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Normal impact of a ball rotating around its linear velocity
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We report on an experimental study of the normal impact on a solid surface of a table tennis ball that rotates
around its linear velocity vector. We observe that the ratio of the reflected velocity to the incident velocity does
not depend on the initial spin. In contrast, the reflected spin depends not only on the incident spin but also on
the incident velocity. The experimental results, which reveal the tricky role played by the friction in the region
of contact, are accounted for by simple theoretical arguments.
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I. INTRODUCTION

For practical reasons, the impact of solid objects has long
attracted lots of attention. A reliable description of the col-
lision law is mandatory if one needs to accurately describe
systems like granular materials, to only cite one important
field of application [1]. In the same way, the rebound of sport
balls has attracted the attention of a rather large community,
either for educational purposes or practical applications. In-
deed, even if the problem can be tackled with simple tools of
classical mechanics, the results are interesting, in particular
for those who need laws as input in numerical simulations, for
instance.

The first relevant property of the rebound of sports balls
on a surface, field, or racket is the restitution of the normal
linear velocity (the ratio, along the normal to the surface,
of the reflected velocity to the incident velocity) which
accounts for the energy loss during the contact. Under normal
incidence, the determination of the restitution coefficient, for
both full and hollow spheres, has been the subject of several
studies [2–7]. When it comes to the impact with a racket, the
players tend to call their equipment fast or slow, with such
qualifier being directly related to the value of this restitution
coefficient.

The second relevant property of the rebound is the ability
of the ball to gain or lose spin during the collision. Again
many studies have focused on the change in the angular veloc-
ity of the ball during the collision [3–5,8–14]. One important
result for a table tennis ball is that, for an impact with a
solid substrate, the kinematics of the ball only depends on the
restitution coefficient of the normal velocity and on the fric-
tional coefficient which accounts for the contact between the
surfaces [7]. The spin given by the racket will make it suitable
for different playing styles, from offensive to defensive.

In spite of the consequent effort, none of the former studies
considered the case of a ball, spinning around its linear veloc-
ity, impinging in normal incidence on a flat and rigid surface.
Even if the configuration can seem, at first sight, to be very
specific, it is, as a matter of fact, quite general. Indeed, for
a ball impinging in oblique incidence with a random spin,
the component of the angular velocity perpendicular to the

surface is most likely nonzero. It turns out that none of the
existing models can predict how this component of the angular
velocity is altered by the collision.

Imagine thus that a ball impacts normally on a surface with
a spin solely around the impact velocity. One can guess that,
as long as the contact between the surface and the ball remains
punctual, the spin will not be altered as no torque can be
applied. However, it has long been known that the ball flattens
at contact. The ball and the substrate are in contact in a region
of finite size, as can be observed for the quasistatic contact
of a full ball with a solid substrate described by the Hertz
law [15]. The same flattening is observed for hollow spheres
which can even be subjected to a mechanical buckling of the
shell in the contact region if the deformation is large enough
[7,16,17]. Thus, in practice, the contact between the ball and
the surface is not punctual and an applied torque alters the
reflected angular velocity of the ball. We shall thus report on
measurements of the change in the angular velocity produced
by the collision between a table-tennis ball and a flat surface.
In addition, we analyze the problem theoretically.

II. THEORETICAL EXPECTATIONS

When the ball enters into contact with the flat (considered
rigid) surface, the ball shell deforms. It flattens in the con-
tact region prior to being eventually subjected to a buckling
instability if the impact velocity is large enough [7]. As a
consequence, due to the spin of the ball, friction is at play
in a finite size region, not limited to a single contact point. Let
us assume that the frictional force F is applied at a distance r
of the center of the contact region.

Taking the normal to the surface oriented along the z axis,
the total variation of the angular velocity ωz during the re-
bound can be written as

J �ωz =
∫ τ

0
r(t ) F (t ) dt, (1)

where J = 2
3 m R2 is the moment of inertia of the hollow ball

(of mass m and radius R) and τ the duration of the collision.
In order to obtain an estimate of the variation �ωz of the
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angular velocity ωz during the rebound, one must explicate
the evolutions of r(t ) and F (t ) through time t .

Under the assumption that Coulomb’s law of friction ap-
plies, the friction force F is proportional to the normal force
FN which results from the deformation of the ball during
the contact with the surface. At all times, F (t ) = μ FN(t ),
where μ denotes the frictional coefficient. In addition, during
the collision, the normal force FN(t ), and thus the friction
force F (t ), increases from 0 when the ball enters in contact
with the surface, reaches its maximum value when the defor-
mation is maximum and then returns to 0 when the ball leaves
the surface.

Note that the radius r(t ) at which the force F (t ) is effec-
tively applied is also intrinsically linked to the deformation of
the ball shell and thus follows a similar temporal evolution.
For instance, for the Hertz contact [15], the radius a(t ) of
the contact area scales like F 1/3

N (t ). Here, assuming for the
sake of simplicity that the normal force is homogeneously
distributed over the surface of contact, we get r(t ) = 2

3 a(t )

and, thus, r(t ) ∝ F 1/3
N (t ). It is worth noting that the latter

relation does not apply, especially when the ball shell is sub-
jected to the buckling instability [7]. However, the general
feature that both r(t ) and F (t ) simultaneously increase and
then decrease during the collision still holds. For convenience,
we thus rewrite Eq. (1) in the form J �ωz = r F τ , where F
denotes an estimate of the magnitude of the frictional force
and r an estimate of the radius at which it is applied on average
over the duration of the collision.

Without considering the detailed dynamics of the rebound,
one can estimate the frictional force by considering the normal
force FN which leads to the change of the normal velocity from
its incident value vz,i to its reflected value vz,r . On average
over time, the normal force can be estimated as follows:

F N = m (1 + εz) vz,i

τ
, (2)

where εz denotes the restitution coefficient of the normal lin-
ear velocity, such that vz,r = −εz vz,i. As F = μ F N, we get

J �ωz = −μ r (1 + εz) m vz,i. (3)

From Eq. (3), we expect the variation �ωz to be pro-
portional to the impact velocity vz,i and independent of the
incident angular velocity ωz,i. We designed an experimen-
tal setup (Sec. III) in order to probe the latter theoretical
hypothesis.

III. EXPERIMENTAL PRINCIPLE AND SETUP

The experiment is designed to assess the incident and re-
flected linear and angular velocities of a table tennis ball right
before and after the rebound on a flat and horizontal rigid
surface.

The first key element of the experimental setup depicted
in Fig. 1 is a launcher that makes it possible to control both
the initial velocity vz,i along the vertical (z axis) and the
initial angular velocity ωz,i around it. The ball (CornilleauTM,
P-ball 3 stars, 4 cm in diameter, mass 2.7 g, ABS plas-
tic) is launched downwards using a striker consisting of a
vertical metal rod driven by a spring. The system is ini-
tially armed by compressing the spring. The striker rod is

FIG. 1. Sketch of the experimental setup.

free to pass through the tubular axis of a DC motor (XD-
3420, permanent magnet, 12 V). The ball is placed in a
holder underneath which is attached to the motor axis. A
DC power supply drives the motor permitting to prescribe
the initial angular velocity ωz,i up to about 300 rad s−1. The
striker is subsequently released. Finally, the ball reaches
the solid surface (a horizontal glass window) with the ver-
tical incident velocity vz,i, which typically ranges from
1 m s−1 to 13 m s−1 depending on the initial compression of
the spring.

The rebound of the ball is observed at 2996 fps with a fast
camera (Kron Technologies, Chronos 2.1-HD, monochrome).
Note that, in order to measure the angular velocity ωz,i, the
ball joint (where the two half spheres are soldered) is assimi-
lated to the equator and is marked with dashes (Fig. 2). Special
attention is paid to initially orient the equator in the hori-
zontal plane, thus favoring the angular velocity determination
(which is achieved by measuring the horizontal velocity of
the dashes) and preventing the impact from occurring within
the vicinity of the joint where the local shell thickness is
significantly greater. In addition, the use of the transparent
glass plate makes it possible to observe the contact region,
which will prove to be useful in what follows. The ball sur-
face, in the contact region, is observed at 45 deg using the
same camera at 19783 fps. For practical reasons, we use a
mirror angled at 22.5 deg with respect to the vertical. The
system and companion image processing protocol described
in details in Ref. [7] are used here to assess the maximum
radius rm of the contact region between the ball and the
substrate.

For each test, we determine the relevant characteristics of
the rebound from the recorded images. In particular, since the
acceleration due to gravity �g cannot be neglected, the vertical
position z(t ) of the ball is measured as a function of time
t right before and after the rebound on the glass plate. The
time at contact, tc, is given by the intersection of the two
trajectories. The vertical velocities right before, vz,i, and right
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FIG. 2. Image sequence: superimposition of images of the ball
after the contact. For visibility only one image out of four is dis-
played. Blue dashes (left) correspond to the position of one dash
at the equator (one out of two positions determined experimentally.
Red dashes (right) correspond to the same dash before the contact
whereas the yellow dash (bottom center) corresponds to the contact
(vz,i = 12 m s−1, ωz,i = 207 rad s−1, 2996 fps).

after the rebound, vz,r, are estimated from the extrapolation
of the trajectories at time tc. The angular velocities before,
ωz,i, and after ωz,r the rebound are not altered by the gravity
and no significant effect of the air drag is observed over the
duration (a few tens of milliseconds) of the image sequences
we analyzed (Fig. 2). Values are thus averaged along the
trajectories before and after the contact with the glass plate
over the entire image sequence.

In the following, we focus on the variation of the angular
velocity �ωz ≡ ωz,r − ωz,i as a function of the incident linear,
vz,i, and angular, ωz,i, velocities. However, we also determine
the restitution coefficient of the linear velocity, εz ≡ − vz,r

vz,i
.

IV. EXPERIMENTAL RESULTS

We first report in Fig. 3 the restitution coefficient εz

of the normal velocity vz for various incident impact
velocities vz,i and angular velocities ωz,i. Considering

FIG. 3. Restitution coefficient εz vs incident velocity vz,i. With-
out initial spin (gray disks), we observe two regimes: for impact
velocities typically smaller than 7 m s−1, εz only slightly decreases
when vz,i is increased; a sudden decrease of εz, associated with the
buckling of the ball shell, is observed for vz,i of about 7 m s−1. By
contrast, for a ball that initially spins (colored symbols), εz does not
significantly depend on the angular velocity ωz,i and a monotonic
decrease of εz is observed when vz,i is increased [For the sake of
clarity, gray (no spin) and black (spin) lines are drawn as guides
for the eye, and error bars are indicated on a limited number of
points].

the ball without initial spin (ωz,i = 0 rad s−1), we recover
the results previously obtained as discussed in Ref. [7].
More precisely, the dependence of εz on vz,i reveals two
regimes: for limited impact velocities, vz,i typically smaller
than 7 m s−1, εz only slightly decreases when vz,i increases.
For larger impact velocities, a significant decrease of εz is
observed. This behavior is accounted for by the fact that the
ball shell is subjected to a buckling instability which leads
to enhanced dissipation due to the friction between the two
surfaces in contact [7]. When considering now the case of a
ball that initially spins, we again observe that εz decreases
when the impact velocity vz,i is increased. However, εz does
not significantly depend on the initial angular velocity ωz,i (in
the experimental range ωz,i ∈ [101, 318] rad s−1). In addition,
we remark that εz is systematically smaller for a spinning ball
than for a ball in pure translation for vz,i typically smaller than
7 m s−1 and that the buckling instability is no longer marked
by any change in regime. With this new configuration of an
impinging ball spinning along its velocity axis, and unlike the
case where the incident ball has no spin, friction cannot be
neglected prior to buckling, and the restitution coefficient εz

decreases continuously, without any change in regime, when
the incident velocity is increased.

In Fig. 4, we report the variation of the angular velocity
�ωz as a function of the incident velocity vz,i for various
values of the initial angular velocity ωz,i. As expected, we
observe that �ωz decreases when the impact velocity is in-
creased. However, the variation �ωz does depend on the
initial angular velocity ωz,i, contrary to what is naively ex-
pected from our preliminary theoretical arguments presented

015002-3



THÉOPHILE RÉMOND et al. PHYSICAL REVIEW E 110, 015002 (2024)

FIG. 4. Variation �ωz of the angular velocity vs incident velocity
vz,i. The variation �ωz evolves more than linearly with the impact
velocity vz,i and does depend on the angular velocity ωz,i. The dot-
ted line corresponds to the limit ωz,i → ∞ (Symbols: experimental
data. Lines: Eq. (6) with m = 2.7g, εz = 0.8, μ = 0.22, τ = 0.6 ms,
a � 0.74, and b � 0.085).

in Sec. II. This observation is the key result of the present
study.

V. DISCUSSION

A physical ingredient is clearly missing in Sec. II for the
model to account for the dependence of �ωz on the initial
spin ωz,i, dependence which does not appear in Eq. (3).

We already mentioned that the ball shell deforms through-
out the contact. It is thus interesting to consider the
displacement of the ball shell with respect to the solid flat
surface. The problem is complex as the ball deformation
can result in a buckling instability. However, the effect of
the initial flattening of the shell, previous to an eventual
buckling, can still be studied. The ball shell flattens in the
contact region leading to a compression of the shell in
the contact plane. The initially spherical shell (of radius
R = 2 cm) becomes a flat disk in a region of radius rm, typi-
cally. Considering the change in the surface area, we estimate
that the average local strain εrr is of the order of εrr ∼ 1

8 ( rm

R )2.
Thus a point of the shell at a distance r from the center of
the contact region is displaced by a distance of the order
of r εrr with respect to the flat surface. At the distance r
this induces a radial displacement r εrr during the time τ/2.
Consequently the relative radial velocity vr of the two solid
surfaces in regard equals 2 r εrr/τ , which was previously
neglected.

In order to estimate vr , let us first report on the maximum
external radius of the contact region rm as a function of the
incident velocity vz,i (Fig. 5). Within the experimental con-
ditions explored, the typical radius is of about 5 mm. Thus,
assuming that r is of the order of rm and taking into account
the typical duration of the contact between the ball and the
glass substrate, τ = 0.6 ms [7], we get that vr is of the order
of 0.1 m s−1. The latter value must be compared to the typical
orthoradial velocity vo, due to the angular velocity ωz at the

FIG. 5. Maximum external radius rm of the contact region vs
incident velocity vz,i. The increase in the maximum radius of the
contact region as a function of the incident velocity is well accounted
for by a power law (Symbols: experimental data. Line: interpolation
by a power law).

distance r of the center of the contact region. Assuming again
that r is of the order of rm, one gets vo ∼ rm ωz ∼ 1 m s−1

for ωz ∼ 200 rad s−1, an intermediate value of the angular
velocity. As a conclusion, the radial velocity vr is a fraction
of the orthoradial velocity vo and this component cannot be
neglected.

As a consequence of the combination of the two velocity
components, namely the radial, vr , and orthoradial, vo, ve-
locities, the resulting friction force μ FN , which applies at a
distance r from the center of the contact zone, is no longer
purely orthoradial but makes the angle α with the orthoradial
direction (Fig. 6) :

cos α = vo√
v2

r + v2
o

. (4)

The angle α depends on time t and we are unable to assess
experimentally the radial velocity vr . However, in order to
prove that the proposed physical ingredients are correct, we
can estimate the variation of the angular velocity by writing

J �ωz = r cos α μ FN τ, (5)

where estimates of r, α, and the normal force FN on average
over the contact time τ are used. Note that in the case of
α = 0 we come back to the previous simplified case depicted
by Eq. (3). As in Sec. II, we take FN τ � (1 + εz) m vz,i

[Eq. (2)]. We suggest that the typical radius at which the
friction force is applied is a fraction a of maximum radius rm,
i.e., r = a rm, that the typical orthoradial velocity vo = r ωz,i,
and, finally, that the typical radial velocity of the shell material
in contact with the substrate is a fraction b of rm/τ , i.e.,
vr = b rm/τ . With these estimates, and the resulting estimate
of cos(α), we get

J �ωz � −a μ [(1 + εz)m vz,i] rm τ ωz,i√
b2 + (τ ωz,i )2

. (6)

Qualitatively Eq. (6) accounts for a larger variation of
the angular velocity when both the impact velocity and the
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FIG. 6. Top view of the contact region. Due to the rapid variation
of the contact region radius from 0 to rm, back and forth during the
time τ , the friction force μ FN is not orthoradial but rather makes a
finite angle α with the orthoradial direction. The torque reducing the
ball angular velocity is thus smaller than expected in the absence of
radial sliding.

angular velocity are increased. This equation is in a good
agreement with the experimental results reported in Fig. 4.
For a given incident velocity vz,i, the maximum variation �ωz

is reached in the limit ωz,i → ∞ (dashed line in Fig. 4), when
the radial velocity vr is small compared to the orthoradial ve-
locity vo (α → 0 in Fig. 6). Within the experimental range of
angular velocity, this limit is never reached but is approached
when ωz,i is increased.

Quantitatively, the interpolation of the experimental data
reported in Fig. 5 gives rm � 1.2 10−3 v

3/4
z,i m, which leads

to �ωz ∝ v
7/4
z,i , typically. Having in mind that a denotes the

fraction of the maximum radius rm at which the friction force
is applied (r = a rm), and b the fraction of the velocity rm/τ

which accounts for the radial velocity vr (vr = b rm/τ ), we
expect a to be of the order of a few tenths whereas b must
be much smaller. In order to go further, we note that the
restitution coefficient of the normal velocity only slowly de-
pends on the impact velocity and is independent of the initial
spin (Fig. 3). With the value εz = 0.8 at intermediate incident
velocity, μ = 0.22 and τ = 0.6 ms [7,18], the best agreement
of Eq. (6) with the experimental data is obtained for a � 0.74
and b � 0.085 (solid lines in Fig. 4).

On the one hand, a accounts for the effective radius at
which the maximum friction force FN is applied. For the
sake for simplicity, let us neglect the radial velocity vr (i.e.,
α = 0) and assume that εz = 1. Assuming further that both
the radius r and the force evolve sinusoidally in time, thus
writing r(t ) = rm sin(�t ) and F (t ) = μ m � vz,i sin(�t ), we
integrate the dynamical equation Eq. (1) and get a = π

4 �
0.78, which is in rather good agreement with the experimental
value a � 0.74. On the other hand, if the radial displacement
due to the flattening of the ball shell is accounted for, we

expect vr = b rm/τ = 2 r εrr/τ . For the intermediate value
rm = 5 mm, we estimate that εrr ∼ 8 × 10−3 and thus that
b ∼ 0.012 smaller than but of the same order of magnitude
as the experimental value b � 0.085 in this case. However
this estimate must be considered with care as it is obtained
by considering a simple flattening of the shell in the contact
region, excluding the deformation of the entire ball as well as
its possible buckling.

All in all, the proposed model seems to contain the essen-
tial physical ingredients that explain the dependence of the
variation of the angular velocity on both the incident velocity
and spin.

VI. CONCLUSION

The rebound of a table-tennis ball, spinning around its
linear velocity vector, colliding in normal incidence with a
flat and rigid surface, is of peculiar interest because this is
one specific situation in which the various components of
the velocity are necessarily coupled in a nonlinear manner.
Indeed, the change in the angular velocity around the nor-
mal to the surface depends not only on the impact velocity
but also on the associated spatial extension of the contact
region.

The present experimental study reveals the complexity of
the problem. Indeed, even if part of the nonlinearity arises
from the dependence of the size of the contact region on the
impact velocity, the effect on the orientation of the frictional
force was not expected. The simple theoretical analysis that
complements the study, together with the former studies in
[7–9,19,20], now provides a complete theoretical description
of the laws governing the rebound of a table-tennis ball, and
more generally of sport balls, on a solid substrate. Indeed, it
has been previously observed that the restitution coefficient
of the normal velocity is mostly independent of the incidence
angle, in spite of a small dependence on the normal velocity
itself [7]. The oblique impact is well understood which leads
to relations between the in-plane linear and angular velocities
before and after the collision [8–10,18]. The present work
gives an estimate of the angular velocity around the normal to
the surface, which was the last element missing to provide all
the spin and velocity components after rebound. Now, for any
rotation, velocity, and angle of incidence, we can decompose
spin and velocity into their components normal and parallel to
the surface and, with friction properly taken into account, we
can propose a general law of rebound [18].

The full description of the rebound applies to the ball
impinging on the table, assumed rigid. A natural extension of
the study will be to analyze the rebound on a deformable poly-
meric surface such as the coating of the table-tennis paddle. It
has been attempted under normal incidence with no spin [21]
and under oblique incidence with spin parallel to the surface
[22], using numerical simulations, yet evidencing the need for
a more general framework.
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