facilitates the synthesis of designer lipids, as novel health-related
lipids [374] and allows the effect characterization of processing, e.g.,
extraction [375], roasting [376], and storage [377,378] on oil quality
and composition, and may serve as a tool for authentication and trace-
ability in foodstuff or food ingredients, e.g., in oil [261,262] and wheat
grains [379]. Also, in spite of algae lipidomics to address the added
value as food has been less described, the lipidomic characterization of
edible alga have been performed, e.g. in edible seaweed Ulva rigida (sea
lettuce [204]), Porphyra dioica (well known as Nori in sushi) [110] and
in microalgae as Chlorella vulgaris [58] to enhance their added value and
as promising tool to identity and traceability [62].

Algae and plants produce lipids with superior nutritional qualities
that are sought after to be incorporated into animal feed in agriculture
and aquaculture. Brown algae, e.g.Saccharina japonica, Undaria pinnati-
fida and Sargassum natans, contain large amounts of LC-PUFAs, espe-
cially EPA and AA [92]. The inclusion of U. pinnatifida into animal feed
was found to enhance the immune response in pigs [380], while feed
supplementation with S. japonica resulted in the improved physico-
chemical qualities of goat meat [381]. U. rigida dietary supplementation
has been shown to result in good growth performance in carp [382].
Microalgae and cyanobacteria belonging to different species: Chlor-
ococcum, Nitzschia, Nostoc, Spirogyra, Scenedesmus spp. among others,
are being used as feed supplements in livestock and poultry farming.
Positive effects on animal health have been observed, involving immu-
nity, fertility and juvenile survival [27]. As an example, the polar lipid
extract of Chlorococcum amblystomatis with high amount of ω-3 C16, C18
PUFAs and EPA has demonstrated antioxidant activity and anti-
inflammatory potential [160]. The dietary application of Chlorella and
Scenedesmus spp. as feedstock in sericulture has resulted in the accel-
erated growth and development of silkworm caterpillars, as well as
increased yield from cocoons [27]. A lipidomic characterization of the
uptake of ω-3 PUFA to quantify egg lipids from hens whose diet had been
supplemented with flaxseed oil or a DHA-rich marine algal supplement,
demonstrated that the latter gave superior results [383]. Various other
effects have also been observed, including enhanced egg size and
increased production [27].

4.2. Applications in pharmaceutics

Plants, algae (macroalgae and microalgae), and cyanobacteria are a
rich natural trove of bioactive lipids, including FAs, their derivatives,
and complex lipids such as PL and glycolipids that may be beneficial for
human health, and for medicinal uses [384–389]. Exploration of plant
and algal lipidomes is critical for discovering novel and fostering the
pharmaceutical potential of bioactive lipids. Lipidomics has been
applied to investigate the pharmaceutical properties of medicinal plants
and to identify the molecule responsible of the therapeutic effect as well
as their mechanism of action [390–394]. Photosynthetic microalgae
have gained increasing attention as an alternative renewable, clean, and
sustainable source of health beneficial PUFA and VLC PUFA. VLC ω-3
and ω-6 PUFA, their oxygenated derivatives and glycerolipids esterified
with them, are the most studied bioactive lipids with pharmaceutical
potential for the treatment and alleviation of inflammation, a common
component of human diseases [395,396]. The diversity of oxylipins
(eicosanoids) and specialized lipid mediators produced from ω-3 and ω-6
C20 and C22 VLCPUFA and their role in regulation of the inflammatory
response (Fig. 15) have been extensively covered elsewhere
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[395,397–402].
Considering the importance of VLC PUFA for human health and of

algae for addressing global challenges in food security and climate
change, the lipidomes of VLCPUFA-producing microalgae and macro-
algae have been investigated [15,106,401,403–406]. Microalgae and
macroalgae may produce the oxygenated products of PUFA and VLC-
PUFA enzymatically (oxylipins) [407] and non-enzymatically (iso-
prostanoids) [192,408], with high potential to modulate inflammatory
responses. C18-PUFA and their oxygenated products were shown to
exhibit anti-inflammatory activities [409–411]. High-ALA sage oil diet
showed a decreased mucosal injury in a rodent model of Inflammatory
Bowel Disease (IBD) compared to the corn and fish oil diets [409]. The
anti-inflammatory activity of the green microalga Chlamydomonas
debaryana in induced colitis [410,411] was associated with C18 PUFA-
derived oxylipins, 13S- hydroxyoctadecatrienoic acid (HOTE) and 13S-
hydroxyoctadecadienoic acid (HODE). 15S- hydroxyeicosapentaenoic
acid (HEPE) from the EPA-producing microalga Nannochloropsis gadi-
tana, decreased production of pro-inflammatory cytokines and expres-
sion of iNOS and COX-2 genes in macrophages [412]. Certain
microalgae and macroalgae appeared to produce animal-like prosta-
glandins, derived from C20 LC-PUFA [407,413]. These findings high-
light the therapeutic potential of plant and algal C18 PUFA and C20/C22
PUFA-derived oxylipins in inflammatory diseases such as IBD [414] and
the importance of epilipidomics in uncovering this potential.

In addition, saturated and unsaturated FAs from plants and micro-
algae possess antibacterial activities against human bacterial pathogens
[415,416] and as reviewed recently [417]. For example, non-esterified
EPA liberated from the glycerolipids of the diatom Phaeodactylum tri-
cornutum was effective against multidrug-resistant Staphylococcus
aureus. Moreover, FAMEs extracted from the microalga Scenedesmus
intermedius were active against a number of pathogenic bacteria and
fungi [418]. Lipids from plants also exhibit antimicrobial properties. For
example, heartwood lipid extract of A. adianthifolia [419] and steryl
glycosides from roots of B. portulacoides [420] showed inhibiting ca-
pacity over Escherichia coli while SQDG isolated from neem (Azadirachta
indica) showed antibacterial and antiviral activity [421].

4.3. Application in cosmetics

There is a constant market demand for the incorporation of natural
ingredients in cosmetics formulations to enhance the quality, the effi-
cacy and the environmental sustainability of the products [422]. How-
ever, for legislation simplicity, companies want to use products that are
registered in the Inventory of Existing Cosmetic Ingredients in China
(IECIC) that was revised in 2021. Plant extracts are highly detailed [423]
and therefore there uses are restricted to those from particular plant
varieties, whereas algae extract is present in the list without further
detail (https://www.chinacosing.com/). Therefore, microalgae are

Fig. 15. Lipid mediators of inflammation derived from various omega-3 and omega-6 LC-PUFA. Adapted from Lupette & Benning [108].
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gaining increasing interest in cosmetics as they produce a variety of
lipids (e.g., glycolipids, phytosterols,) with many potential uses such as
emulsifying, antioxidant and anti-inflammatory agents [138,424–428].

Botanical oils are used in cosmetics as they have important biological
properties for human skin [429]. Specifically, sunflower oil is a widely
used inexpensive oil with high content of ω-6 LA [430]. In addition, flax
or hemp oil, which are enriched with the ω-3 ALA, are used as anti-
inflammatory and anti-comedogenic agents for skin [431]. Olive oil
with high oleic acid content is considered as a deeply moisturizing factor
in the three layers of skin while having anti-inflammatory and wound
healing properties [430]. In addition, highly saturated coconut or shea
butters are used to avoid the evaporation of water from the skin
[429,432]. Jojoba wax was also recently reported to possess beneficial
skin bioactivities, including anti-inflammatory and anti-herpes effects
[433].

4.4. Applications in biofuels

Despite climate change, the gradual reduction in world reserves of
fossil hydrocarbons added to the recent multiplication of health and
geopolitical crises, the world demand for oil has never been as high as it
is today [434]. Thus, it is therefore appropriate to find an alternative to
fossil fuel energy, in particular through the third generation of biofuel
derived from oleaginous microalgae. Indeed, the first two generations of
biofuels come respectively from agricultural crops (production of bio-
diesel by transesterification of rapeseed oil, camelina oil, sunflower oil
or palm oil) or plants rich in sugars for the first generation or from
lignocellulosic waste for the second generation [97,434]. Competition
between biofuels and food demand is inevitable with respect to food
security issues. However, microalgae can achieve 1.83 kg of CO2 bio-
fixation in each kilogram of biomass, and its oil productivity is 10-fold
higher than that of conventional biofuel crops [435]. Thereby, unlike
the exploitation of fossil fuels which releases CO2 trapped in geological
time (Carboniferous, Jurassic and Cretaceous) and contributes to
climate change, the exploitation of a marine algo-sourced biofuel does
not compete with arable land, fresh water and does not emit more CO2
than what was captured during photosynthesis.

To be usable for biofuel applications, FA esterified with the glycerol
skeleton of TG must have two properties: i) a medium carbon chain (C8
to C14) in order to be compatible with the thermal properties of fuels,
and ii) a low level of unsaturation in order to avoid oxidation problems
[436,437]. However, these medium chain FA present two main bio-
logical problems: i) they are rarely found in the FA profiles of TG of
oleaginous microalgae and ii) they are seldom tolerated by these mi-
croorganisms, leading to a cessation of the accumulation of biomass
[438]. To counterbalance these biological locks, it is necessary to screen
marine environments in order to identify in the phytoplankton biodi-
versity, more microalgae species that meet the research and industrial
criteria for the generation of biofuels [97]. A second key consists in fully
exploiting the genetic engineering tools (TALEN, CRISPR/Cas9, etc.)
developed in recent years in many microalgae with the aim of reprog-
ramming lipid metabolism [439]. For example, Radakovits and
colleague showed that heterologous expression of two acyl-ACP thio-
esterases (TE) from camphor (Cinnamomum camphora) and California
laurel (Umbellularia californica) in the pennate diatom Phaeodactylum
tricornutum led to the incorporation of medium chain FAs (C12 and C14)
in TG molecules but altered the accumulation of biomass [438].
Conversely, heterologous expression of UcTE in Chlamydomonas rein-
hardtii does not alter the FA profile but overexpression of endogenous
CrTE promotes C14 accumulation [440]. A complementary study finally
showed that the joint heterologous expression of a C10-C14 specific TE
and ACP of cigar flower (Cuphea lanceolata) in C. reinhardtii slightly
increased the quantity of C14 in TGs [441]. Finally, the recent discovery
of a photoenzyme, fatty acid decarboxylase (FAP) in the microalga
Chlorella variabilis NC64A and functionally characterized in C. reinhardtii
opens up a wide range of perspectives [442,443]. Moulin and colleagues

have identified 198 putative sequences of this photoenzyme, capable of
converting FA into hydrocarbons by eliminating the carboxyl-end of FA,
in data from the TARA Ocean scientific expedition as well as in
sequenced microalgae genomes [443]. Other approaches that proved
successful in upregulation of the TG levels include pharmacological in-
hibition of TOR (target of rapamycin) protein kinase by rapamycin,
which resulted in TG accumulation in C. reinhardtii and C. merolae [444].

5. Challenges for tomorrow

5.1. Improve CO2 capture and meet the need for food and feed

An increase in agricultural yield of 70% or more is required by 2050
to meet the growing demand of the world population [445,446]. Future
gains face the challenges of shrinking farmland area, an increasingly
unpredictable climate and the environmental imperative to use less
fertilizer and agrochemicals, and will require new breeding strategies.
To meet the strong societal demand for these various products, lipid
production in plants and algae must be ‘optimized’. Most sought-after
phenotypic traits include oleaginous cells and tissues enriched in TGs
(oil) or cells accumulating elevated levels of pigments (e.g. carotenoids,
c-phycocyanin, astaxanthin). It is clear that the ‘optimization’ of these
systems requires a complete understanding of i) their endogenous
biosynthesis and regulation, and ii) their integration within the meta-
bolism as a whole. This will then allow the rational development of the
most appropriate engineering strategies to modify and adapt these or-
ganisms for commercial and societal purposes.

5.2. Uncoupling oil production and growth arrest

Plants and algae modulate and reprogram their metabolism to sur-
vive and proliferate under varying environmental conditions and
nutrient availability. The metabolic plasticity of photosynthetic organ-
isms involves the rearrangement and remodeling of the lipidome, that
can be taken as an advantage when aiming to tune the production of
lipids of interest for target industrial applications. However, the growth
conditions for biomass production are often different than those for oil/
lipid production. Lipidomics studies have provided novel insights into
the dynamic responses of lipid classes and species and metabolic pro-
cesses in terrestrial and aquatic plants, macroalgae, and microalgae
[61,278,401,447–451].

Biosynthesis, accumulation, and restructuring of the lipid content of
photosynthetic organisms are the main adaptive strategies triggered by
exposure to stresses. In fact, one of the most popular strategies for
inducing storage lipid synthesis in microalgal biotechnology is based on
the exposure of microalgal cultures to different types of stress, mainly
nutrient deprivation that has the major impact on blocking cell division
[452]. Therefore, most of the strategies encountered today are done in
two stages with a first phase for biomass production and a second stage
for lipid production [453,454]. To tackle this challenge, modeling
approach using a comprehensive and complementary lipidomic,
genomic and transcriptomic knowledge could be used.

Increasingly available full genome sequences have made genome-
scale metabolic modeling a more and more widely used approach
[455]. This approach enables reconstruction of an explicit model of
whole organism metabolism, based on sequence annotation data, and is
already widely used in plants and algae [456,457]. A critical point in
that respect is ensuring that already described metabolites in a given
species are indeed present in the corresponding genome-scale metabolic
network reconstruction. There are now databases making it possible to
automatically assemble species-specific metabolomes although they are
still in their infancy and biased towards well established genetic model
species [458]. However, thanks to ongoing work on emerging model
species, more datasets will certainly be integrated in the future. How-
ever, it is still challenging to connect data from genome-scale metabolic
networks and from mass spectrometry databases. Even for well-studied
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model species, the overlap is not more than 40% [459]. One of the
reasons is the ambiguities still existing in molecule description in large-
scale datasets. For example, the exact stereochemistry of a given mole-
cule cannot be deduced directly from mass spectrometry data, and the
lack of analytical standards make that many tentatively identified
molecules could also correspond to other molecules with a similar mass-
to-charge ratio. The other reason is that there is no biosynthetic model
for a significant number of metabolites, including biologically important
small molecules. This can be addressed by inferring ab initio new
metabolite structures and new reactions based on genomic and metab-
olomic data [457]. Despite many other remaining challenges in inte-
grating uncertainties [460], those approaches will certainly become
more and more important in the future to identify what reactions are the
bottlenecks for lipid production.

5.3. Plants and algae lipidomics- sensors for climate changes

Exposure to different stresses or adaptation to hostile environments
can affect the lipid content and composition of algae and plants and
causing an alteration of the typical lipid profile [461]. Thus, lipidomics
has been used as a tool for assessing plant and alga adaptation to global
climate changes and abiotically polluted environments.

In fact, the adaptation of plants and algae to unfavorable environ-
ments is indispensable for their growth and metabolic function. For
example, these photosynthetic organisms can change or restructure the
cell lipid composition as a measure of adaptation to abiotic stresses
present in the environment. In this regard, global climate change arising
from the rapid increase of greenhouse gases is provoking planet warm-
ing at unprecedented rates [462]. This global warming combined with
local eutrophication caused by anthropogenic activities are leading
drastic changes in marine ecosystems as species extinctions and
ecosystem collapses [463]. Changes of temperature and nutrient uptake
have been identified as some of the most relevant factors controlling
plants, as well as algae and marine plant biological processes. In this
regard, the global lipidomic map appears as a useful tool to understand
the physiological response of (marine) plant and algal species under
climate changes. Lipids may be used as biomarkers for the abiotic stress
that these photosynthetic organisms must cope with these changes [7].
Besides, study of the plants and algae lipidome may facilitate an inter-
esting approach to how its lipid biomarkers serve to assess their adaptive
response to abiotically contaminated environments [464]. Decoding the
adaptation of lipids to external stressors can be used to select more
resilient species and also the best growth conditions to tune production
of species with high content in lipids with specific properties for target
applications.

To conclude, lipidomics has become an essential method for eluci-
dating how terrestrial and marine plants and algae respond to different
growth and environmental conditions. Insights into lipidome dynamics
offer a deeper understanding of the plasticity of lipid metabolism in
photosynthetic organisms, which is fundamental for their resilience and
growth in a changing environment and biotechnological applications.

6. Concluding remarks

Plants and algae are the primary producers of lipids. These lipids
exhibit a wide range of structural diversity. The lipidome of plants and
algae contains several lipids shared with other biological kingdoms,
such as triacylglycerides, sphingolipids, and phospholipids. On the other
hand, some lipids are predominantly found within the Plantae kingdom,
including glycolipids, betaine lipids, and specific sphingolipids (GIPC)
and phytosterols. These lipids play vital roles in cellular membranes,
organelles, and various biological processes, encompassing structural
support, intercellular communication, lipid bilayer fusion, cytokinesis,
vesicle trafficking, development, defense mechanisms, and responses to
stress. While the functions of some lipids have been extensively studied,
others have been overlooked in terms of their synthesis and roles. A

substantial portion of our knowledge of lipid metabolism has been
derived from plant studies. Nevertheless, an emerging field now focuses
on the understanding of the lipidomics of algae.

The advancement of analytical techniques in the last decades has
enabled the comprehensive characterization of these biomolecules, from
their fundamental constituents, such as fatty acids, to the intricate
structures found in glycerolipids, sterols and sphingolipids, as well as the
corresponding epilipids generated by chemical modifications mediated
by enzymatic or non-enzymatic mechanisms, primarily driven by pro-
cesses like oxidation and nitration, with formation a variety of lipid
oxidation (e.g. oxylipins) and nitrate lipids.

Various analytical methods have been employed for the identifica-
tion and quantification of different lipid categories present in plants and
algae. Mass spectrometry-based approaches have been among the most
commonly used techniques. However, non-contact, non-invasive, or
non-destructive methods, including Raman microscopy and NMR have
also found application in the study of lipids.

The characterization of plant and algal lipidome is highlighting the
traditional expertise on lipids derived from plants and algae, underlining
their significant potential for diverse industrial applications. The lip-
idomes of these organisms stand out for their health-related nutritional
value, primarily due to their high content of essential omega-3 and
omega-6 VLC PUFAs, phytosterols, and fat-soluble vitamins. Lipids iso-
lated from plants and algae have been associated with various bio-
activities, including antioxidant, anti-inflammatory, and antimicrobial
properties, underscoring their pharmaceutical potential. Furthermore,
botanical and algal oils find applications in the cosmetic industry owing
to their advantageous skin-related properties, such as anti-inflammatory
and wound-healing attributes. The high productivity of plants and algae,
along with their ability to sequester CO2, has been proposed as an
alternative to fossil fuels. However, the competition between biofuels
and food resources has led to the exploration of new alternatives. Marine
microalgae have emerged as a promising alternative to fossil fuels since
they do not compete for arable land and freshwater resources.Never-
theless, there are several challenges that need to be addressed in this
regard. These challenges include optimizing lipid production in plants
and algae, which requires a more profound understanding of lipid
metabolism within these organisms and their endogenous regulatory
mechanisms. Additionally, it is essential to explore the metabolic
adaptability of plants and algae under stress conditions and how lipids
can serve as ecological biomarkers to enhance our understanding of
planetary processes.
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[51] Liberati A, Biluš M, Brkić AL, Barić I, Bakula M, Hozic A, et al. Analysis of fatty
acid esters of hydroxyl fatty acid in selected plant food. Plant Foods Hum Nutr
2019;74:1–6. https://doi.org/10.1007/s11130-019-00728-8.

[52] Balas L, Bertrand-Michel J, Viars F, Faugere J, Lefort C, Caspar-Bauguil S, et al.
Regiocontrolled syntheses of FAHFAs and LC-MS/MS differentiation of
regioisomers. Org Biomol Chem 2016;14:9012–20. https://doi.org/10.1039/
C6OB01597B.

[53] Chen Y, Biresaw G, Cermak SC, Isbell TA, Ngo HL, Chen L, et al. Fatty acid
estolides: a review. J Am Oil Chem Soc 2020;97:231–41. https://doi.org/
10.1002/aocs.12323.

[54] Bernard A, Joubès J. Arabidopsis cuticular waxes: advances in synthesis, export
and regulation. Prog Lipid Res 2013;52:110–29. https://doi.org/10.1016/j.
plipres.2012.10.002.

[55] Liebisch G, Fahy E, Aoki J, Dennis EA, Durand T, Ejsing CS, et al. Update on LIPID
MAPS classification, nomenclature, and shorthand notation for MS-derived lipid
structures. J Lipid Res 2020;61:1539–55. https://doi.org/10.1194/jlr.
S120001025.

[56] Kobayashi K. Role of membrane glycerolipids in photosynthesis, thylakoid
biogenesis and chloroplast development. J Plant Res 2016;129:565–80. https://
doi.org/10.1007/s10265-016-0827-y.
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et al. Mechanisms of phosphorus acquisition and lipid class remodeling under P
limitation in a marine microalga. Plant Physiol 2017;175:1543–59. https://doi.
org/10.1104/pp.17.00621.

[449] Schwarz P, Herrfurth C, Steinem C, Feussner I. Lipidomics of Thalassiosira
pseudonana as a function of valve SDV synthesis. J Appl Phycol 2022;34:1471–81.
https://doi.org/10.1007/s10811-022-02715-0.
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