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A B S T R A C T
The umbilical of Remote Operated Vehicle (ROV) has two main problems: it is subject to entan-
glement with obstacles or itself, and its shape is difficult to predict for navigation. To address these
issues, this article proposes a passive self-management of an ROV’s umbilical by adding one or two
elements, like ballasts, buoys, or an oriented thruster, to stretch it and gives it a predictable shape.
These elements can be fixed or move freely on the umbilical. In opposite with [36, 37], we propose a
general model which can estimate the shape of the umbilical in three-dimensions regardless of the
orientation of the force applied to the elements, allowing to consider the presence of underwater
currents, passive or motorized elements on the tether, and the presence or absence of TMS. Several
examples of umbilical configurations are proposed, each one adapted for ROV exploration in various
environments, including near-surface, seafloor, near-wall, and dive between obstacles. The model is
compared with results proposed in other works like [36, 37]. The limits of the method are discussed.

Part I

Introduction, state-of-art,
contribution
1. Introduction

Underwater umbilicals serve to connect an underwater
Remotely Operated Vehicle (ROV) to a control unit or
Human-Machine Interface typically situated on a boat.
This umbilical, or tether, serves three primary functions:
enable real-time bidirectional data transmission, supplying
energy to the ROV, and preventing the loss of the robot
during exploration [27]. Real-time bidirectional transmis-
sion enables operators to receive video feedback, control
inputs, and instrument measurements instantaneously (see
[6, 33]). The energy delivered by the cable makes the ROV
particularly advantageous for maintenance operations and
underwater worksites compared to autonomous underwater
vehicles (AUVs): AUVs’ battery capacities are insufficient
for prolonged usage of large tools, necessitating the use of
ROVs for energy-intensive tasks. ROVs find applications
in offshore exploration [42], monitoring fishing reserves
[40], underwater archaeology [23], pipeline inspection [32],
marine growth removal [30], and more. The umbilical is
also used for Remotely Operated Towed Vehicle (ROTV),
where its importance surpasses that for ROVs because it
provides its propulsion underwater [13, 29]. The tether
provides to the ROTVs distinct advantages over both ROVs
and AUVs for large area exploration, research and data
collection: as they are not self-propelled like ROVs and
AUVs, ROTV can cover a larger area faster [21]. However,
umbilicals have drawbacks such as collision risks, impact
on ROV maneuverability due to umbilical inertia and drag
forces, entanglement, and cable breakage. In the case of
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ROTV, the controller must carefully take into account the
shape of the umbilical to safely maneuver the ROTV away
from obstacles and prevent damage. Designing the umbilical
involves balancing the constraints of the umbilical, battery
power, and real-time feedback for optimal ROV performance
[7].

Understanding the shape of the umbilical holds two
main advantages. Firstly, designing the umbilical’s param-
eters before diving helps avoid weight-related issues and
reduces the risk of entanglement by using a cable that is
appropriately sized. Secondly, real-time knowledge of the
umbilical shape during the dive enables operators to prevent
self-entanglement or collisions with known obstacles in a
mapped environment or detected by sensors such as sonar
or vision systems. In the literature, umbilicals have been
modelled and instrumented to provide feedback on their
position and shape. Two main categories of methods exist:
detection/feedback of the umbilical shape using for example
vision [25, 24, 26] and/or sensors placed directly on or in
the umbilical [16, 10], or direct modelling of the umbilical
using boat and ROV positions [18, 17, 19, 12, 37, 5],
sometimes accounting for sea current information. While
the first category offers accurate real-time shape estima-
tion, it often requires expensive umbilical equipment and
complex sensor setups, making modeling methods more
appealing for cost-effective obstacle avoidance. In opposite,
this second category of methods have the advantage of being
implementable for all kinds of umbilicals, but are often less
accurate and cannot always provide results in real-time.

Various methods are available for modeling the cable’s
shape and dynamics. These range from simple geometrical
models like the catenary curve [34, 8, 9] to segment-based
models with geometrical constraints [18, 17]. Geometrical
models can simulate a large number of segments in real-time
and are memory-efficient when precise physical modeling is
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not necessary. For cases requiring accurate cable dynamics,
the Lumped-mass-spring method [4, 19, 20] and the segmen-
tal method are commonly used [11, 12, 2, 5]. The former
represents the umbilical as mass points interconnected by
massless elastic elements, while the latter treats the cable
as a continuous system and solves the resulting partial
differential equations numerically.

The umbilical can also be equipped. A Tether Manage-
ment System (TMS) [1] is a subsea winch controlled by a
human operator and attached to the ROV cage. The TMS
helps regulate the length of the tether cable to maintain
the umbilical taut. However, this system adds weight to
the cable and can be operationally complex. Some research
explores automation or alternative solutions, such as using
an Unmanned Surface Vehicle (USV) [35, 22], a secondary
ROV [26], multiple ROVs, or a motorized plug/float as-
sembly [3]. In [9, 8], an estimation of the catenary tether
shape connecting a pair of underwater robots is performed
using data acquired from inertial measurement units (IMUs)
attached to the cable near its ends. To provide a fast time
computational model of the cable, the main author [37, 36]
has proposed to equip the umbilical with ballasts or buoys
moving freely on the cable, allowing it to be stretched and
given a predictable shape. The umbilical can therefore be
assimilated to predictable straight lines, simple to model and
compute calculate in real time. Nonetheless, these systems
still rely on knowledge of various ROV parameters, such as
its position.

This paper proposes proposes a passive self-management
of an ROV’s umbilical by adding one or two elements,
like ballasts, buoys or an oriented thruster, to stretch it and
gives it a predictable shape. These elements can be fixed or
move freely on the umbilical, restrained to a specific part
of the cable with stops to prevent the elements from staying
constantly in contact. In opposite with our previous work
[36, 37], a general model is proposed which can estimate the
shape of the umbilical in three-dimension regardless of the
orientation of the force applied to the elements. This model
allows also to consider presence of underwater currents,
passive or motorized elements on the tether, and presence
or not of TMS.

The main contributions are
• a self-management of the umbilical to stretch it and

so avoid self-entanglement. This one can be pas-
sive using only sliding ballasts and buoys using only
weight and Archimedes force, or active using motor-
ized thruster or TMS;

• a method simple to add to existing ROVs with a light
and simple setup;

• a general model of the umbilical in three-dimensions
which can consider the presence of underwater cur-
rents or external forces, helping the operator to prevent
collisions with environmental obstacles.

The umbilical is modeled using geometrical relations and the
Fundamental Principle of Static (FPS). Depending on the
umbilical configurations, the resolution will be performed
analytically or numerically. Numerical performance are
discussed

The paper is divided in five parts. Part I introduces the
problem in Section 1 and the related work in Section 2.

Part II groups the umbilical model, the assumptions
taken, definitions and properties of the umbilical and ele-
ments studied. The problematic and assumptions considered
are described in Section 3. The geometrical model of the
umbilical is presented in Section 4. The dynamics of the
system are studied in Section 4.2.

To solve the geometric and dynamics model, different
configurations of the umbilical can be observed depend-
ing of the position of the moving elements on the cable.
These different configurations and their particularities are
described in Part III.

Part IV presents theorems allowing to solve the system
in function of the current configuration of the umbilical.

Part V discusses of the numerical resolution of the prob-
lem, proposes possible umbilical configuration/equipment
adapted for specific missions, discuss of the limits of the
model based on simulation and experimentation. Section 11
concludes the work.

2. Related work
2.1. Cable modeling

Various methods are available for modeling the shape
and dynamics of cables. The simplest model is the catenary
curve [34], which describes a non-neutral, non-rigid flexi-
ble cable in water. However, for longer or heavier cables,
additional parameters such as bending stiffness need to be
considered. In other methods like [18, 17], neutrally buoyant
cables are assumed, allowing the gravity and buoyancy
forces to be ignored. These methods involve modeling the
umbilical as a chain of segments with geometric constraints
to account for its stiffness. While these geometric models
may not be physically accurate or consider cable dynamics,
they offer fast calculations and are memory efficient.

In [37, 36] the umbilical is equipped with ballasts or
buoys moving freely on the cable giving it a predictable
shape. The umbilical can therefore be assimilated to pre-
dictable straight lines, simple to model and compute calcu-
late in real time. Dynamic effects are approximated by the
assumption of quasi-static equilibrium. The method however
stills rely on knowledge of parameters like ROV’s position
and forces applied on the sliding elements, and considers
only a 2 dimensional case without horizontal underwater
current. Moreover, the model cannot also handle cables
longer than 50 meters or complex dynamics movements.

For a dynamic and physically accurate cable model, two
main types of methods exist as discussed in [2]: the lumped-
mass-spring method[4, 19, 20] and the segmental method
[11, 12]. The lumped-mass-spring method represents the
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umbilical as mass points connected by massless elastic el-
ements. On the other hand, the segmental method treats the
cable as a continuous system and numerically solves the
resulting partial differential equations. These two methods
primarily focus on cable dynamics in simplified environ-
ments, considering forces such as gravity, buoyancy, hydro-
dynamic drag, environmental inertial force, axial tension,
twisting force, and bending force. However, they generally
require substantial computing resources. In [12], a three-
dimensional ROV-cable model is presented, utilizing the
Euler-Bernoulli beam theory modified to allow for cable
compression. Building on the beam equation, [5] derives
a realistic 3D model of tether dynamics and approximates
it via the Finite Element Method (FEM), which can be
executed in real time. The method is however only tested in
simulation. [13] studies a fossen model of a ROTV and an
umbilical cable modeled by a lumped mass-spring approach,
validated against real test data. Results shows that by ac-
counting for the uncertainties of hydrodynamic parameters
and unknown underwater environment disturbances, these
simple models can estimate the real ROTV steady-state
operation which can be simulated close to real-time. The
study is however performed for short umbilical (4 meters),
with computation time linearly increasing with the number
of nodes.

Cable modeling is also study for fishing gear, complex
mechanical structures mainly composed of netting and ca-
bles. The aim is to design efficient, eco-friendly gear with
enhanced catch and reduced environmental impact. [19]
presents several cable models for real-time simulation of
maneuvers with submerged cables and fishing gear. Using
linear-spring and multibody cable models comprised to a
few thousand variables, real-time simulations of let-out and
reel-in manoeuvres with submerged cables can be obtained.
Simulations with other rigid body elements and assemblies
like doors, anchors, and selective devices are possibles.
A parallel implementations is necessary to obtain a fast
computation.
2.2. Cable instrumentation

The umbilical can be equipped and instrumented to
provide feedback on its position and shape. In the literature,
two main categories of methods are discussed: vision-based
detection of the umbilical [25, 24, 26], and the use of sensors
embedded directly in the umbilical [16, 10]. These methods
offer accurate real-time modeling but require specific, ex-
pensive, and complex equipment.

In [16], the "Smart Tether" method is introduced, which
uses IMU sensor nodes embedded in the umbilical to provide
real-time information about its shape and motion. However,
this method is costly and introduces irregularities along the
cable, making winding problematic. In [10], optic fibers are
braided within the umbilical and use interferometry proper-
ties to monitor the cable’s 3D curve in real time. Again, this
solution is expensive (around 200,000 euros for 50m length).

For shallow-water exploration, [9, 8, 26] proposes an
estimation of the shape of a catenary for a negatively buoyant

cable, connecting a pair of underwater robots. First estimated
using camera-based detection and tracking of a constant
distance between the ROVs in [26, 25, 24], the method is
then in [9, 8] based on the calculation of local tangents
thanks to the data acquired from inertial measurement units
(IMUs), attached to the cable near its ends. Unlike [25],
the identification of the cable shape is not affected by the
limits of the camera’s field of view and image projection.
Combining it with the study in [37], an improvement is
proposed in [38] by equipping the umbilical with moving
ballasts and buoys to give it a predictable shape with straight
lines, in opposite with the catenary curve trickier to estimate.

Additional components such as TMS, ballasts, buoys,
or intermediate cables can be used as dampers to mitigate
undesired forces on the ROV caused by waves, underwater
currents, or the weight of the umbilical. For deep and ultra-
deep-water operations, [28] proposes alternative configura-
tions to minimize umbilical tension and the risk of snapping,
such as installing a series of floaters along the umbilical.
However, floaters increase the ROV’s offset and sensitivity
to currents. The TMS is a common equipment choice, acting
as an underwater winch attached to the ROV’s cage to
regulate the tether length and maintain tension. Indeed,
tether length has an impact on the ROV navigation due to
the inertia and drag forces applied on it. In [31], a dynamics
model is developed to simulate the dynamics of variable
length tether and investigate a dynamic positioning system
for a tethered underwater vehicle. The cable is equipped with
floats to relieve some of the cable’s weight. Coupled with a
winch PD controller to vary the umbilical length, it offers a
significant reduction in the tether induced disturbance force
on the vehicle. However, TMS is not suitable for umbilicals
equipped with a large number of buoys or ballasts that
interfere with the cable winding. Note that when placed
underwater, TMS can also serves as a ballast to reduce ROV
offset due to underwater currents and waves.

Due to the complexity of TMS operation, efforts have
been made to automate or replace it with other vehicles
such as USVs or secondary ROVs [26, 3, 35]. In [3], a
motorized plug/float assembly moves along the umbilical to
adjust its buoyancy, even allowing it to temporarily behave
like an AUV. The cable length is regulated by a winch on
the boat. While this system offers flexibility, it is large,
expensive, and not suitable for all ROV applications. In
[35, 22], an integrated system consisting of a USV with an
embedded winch, an umbilical, and an ROV is proposed
to provide various cable management options. The distance
between the USV and the ROV can be adjusted to control
the tension in the umbilical and avoid collisions with un-
derwater obstacles. A segmental method-based mechanical
behavior model is proposed in the study. In [37, 36], the
addition of ballast and a buoy or two buoys moving freely
on the umbilical prevents self-entanglement of the cable by
stretching it without motorization, and gives it a predictable
shape. Different shape of umbilical obtained with ballasts

First Author et al.: Preprint submitted to Elsevier Page 3 of 20



Self-Management of ROV Umbilical using sliding element: a general 3D-model

and buoys, allowing to explore close to the surface, seafloor
exploration, or dive easily in a cluttered environment.
2.3. Umbilical impact on ROV mission

Depending on the size of the ROV and its mission, the
tether can have different impacts and constraints. If the tether
serves as a power supply or lifeline, its size is typically
proportional to the ROV’s dimensions. Larger ROVs often
necessitate thicker tethers to meet higher power require-
ments or support their weight during ascent without risking
breakage. For ROTVs, the cable must withstand the force
exerted by water and currents when pulled by the boat. These
cables are often wide, rigid, and heavy. On the other hand,
if the tether is primarily used for communication, a smaller
one may suffice. Smaller ROVs can benefit from lighter
and more flexible tethers, enhancing maneuverability during
exploration.

The density of the cable also affects ROV control. Neu-
tral cables or those with minimal buoyancy/weight impose
less strain on the ROV, but they are prone to tangling. Poorly
managed cables can also become entangled with cables
from other ROVs when they work in close proximity. Float-
ing/diving cables facilitate exploration at seabed/sea surface,
as they naturally move away from areas with obstacles, but
they create tension at the rear of the ROV, requiring it to
be strong enough to counteract this force. Similarly, the
longer the cable, the greater the risk of it being caught up
in marine currents, thereby adding extra constraints to the
ROV. TMS are employed to minimize the cable’s length to
the necessary minimum, mitigating its exposure to currents.
These systems can be positioned either upstream of the cable
or behind the ROV. When positioned behind the ROV, the
cable is usually laid on the seabed to prevent it from being
carried away by the current (e.g., for karstic exploration).
Nonetheless, managing the cable length for deployment or
retraction isn’t always simple, so leaving a surplus of cable
provides flexibility for the ROV.

Part II

Umbilical model,
assumption, properties
3. Problematic and assumption
3.1. Notation

Consider the indirect referential  where the vertical
axis is oriented to the ground such that 𝑦 = 0 corresponds
to the sea level and 𝑦1 > 𝑦2 means that 𝑦1 is deeper
than 𝑦2. The umbilical is attached between 𝑂 = (0, 0, 0)
and 𝑅 = (𝑥, 𝑦, 𝑧), the boat’s and ROV’s coordinates. Let
define 𝑒𝑥 =

[

1 0 0
]𝑇 , 𝑒𝑦 =

[

0 1 0
]𝑇 and 𝑒𝑧 =

[

0 0 1
]𝑇 . Let 𝑎.𝑏⃗ be the scalar product of two vector

𝑎 ∈ ℝ3 and 𝑏⃗ ∈ ℝ3. For the two arguments (𝑥, 𝑦), the

function atan2 is defined as 𝜙 = atan2 (𝑦, 𝑥) = Arg (𝑥 + 𝑖𝑦)
with −𝜋 < atan2 (𝑦, 𝑥) ≤ 𝜋.

For a variable 𝑎, let note 𝑎𝑏
the variable in a ref-

erential 𝑏. In order to lighten notations, the notations
𝑣𝑏

=
[

𝑎𝑏
𝑏𝑏

𝑐𝑏

]𝑇 and 𝑣𝑏
=
[

𝑎 𝑏 𝑐
]𝑇
𝑏

are
equivalent. By default and unless otherwise specified in the
current section, parameters are expressed in  (𝑥 is noted
𝑥). Let note𝑀𝑥 (𝜃),𝑀𝑦 (𝜃) and𝑀𝑧 (𝜃) the rotation matrices
of angle 𝜃 respectively around axis 𝑥⃗, 𝑦 and 𝑧.

For two lists 𝐿1 = {𝑎, 𝑏} and 𝐿2 = {𝑐, 𝑑}, 𝐿1 ∪ 𝐿2 =
{𝑎, 𝑏, 𝑐, 𝑑} is the union of the lists and 𝐿3 =

{

𝐿1, 𝐿2
}

=
{{𝑎, 𝑏} , {𝑐, 𝑑}} is a list of lists.
3.2. Problematic

In the absence of tension, a cable can move freely and
take an irregular shape. To prevent it from becoming en-
tangled with itself or its environment, a common technique
for shallow dives is to suspend a ballast at a fixed length on
the umbilical, stretching the portion between the boat and
the ballast. However, the part between the ballast and the
ROV remains loose, especially when the ROV is close to
the boat, where it takes the shape of a bell. In order to keep
the umbilical taut independently of the robot position, we
propose to equip the umbilical with other elements to stretch
it and give it a geometrical shape that is simple to model and
predict. In opposite with [36, 37], the model proposed here
considers three-dimensional case and a general orientation
of the forces applied on the umbilical.

Additional elements attached to the cable (ex: ballast,
buoy) can be defined as “fixed” or “sliding”. A fixed element
can usually only stretch one part of it, both in particular
configuration. A sliding element however finds its position
at its minimum potential energy where it stretches both
parts of the cable simultaneously (corresponding to the
lowest/highest position possible in case of ballast/buoy).
Sliding elements can be obtained using for example pulley,
as illustrated in Figure 1 and used in [36, 37].

In this study, the Definition 1 defines the term "element"
such that it takes into account both horizontal and vertical
forces, making it possible to take into account the presence
of underwater currents in addition to the forces exerted by
the ballast/buoy, or to propose a motorized element pushing
in a customized direction.
Definition 1. An element 𝑖 on the umbilical is defined by a
vector 𝐹𝑖 expressed as

𝐹𝑖 =
⎡

⎢

⎢

⎣

cos
(

𝜙𝑖
)

cos
(

𝜓𝐹 𝑖
)

sin
(

𝜙𝑖
)

cos
(

𝜓𝐹 𝑖
)

sin
(

𝜓𝐹 𝑖
)

⎤

⎥

⎥

⎦

𝐹𝑖 (1)

where 𝐹𝑖 is the norm of the force applied on the cable, 𝜓𝐹 𝑖
is the orientation in the plan 𝑂𝑥⃗𝑦 and 𝜙𝑖 ∈

[

−𝜋
2 ,

𝜋
2

]

is the
angle of elevation from the plan 𝑂𝑥⃗𝑦. Let’s also define the
notation 𝐹𝑖 =

[

𝐹𝑖𝑥 𝐹𝑖𝑦 𝐹𝑖𝑧
]𝑇 .

An element is considered
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Figure 1: Examples of sliding siding elements made using
pulley. 1: pulley, 2: umbilical, 3: stop element on the umbilical,
4: ballast to create a vertical downward force, 5: buoys to create
a vertical ascending force.

• “Sliding” if its point of application changes with
the cable orientation. The movements of the sliding
element are limited to a defined portion of the cable of
length 𝑙𝑖. Let 𝑙𝑖1 and 𝑙𝑖2 be the two parts of the cable
𝑙𝑖 on each side of the element 𝑖 such 𝑙𝑖 = 𝑙𝑖1 + 𝑙𝑖2 with
𝑙𝑖 ≥ 𝑙𝑖𝑗 ≥ 0 for 𝑗 ∈ {1, 2}.

• “Fixed” if its point of application is constant on the
cable. In this case, consider the element is at the end of
its portion of cable, 𝑖.𝑒. ones has 𝑙𝑖1 = 𝑙𝑖 and 𝑙𝑖2 = 0.

A combination of sliding elements or fixed and sliding
elements is an interesting solution to stretch the tether. To
prevent the elements from remaining in contact in the same
position (minimum potential energy), each sliding element
must be contained on a specific part of the cable by stops.
The umbilical is so divided into several parts with defined
lengths. In the optic to make this study the most general
possible, we consider here that the length of these parts can
be modified using TMS at the end of the tether or at the
stop position. Let’s assume, however, that the length of these
parts is always known.

In this paper, the umbilical is equipped with one or two
elements at most, plus a possible anchor directly after the
boat. Cases with more elements are not treated here because
the solution will be too complex and/or inefficient. This point
will be discussed in Section 10.3.
3.3. Assumption

Consider the umbilical is equipped with maximum two
elements, plus a possible anchor directly after the boat (not
necessarily on the seafloor). The following assumption are
considered:
A1) The forces applied on the umbilical due to its mass and

buoyancy are negligible compare to the action made
by the elements and the anchor.

A2) The umbilical length is such that it is reasonable to
neglect its length variation, considered as constant.

A3) When the umbilical is taut, its geometry can be assimi-
lated to straight lines between defined points, here the
elements, the boat and the ROV.

A4) Consider the ROV, boat and anchor are strong enough
to compensate action of the cables and the elements,
and therefore remain stationary. (𝑥, 𝑦, 𝑧) is so fixed
when ROV is not moving.

A5) Consider the sliding elements move freely on the um-
bilical without friction.

A6) The end of a cable connected to an anchor or to the boat
is assumed to be perfectly fixed. A cable connected at
both ends by the boat and the anchor does not need to
meet the Assumption A1–A3.

A7) The lengths 𝑙𝑖 of the different parts of the umbilical
are supposed to be constant or known in real time.
Possible TMS positioned on the boat, anchor or the
ROV can be placed to effect these lengths.

A8) The influence of underwater currents and external per-
turbations are considered in the elements 𝑖.

In order to ensure assumptions A1 and A2, the applica-
tion scope of the present system is for ROVs with an umbili-
cal shorter than 50 m. In addition, to respect assumption A3,
the current system requires that the umbilical is flexible and
allows the sliding element to move freely along it. Therefore,
the current method is suitable for the following scenarios:

• Exploration of shallow water from a boat with a depth
of less than 50m, with zero or stable underwater
currents.

• Ship’s hull inspection, navigation under uniform ice,
or other missions requiring a a flowing cable, flexible
but not heavy.

• Umbilical between an ROV and its cage in case of
deep exploration. The umbilical length is then mea-
sured from the cage, which is is considered as an
anchor in this study. The cable between the boat and
the cage, then, does not need to meet the assumptions
described above, as described in Assumption A6.

• Chain of ROVs connected with the same umbilical,
the model being applicable for each section of cable
linking two consecutive ROVs.

Validity of the assumptions in these conditions have been
observed in experiments, see Section 10.2.1. Some studies
like [15] compare cables of varying stiffness, weight, and
buoyancy to help determine which cables are compatible
with a fair estimation of the cable shape. We can see that
flexibility depends not only on the material used for the
sheath but also on the components it contains and their
number. During our experiments, a plastic umbilical with a
two-pair network cable with a diameter of 4mm was used to
obtain very good flexibility. The same model with a four-
pair network cable and a diameter of 10 mm was stiffer
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and required a heavier ballast to achieve the same results
(involving other disadvantages).

Note that the shape of the umbilical cannot be assimi-
lated to straight lines 1) when an element reaches the sur-
face/seabed, 2) in some configurations when fixed elements
are involved.

4. Description umbilical model
4.1. Geometrical model

The description made below consider a cable with two
sliding elements and an anchor, named the general combi-
nation. Other combinations will be deduced from it.

The parameters are illustrated in Figure 2 in 2D, with an
illustration of a 3D case in Figure 3. The umbilical of length
𝑙 is divided in three parts. Let 𝑙0 = ‖𝑂𝐴‖ ≥ 0 be the part
between the boat 𝑂 and the anchor 𝐴, 𝑙1 = ‖𝐴𝑆‖ ≥ 0 the
part between the anchor𝐴 and a stop 𝑆, and 𝑙2 = ‖𝑆𝑅‖ ≥ 0
the part between the stop 𝑆 and the ROV𝑅. The total length
of the boat is 𝑙 = 𝐿+𝑙0 with𝐿 = 𝑙1+𝑙2. The sliding elements
𝐵1 and 𝐵2 can respectively move freely on 𝑙1 and 𝑙2.

Following Assumption A6, the part 𝑙0 is supposed to stay
perfectly vertical. The sliding elements 𝐵1 and 𝐵2 create
angles in the geometry of the umbilical. Note that the stop
𝑆 does not create an angle by itself, so ‖

‖

𝐵1𝐵2
‖

‖

is a straight
line.

All the other combinations with fixed elements or a sin-
gle element can be deduced from the general combination.
Indeed:

• a fixed element 𝑖 can be assimilated to a particular case
of a sliding element 𝑖where 𝑙𝑖2 = 0 (see Definition 1);

• the absence of anchor correspond to 𝑙0 = 0;
• a combination with an unique element can be obtained

taking 𝑙2 = 0 and 𝐹2 = 0.
The orientation of ‖

‖

𝐴𝐵1
‖

‖

is described by the oriented
angle 𝛼1 and 𝜓1 such that

⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝐵1 = 𝑙11
(

cos
(

𝛼1
)

cos
(

𝜓1
)

𝑒𝑥
+ sin

(

𝛼1
)

cos
(

𝜓1
)

𝑒𝑦 + sin
(

𝜓1
)

𝑒𝑧
) (2)

In the same way, one can define the orientation of ‖
‖

𝐵1𝐵2
‖

‖and ‖

‖

𝐵2𝑅‖‖ with angles (𝛼2, 𝜓2
) and (

𝛼3, 𝜓3
) such that

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐵1𝐵2 =
(

𝑙12 + 𝑙21
) (

cos
(

𝛼2
)

cos
(

𝜓2
)

𝑒𝑥
+ sin

(

𝛼2
)

cos
(

𝜓2
)

𝑒𝑦 + sin
(

𝜓2
)

𝑒𝑧
) (3)

⃖⃖⃖⃖⃖⃖⃖⃗𝐵2𝑅 = 𝑙22
(

cos
(

𝛼3
)

cos
(

𝜓3
)

𝑒𝑥
+ sin

(

𝛼3
)

cos
(

𝜓3
)

𝑒𝑦 + sin
(

𝜓3
)

𝑒𝑧
)

. (4)
Note that 𝛼1 ∈ [−𝜋, 𝜋], 𝛼2 ∈ [−𝜋, 𝜋], 𝛼3 ∈ [−𝜋, 𝜋] and

𝜓1 ∈
[

−𝜋
2 ,

𝜋
2

]

, 𝜓2 ∈
[

−𝜋
2 ,

𝜋
2

]

, 𝜓3 ∈
[

−𝜋
2 ,

𝜋
2

]

. The vectors
⃖⃖⃖⃖⃖⃖⃖⃗𝐵1𝑆 and ⃖⃖⃖⃖⃖⃖⃖⃗𝑆𝐵2 can also be expressed

⃖⃖⃖⃖⃖⃖⃖⃗𝐵1𝑆 =𝑙12
(

cos
(

𝛼2
)

cos
(

𝜓2
)

𝑒𝑥

+ sin
(

𝛼2
)

cos
(

𝜓2
)

𝑒𝑦 + sin
(

𝜓2
)

𝑒𝑧
) (5)

⃖⃖⃖⃖⃖⃖⃖⃗𝑆𝐵2 =𝑙21
(

cos
(

𝛼2
)

cos
(

𝜓2
)

𝑒𝑥
+ sin

(

𝛼2
)

cos
(

𝜓2
)

𝑒𝑦 + sin
(

𝜓2
)

𝑒𝑧
)

. (6)
In a configuration where the umbilical is taut, the system

can be expressed such
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑥 = 𝑙11 cos
(

𝛼1
)

cos
(

𝜓1
)

+
(

𝑙12 + 𝑙21
)

cos
(

𝛼2
)

cos
(

𝜓2
)

+𝑙22 cos
(

𝛼3
)

cos
(

𝜓3
)

𝑦 = 𝑙11 sin
(

𝛼1
)

cos
(

𝜓1
)

+
(

𝑙12 + 𝑙21
)

sin
(

𝛼2
)

cos
(

𝜓2
)

+𝑙22 sin
(

𝛼3
)

cos
(

𝜓3
)

+ 𝑙0
𝑧 = 𝑙11 sin

(

𝜓1
)

+
(

𝑙12 + 𝑙21
)

sin
(

𝜓2
)

+ 𝑙22 sin
(

𝜓3
)

(7)
Remark 1. When 𝛼1 = 𝛼2 and 𝜓1 = 𝜓2, the portion
of cable 𝑙1 is perfectly straight. Same remark for 𝑙2 when
𝛼2 = 𝛼3 and 𝜓2 = 𝜓3.

Let’s define 𝐴,𝑟 the sphere of center 𝐴 =
[

0 𝑙0 0
]

and radius 𝑟 = 𝑙1 + 𝑙2. Let’s also define ̄𝐴,𝑟 the truncated
sphere such as for all (𝑥, 𝑦, 𝑧) ∈ ̄𝐴,𝑟, one has (𝑥, 𝑦, 𝑧) ∈ 𝐴,𝑟
and 𝑦 ≥ 0, 𝑖.𝑒. ̄𝐴,𝑟 =

{

(𝑥, 𝑦, 𝑧) ∈ 𝐴,𝑟|𝑦 ∈ [0, 𝑟]
}. ̄𝐴,𝑟corresponds to the underwater sphere where the ROV can

move.

Figure 2: Parameters of the umbilical with two sliding elements
𝐵1 and 𝐵2 and an anchor 𝐴, in 2 dimension. 𝐹1 and 𝐹2 are
the forces applied on the elements 𝐵1 and 𝐵2. Here 𝐹1 is a
pure vertical force made for example by a buoy, and 𝐹2 is a
combination of a vertical and horizontal forces, for example a
buoy plus horizontal underwater currents.

Depending on the ROV’s position, the sliding elements
move and can come in contact 1) with the anchor 𝐴 or the
stop 𝑆 for the element 1, 2) with the stop 𝑆 or the ROV𝑅 for
the element 2. To simplify the notations, let note 𝑆𝑖 and 𝑆𝑖+1the stops that surround the element 𝑖 such that the element 𝑖
is in contact with 𝑆𝑖 when 𝑙𝑖1 = 0 and in contact with the
𝑆𝑖+1 when 𝑙𝑖2 = 0.Thus, one has 𝑆1 = 𝐴 and 𝑆2 = 𝑆 for the
element 1, and 𝑆2 = 𝑆 and 𝑆3 = 𝑅 for the element 2.

The different cases representing when elements do or
do not touch a stop are called “configurations” or “areas”.
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Figure 3: Illustration of the umbilical with two sliding elements
and an anchor, in 3-Dimension.. 𝐹1 =

[

0.5 2 0.5
]

and
𝐹2 =

[

0.5 −1 0.5
]

.

The system is considered to be inside an area if the ROV
coordinates (𝑥, 𝑦, 𝑧) are inside this area. The different areas
will be described in Section 5
4.2. Dynamic of the system

The systems presented in the following sections are
studied in equilibrium. It should be noted that each time
the ROV moves, part of the umbilical temporarily becomes
loosen, which can lead to entanglement and invalidate the
proposed model. As a loose cable is complex to model and/or
computationally heavy, we propose to maintain a quasi-static
equilibrium by controlling the ROV to shorten transient
phases, thus minimizing the gap between proposed models
and reality. In this way, the ROV is controlled to move
more slowly than the elements on the cable: as long as their
behavior is faster than the ROV speed, the umbilical will
remain taut overall. Details of this approach are described in
[37]. The same solution can be applied to manage the waves,
see Section 10.5.
4.2.1. Fundamental Principle of Static

The dynamics of the system is studied at its equilibrium.
Consider in this section than neither of the two elements
touches the surface, the seafloor or an obstacle. Since there
is not friction (Assumption A5), the Fundamental Principle
of Static (FPS) on 𝐵𝑖 can be expressed as

𝐹𝑖 + 𝑇𝑖 + 𝑇𝑖+1 = 0 (8)

where 𝑇𝑖 and 𝑇𝑖+1 are the tension of the umbilical applied on
element 𝑖. Let’s note 𝑇𝑖 = ‖

‖

‖

𝑇𝑖
‖

‖

‖

> 0 and ‖

‖

‖

𝑇𝑖+1
‖

‖

‖

= 𝑇𝑖+1 > 0.
Again, depending on the ROV’s position, the sliding

elements can come in contact with stop, changing the ex-
pression of the FPS. For an element 𝑖 ∈ {1, 2}, if 𝐵1 ≠ 𝐵2and 1) 𝐵1 ≠ 𝐴 if 𝑖 = 1 or 2) 𝐵2 ≠ 𝑅 if 𝑖 = 2, one can

perform the following FPS in 𝐵𝑖:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−cos
(

𝜓𝑖
)

cos
(

𝛼𝑖
)

𝑇𝑖 + cos
(

𝜓𝑖+1
)

cos
(

𝛼𝑖+1
)

𝑇𝑖+1
+𝐹𝑖 cos

(

𝜓𝐹 𝑖
)

cos
(

𝜙𝑖
)

= 0
− cos

(

𝜓𝑖
)

sin
(

𝛼𝑖
)

𝑇𝑖 + cos
(

𝜓𝑖+1
)

sin
(

𝛼𝑖+1
)

𝑇𝑖+1
+𝐹𝑖 cos

(

𝜓𝐹 𝑖
)

sin
(

𝜙𝑖
)

= 0
− sin

(

𝜓𝑖
)

𝑇1𝑖 + sin
(

𝜓𝑖+1
)

𝑇𝑖+1 + 𝐹𝑖 sin
(

𝜓𝐹 𝑖
)

= 0

(9)
with 𝑇𝑖 > 0, 𝑇𝑖+1 > 0, 𝐹𝑖 > 0. (9) is also valid if element 𝑖
is fixed.

In particular case where both elements are in contact, 𝑖.𝑒.
𝐵1 = 𝐵2, one gets a single FPS in 𝐵1:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−cos
(

𝜓1
)

cos
(

𝛼1
)

𝑇1 + cos
(

𝜓3
)

cos
(

𝛼3
)

𝑇3
+𝐹Σ𝑥 = 0

− cos
(

𝜓1
)

sin
(

𝛼1
)

𝑇1 + cos
(

𝜓3
)

sin
(

𝛼3
)

𝑇3
+𝐹Σ𝑦 = 0

− sin
(

𝜓1
)

𝑇1 + sin
(

𝜓3
)

𝑇3 + 𝐹Σ𝑧 = 0

(10)

where 𝐹Σ = 𝐹1 + 𝐹2 can be expressed as
⎡

⎢

⎢

⎣

𝐹Σ𝑥
𝐹Σ𝑦
𝐹Σ𝑧

⎤

⎥

⎥

⎦

=
2
∑

𝑖=1

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

cos
(

𝜙𝑖
)

cos
(

𝜓𝐹 𝑖
)

sin
(

𝜙𝑖
)

cos
(

𝜓𝐹 𝑖
)

sin
(

𝜓𝐹 𝑖
)

⎤

⎥

⎥

⎦

𝐹𝑖
⎞

⎟

⎟

⎠

(11)

From Assumption A4, the ROV, boat and anchor are
strong enough to compensate action of the elements. Thus,
when a element is in contact with the anchor 𝐴, boat 𝑂 or
the ROV 𝑅, element’s action can be fuse with them and so
no FPS are performed.
4.2.2. Sliding elements properties

Since the sliding element move freely on the tether, the
tensions of the cable try to balance on both sides of the
element. Thus, some properties can be defined, as described
in Definition 2, Theorem 1 and illustrated in Figure 4.
Definition 2. For the sliding element 𝑖, the following prop-
erties can be expressed:

(1) If
(

𝐹𝑖.𝑇𝑖 < 0
)

&
(

𝐹𝑖.𝑇𝑖+1 < 0
)

and
(

𝑙𝑖 > 𝑙𝑖1 > 0
)

&
(

𝑙𝑖 > 𝑙𝑖2 > 0
)

, the sliding element 𝑖 can
move freely and is not in contact with a stop. Since the
element slides without friction (Assumption A5), one has the
property

𝑇𝑖 = 𝑇𝑖+1. (12)

(2) If 𝑙𝑖1 = 0 and
(

𝐹𝑖.𝑇𝑖+1 < 0
)

, the element 𝑖 is in stable
contact with 𝑆𝑖. In this configuration, it can be assimilate
to a fixed element. Reciprocally for 𝑆𝑖+1 if 𝑙𝑖2 = 0 and
(

𝐹𝑖.𝑇𝑖 < 0
)

.

First Author et al.: Preprint submitted to Elsevier Page 7 of 20



Self-Management of ROV Umbilical using sliding element: a general 3D-model

(

𝐹𝑖.𝑇𝑖 < 0
)

&
(

𝐹𝑖.𝑇𝑖+1 < 0
) (

𝐹𝑖.𝑇𝑖 > 0
)

&
(

𝐹𝑖.𝑇𝑖+1 > 0
)

𝑇𝑖 = 𝑇𝑖+1: element 𝑖 immobile the cable is loosen

𝑙𝑖1 = 0 and
(

𝐹𝑖.𝑇𝑖+1 < 0
)

𝑙𝑖1 = 0 and
(

𝐹𝑖.𝑇𝑖+1 > 0
)

element 𝑖 moves to 𝑆𝑖+1
Figure 4: Illustration of the forces applied on the umbilical with
a sliding element. The different cases correspond to the cases
exposed in Definition 2.

(3) If 𝐹𝑖.𝑇𝑖 > 0, then the element 𝑖 slides in the direction
⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑖𝑆𝑖 and so cannot stay in contact with 𝑆𝑖+1. Reciprocally
in direction direction ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑖𝑆𝑖+1 if 𝐹𝑖.𝑇𝑖+1 > 0.

(4) If
(

𝐹𝑖.𝑇𝑖 > 0
)

&
(

𝐹𝑖.𝑇𝑖+1 > 0
)

, the cable is loosen.

Theorem 1. For 𝑖 ∈ {1, 2}, if the sliding element 𝑖 is not in
contact with a stop, then

cos
(

𝜓𝑖
)

sin
(

𝜙𝑖 − 𝛼𝑖
)

= cos
(

𝜓𝑖+1
)

sin
(

𝜙𝑖 − 𝛼𝑖+1
)

. (13)
The proof of Theorem 1 can be found in [39, Appendix A]
Remark 2. The condition

(

𝐹𝑖.𝑇𝑖 < 0
)

in Definition 2 can

be replaced by the condition
(

𝐹𝑖.⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑖𝑆𝑖 < 0
)

.

Same for
(

𝐹𝑖.𝑇𝑖+1 < 0
)

with
(

𝐹𝑖.⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐵𝑖𝑆𝑖+1 < 0
)

.

These properties will be used the next sections to solve the
system (7) and estimate if a solution found is physically
possible.

Part III

Resolution of the model:
the problem of the
configuration areas
5. Configuration areas of the umbilical

As already explained, depending on the ROV’s position,
the sliding elements can come in contact stops 𝑆, modifying
the shape of the umbilical and the balance of the forces
exerted on it. The different cases where elements do or do

not touch a stop are called “configurations” or “areas”. Each
configuration therefore has its own geometrical particularity
and dynamic model based on PFS due to the sliding elements
properties described in Section 4.2.

The system is considered to be in a configuration if
the ROV coordinates (𝑥, 𝑦, 𝑧) are inside its associate area.
In the 2D-case developed in [36, 37], it was possible to
calculate the boundaries of these areas and thus deduce in
which configuration the umbilical was in based of the ROV
coordinate. In this way, the system was solved only once in
its current area.

Unfortunately, it is not possible to find an expression of
the boundaries areas in the 3D case in presence of horizontal
forces, which makes the problem trickier to solve because
we cannot known in which configuration the umbilical is
and therefore how to express the geometric and dynamic
systems. The system must so be solved in all configurations
and results obtained must be compared to find the real
solution, as it will be described in Section 6.4.

This section describes the different zones and their spe-
cific dynamics.
5.1. Description of the areas

Eight areas corresponding to specific umbilical config-
urations can be observed, plus the forbidden area F, as
illustrate in Figures 5 and 6.

The different areas are described below:
• Area A0: the two elements move freely on 𝑙1 and 𝑙2,
𝑖.𝑒. 0 < 𝑙11 < 𝑙1, 0 < 𝑙12 < 𝑙1, 0 < 𝑙21 < 𝑙2,
0 < 𝑙22 < 𝑙2.

• Area A1: the element 1 moves freely on 𝑙1, 𝑖.𝑒. 0 <
𝑙11 < 𝑙1, 0 < 𝑙12 < 𝑙1. Moreover:

– Area A11: the element 2 is in contact with 𝑅,
thus 𝑙21 = 𝑙2, 𝑙22 = 0.

– Area A12: the element 2 is in contact with 𝑆,
thus 𝑙21 = 0, 𝑙22 = 𝑙2.

• Area A2: the element 2 moves freely on 𝑙2, 𝑖.𝑒. 0 <
𝑙21 < 𝑙2, 0 < 𝑙22 < 𝑙2. Moreover:

– Area A21: the element 1 is in contact with 𝐴,
thus 𝑙11 = 0, 𝑙12 = 𝑙1.

– Area A22: the element 1 is in contact with 𝑆,
thus 𝑙11 = 𝑙1, 𝑙12 = 0.

• Area D: both elements are in contact with a stop such
that

– Area D1: the element 1 is in contact with 𝑆 and
element 2 is in contact with 𝑅, 𝑙11 = 𝑙1, 𝑙12 = 0,
𝑙21 = 𝑙2, 𝑙22 = 0.

– Area D2: the two elements are in contact with 𝑆,
𝑖.𝑒. 𝑙11 = 𝑙1, 𝑙12 = 0, 𝑙21 = 0, 𝑙22 = 𝑙2.

– Area D3: the element 1 is in contact with 𝐴 and
element 2 is in contact with 𝑆, 𝑖.𝑒. 𝑙11 = 0,
𝑙12 = 𝑙1, 𝑙21 = 0, 𝑙22 = 𝑙2.
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case Element 1 Element 2 Existing areas Remark

1 sliding sliding A0*, A11, A12, A21, A0*: depend of the direction
A22, D1, D2, D3, F of the element force

2 fixed sliding A22, D1, D2, F 𝑙11 = 𝑙1. Else, see case 5
3 sliding fixed A12, D2, D3, F 𝑙21 = 0. Else, see case 5

4 fixed fixed D3, F equivalent to one element
in 𝑆. 𝑙11 = 𝑙1 and 𝑙21 = 0

5 sliding / A11, D1, D3, F One element configuration.

6 fixed / F the cable cannot be taut
excepted as a straight line

Table 1
Existing areas in function of the number and type of element. Note that a fixed element is always fixed in 𝑆. Else, it is assimilate
to the anchor 𝐴 or the ROV 𝑅 (Assumption A4).

• Area F. The forbidden area F includes 1) the inaccessi-
ble area for the ROV due to the length of its umbilical,
2) the areas where the umbilical cannot be taut by the
elements, 3) case where an element is in contact with
the seabed/surface.

In function of the number and characteristic of the elements
on the umbilical, some configurations cannot exist. Area A0
for example cannot exist in presence of two forces in the
same direction (example: two buoys) because one of the
element will always be in contact with a stop, see Theorem 2.
When the element 1 is fixed, Areas 21 and Areas 22 does not
exist.

The Table 1 summarizes the existing area in function of
the configurations.
Definition 3. When the cable 𝑙1 is perfectly straight, 𝑖.𝑒.
𝛼1 = 𝛼2 and 𝜓1 = 𝜓2, the sliding element 1 has no
obstacle on this path. Since we consider there is no friction
(Assumption A5) and to remove any ambiguity, we also
assume that the sliding element can only be in contact with a
stop, even in the case where 𝐹1 and ⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝐵1 are perpendicular.
Same remark for element 2 if 𝑙2 is straight. In this condition:

(1) The configuration
(

𝛼1 = 𝛼2
)

&
(

𝜓1 = 𝜓2
)

is exclude
in areas A0, A11, A12, A22, D1, D2, but is assigned to area
A21 or D3;

(2) The configuration
(

𝛼2 = 𝛼3
)

&
(

𝜓2 = 𝜓3
)

is exclude
in areas A12, A0, A21, A22, D2, D3, but is assigned to
area A21 or D1.

Theorem 2. The area A0 doesn’t exist if
(1) 𝐹1

‖

‖

‖

𝐹1
‖

‖

‖

= 𝐹2
‖

‖

‖

𝐹2
‖

‖

‖

, 𝑖.𝑒. the forces have the same orienta-

tion,
(2) 𝐹1

‖

‖

‖

𝐹1
‖

‖

‖

= − 𝐹2
‖

‖

‖

𝐹2
‖

‖

‖

and 𝐹1 ≠ 𝐹2, 𝑖.𝑒. the forces’ orienta-

tions are opposite and they don’t have the same strength.

The proof of Theorem 2 is provided in [39, Appendix F.3.1].
5.2. Forces applied inside the areas

From the areas properties exposed in Section 5 and PFS
performed in Section 4.2, one can deduce that

Figure 5: Areas for an umbilical with two sliding elements
and an anchor. Green: A0. Blue: A11. Cyan: A12. Red:
A21. Magenta: A22.Yellow: areas D. Black: area F where the
umbilical cannot be stretched. Blue arrow : force 𝐹1. Red arrow:
force 𝐹2.

• The PFD (9) with 𝑖 = 1 is valid in areas A0, A11,
A12, A22, D1;

• The PFD (9) with 𝑖 = 2 is valid in areas A0, A12,
A21, A22, D3;

• The PFD (10) is valid in area D2.
It can be deduced that 𝑇1 does not exist in areas A21 and
D3 , 𝑇2 does not exist in area D2 and 𝑇3 does not exist in
areas A11 and D1.

Note also that
• Since element 1 is sliding in areas A0, A11, A12, the

Theorem 1 is valid for 𝑖 = 1;
• Since element 2 is sliding in areas A0, A21, A22, the

Theorem 1 is valid for 𝑖 = 2.
Moreover, the conditions described in Definition 2 must be
respected for each sliding element.

In function of if the systems (9) and (10) exist, 𝑖.𝑒. in
function of the areas, the expressions of the forces 𝑇1, 𝑇2 and
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Figure 6: Illustration of the umbilical in all areas.

𝑇3 changed. Let’s note 𝑇 𝑆𝑗𝑖 for 𝑖 ∈ {1, 2, 3} and 𝑗 ∈ {1, 2}
the expression of 𝑇1, 𝑇2 and 𝑇3 in function of the different
cases exposed below. In all case, one has

𝐹1𝑥𝑦 = cos
(

𝜓𝐹1
)

𝐹1 (14)
𝐹2𝑥𝑦 = cos

(

𝜓𝐹2
)

𝐹2. (15)

𝑇
𝑆𝑗
𝑖 =

𝑇
𝑆𝑗
𝑖𝑥𝑦

cos
(

𝜓𝑖
) (16)

• If not area D2: the systems (9) is valid. Following
steps described in [39, Appendix A.4], if cos (𝛼1

)

≠ 0
and/or cos (𝛼3

)

≠ 0, sin (𝛼2 − 𝛼1
)

≠ 0

and/or sin
(

𝛼3 − 𝛼2
), one gets 𝑇1𝑥𝑦 = 𝑇 𝑆11𝑥𝑦,𝑇2𝑥𝑦 =

𝑇 𝑆12𝑥𝑦 and 𝑇3𝑥𝑦 = 𝑇 𝑆13𝑥𝑦 where

𝑇 𝑆11𝑥𝑦 =

{

0 if A21 or D3,
1

cos(𝛼1)

(

cos
(

𝛼2
)

𝑇 𝑆12𝑥𝑦 + 𝐹1𝑥𝑦 cos
(

𝜙1
)

)

else,
(17)

𝑇 𝑆13𝑥𝑦 =

{

0 if A11 or D1,
1

cos(𝛼3)

(

cos
(

𝛼2
)

𝑇 𝑆12𝑥𝑦 − 𝐹2𝑥𝑦 cos
(

𝜙2
)

)

else,
(18)

with

𝑇 𝑆12𝑥𝑦 =

⎧

⎪

⎨

⎪

⎩

− sin(𝜙1−𝛼1)
sin(𝛼2−𝛼1)

𝐹1𝑥𝑦 if A0, A11, A12 or D1,
− sin(𝜙2−𝛼3)

sin(𝛼3−𝛼2)
𝐹2𝑥𝑦 if A21, A22 or D3.

(19)
• If area D2: the systems (10) is valid. Following the

steps described in [39, Appendix A.4.4], if cos (𝛼1
)

≠
0 and sin

(

𝛼3 − 𝛼1
)

≠ 0, one has 𝑇1𝑥𝑦 = 𝑇 𝑆21𝑥𝑦 and
𝑇3𝑥𝑦 = 𝑇 𝑆23𝑥𝑦 where

𝑇 𝑆21𝑥𝑦 =
1

cos
(

𝛼1
)

(

cos
(

𝛼3
)

𝑇 𝑆23𝑥𝑦 + 𝐹Σ𝑥
)

(20)

𝑇 𝑆23𝑥𝑦 =
𝐹Σ𝑥 sin

(

𝛼1
)

− 𝐹Σ𝑦 cos
(

𝛼1
)

sin
(

𝛼3 − 𝛼1
) (21)

and 𝑇 𝑆22𝑥𝑦 = 0 because doesn’t exist.
In the case where 𝛼3 = 𝛼1+𝑘2𝜋 with 𝑘2 ∈ ℤ, one has 𝑇3𝑥𝑦 =
𝑇1𝑥𝑦 =

√

𝐹 2
Σ𝑥+𝐹

2
Σ𝑦

2 . If 𝛼1 = 𝑠𝜋2 , one has 𝑇3𝑥𝑦 = 𝐹Σ𝑥
1

cos(𝛼3)
and 𝑇1𝑥𝑦 = 𝑠

[

sin
(

𝛼3
)

𝑇3𝑥𝑦 + 𝐹Σ𝑦
].

• Particular cases: if not area D2, in the case where
𝛼1 = 𝛼2 + 𝑘2𝜋 or 𝛼3 = 𝛼2 + 𝑘2𝜋 with 𝑘2 ∈ ℤ,
one has respectively 𝑇1𝑥𝑦 = 𝑇2𝑥𝑦 = 𝐹1𝑥𝑦

2 or 𝑇3𝑥𝑦 =

𝑇2𝑥𝑦 = 𝐹3𝑥𝑦
2 . Moreover, if 𝛼1 = 𝑠𝜋2 or 𝛼3 = 𝑠𝜋2 ,

one has respectively 𝑇2𝑥𝑦 = 𝐹1𝑥𝑦
cos(𝜙1)
cos(𝛼2)

and 𝑇1𝑥𝑦 =

𝑠𝐹1𝑥𝑦
[

tan
(

𝛼2
)

cos
(

𝜙1
)

+ sin
(

𝜙1
)] or

𝑇2𝑥𝑦 = 𝐹2𝑥𝑦
cos(𝜙2)
cos(𝛼2)

and
𝑇3𝑥𝑦 = 𝑠𝐹2𝑥𝑦

[

tan
(

𝛼2
)

cos
(

𝜙2
)

+ sin
(

𝜙2
)].

Proves of all these expression can be found in [39, Appendix
A].These systems will be used in next sections to solve the
model of the umbilical.

6. Deduction of the current area
The method for deducing the current area can be sum-

marized as follow. First, based on previous umbilical con-
figuration (if known), the number of possible areas can be
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Figure 7: Graph of connection between areas.

reduced using the graph of areas exposed in Section 6.1. The
system is then solved for all remaining areas, as it will be
summarized in Section 6.2. If no solution can be found for
an area, it is excluded. If only one area has a solution, it is
automatically the current area. Otherwise, the system energy
described in Section 6.3 is used to find the current solution
as described in Section 6.4.
6.1. Graph of areas

When a sliding element moves on the cable, it comes
in contact with a stop or becomes free again: the umbilical
pass so from one configuration to another. One can define
a graph of communication between the different areas, as
summarizes in Figure 7. When some areas don’t exist (see
Table 1), the graph is cut off from the associated branches,
but remains globally connected. Moreover, since an element
cannot pass instantaneously from one stop to another without
passing by a sliding phase, this graph is not fully-connected,
𝑖.𝑒. the umbilical cannot always pass directly from any
area to any other. Two areas directly connected are called
neighbors.

This graph will be used to reduce the number of config-
urations to calculate to find the next shape of the umbilical.
6.2. Resolution of the model inside the areas

Due to their geometric and dynamic differences, each
area requires its own mathematical resolution. Using a trans-
formation of the referential and the simple geometrical shape
of the umbilical in areas D1, D2 and D3, the solution of
system (7) in theses areas can be found analytically. On
the other hand, due to the high non-linearity of system (7),
the model is too complex to be solved analytically in areas
A0, A1 and A2: a theoretical solution is proposed along a
numerical resolution. Details of these resolutions are given
in Part IV.
6.3. Energy of the configuration

The principal of least action [14] argues that the static
shape of the cable minimizes its potential energy. Therefore,
this principal can be used to find the current solution by
chosing the configuration with the lowest energy.

Let𝐸𝑝 () be the energy of the configuration .𝐸𝑝 will
be used in the Section 6.4 to compare results obtained in

the different areas to find the actual umbilical configuration.
In this section, we only consider configurations for which a
solution can been found, 𝑖.𝑒. where the position of 𝐵1 and
𝐵2 are known.

The movement of the element 1 are limited by the cable
𝑙1 attached to the anchor 𝐴 =

[

0 𝑙0 0
]𝑇 . If the cable

𝑙1 were subjected only to the actions of 𝐹1, element 1 would
slide since it came in contact with 𝑆, and then the part 𝐴𝑆
would behave like a pendulum, whose minimum potential
energy𝐸𝑝min,1 is reached at the position 𝑝𝐸𝑝min,1

= 𝐴+ 𝑙1
𝐹1
𝐹1

,
𝑖.𝑒. the point furthest from 𝐴 in direction 𝐹1

𝐹1
. Using 𝐴 as

reference, the energy 𝐸𝑝,1 of element 1 can so be expressed
as

𝐸𝑝,1 = 𝑙1𝐹1 − ⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝐵1.𝐹1 (22)
In the same way, the element 2 is limited to the cable 𝑙2attached in 𝑆 to the cable 𝑙1. Following the same reasoning,
the minimal energy 𝐸𝑝,2 of element 2 can so be expressed as

𝐸𝑝,2 =
(

𝑙1 + 𝑙2
)

𝐹2 − ⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝐵2.𝐹2 (23)
with ⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝐵2 = ⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝐵1 + ⃖⃖⃖⃖⃖⃖⃖⃗𝐵1𝑆 + ⃖⃖⃖⃖⃖⃖⃖⃗𝑆𝐵2. The energy of the system
can so be expressed as

𝐸𝑝 = 𝐸𝑝,1 + 𝐸𝑝,2. (24)
6.4. Algorithm deduction of the area

The Part IV will provide theorems giving a solution to
the system (7) if the ROV is inside a corresponding area.
If not solution can be found for the current coordinate, then
the ROV is not inside this area. However, it can happen that
several solutions are found in different areas, and only one
corresponds to the reality. This section allows to select the
current solution between the several solution found.

Consider in this section that if a solution is possible in an
area for the current coordinate, then this solution is found.
The current configuration can be found using the following
steps:

1. Reduction of the number of areas possible:
(a) Areas possible: Table 1 defines the number of

existing areas to be evaluated according to the
elements on the umbilical.

(b) Areas neighbors: when the area of the previous
position is known, if the new coordinates, forces
and cable length are close to the previous config-
uration, only the current zone and its neighbors
as defined in Section 6.1 need to be evaluated.

2. Evaluation of the solution in the different areas:
a solution is searched in each remaining area using
Theorems exposed in Part IV, Sections 7 and 8.

3. Selection of the areas: if only one solution is found,
this solution is the current configuration. Else, based
on the principal of least action [14], the true solution
is the one with the smallest energy 𝐸𝑝 exposed in
Section 6.3.
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4. Final test: check if the solution is a submerged config-
uration, 𝑖.𝑒. the coordinate 𝑦 is positive for the points
𝐵1, 𝑆 and 𝐵2.

5. If not solution is found: the system is in area F.
Remark 3. not solution is found: in presence of at least one
fixed element, sometime the umbilical cannot be stretched for
some position of the ROV. In these conditions, the system (7)
cannot find a solution and is considered inside area F.
Example: element 1 is a fixed ballast pushing vertically with
𝑙1 > 𝑙2 (see [37]). The coordinate

(

0, 𝑙0, 0
)

requires the
cable 𝑙1 to be folded back to reach the position.

Part IV

Resolution model in the
areas
This part proposes a resolution of the model based on the
assumptions and properties exposed in previous sections.
Since the complete redaction of each solution for each area
is very voluminous, we made the choice of presented in this
paper only the methodology used and the main conditions to
be met. The complete description and the proofs are provided
in the extended version of this work in [39]. Reference to the
appropriate theorem will always be specified in the text.

7. Resolution model in areas A0, A1 and A2
Due to the strong non-linearity of system (7), the model

is too complex to be solved analytically in areas A0, A1
and A2, named here areas A. Thus, theorems exposed in
this section proposes a theoretical solution and a numerical
resolution of system (7).
7.1. Change of referential

To find a solution in the different areas, the system
exposed in previous sections is easier to solve in others
referential where some of these components become equal
to zero.

In areas A0, A1 and A2, a simple around the vertical axis
𝑂𝑦 is used to obtain a referential 𝑗 where the component
𝜓𝐹1|𝑗

or 𝜓𝐹2|𝑗
is equal to zero. The Definition 4 defines

the referential 0, 1 and 2 respectively associated to the
resolution of the system in the areas A0, A1 and A2.
Definition 4. The referential 𝑗 for 𝑗 ∈ {0, 1, 2} is defined
as a rotation of the referential  around the axis 𝑂𝑦 of
an angle 𝜇𝑗 = atan2

(

𝐹𝑗𝑧|, 𝐹𝑗𝑥|
)

if 𝑗 ∈ {1, 2}, 𝜇0 =
atan2

(

𝐹1𝑧|, 𝐹1𝑥|
)

if 𝑗 = 0. Let 𝑀
𝑦
(

𝜇𝑗
)

be the rotation
matrix allowing to pass from  to 𝑗 . Note that

(1) the lengths 𝑙11, 𝑙12, 𝑙21, 𝑙22 are unaffected by the
change of referential;

(2) the coordinate of the ROV can be evaluated such that
[

𝑥 𝑦 𝑧
]𝑇
𝑗

=𝑀𝑦
(

𝜇𝑗
) [

𝑥 𝑦 𝑧
]𝑇
.

7.2. Additional notations
For a referential 𝑖, let’s define the energy of the sys-

tem (7)
𝑬𝑖

= ‖

‖

‖

⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝐵1|𝑖
+ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐵1𝐵2|𝑖

+⃖⃖⃖⃖⃖⃖⃖⃗𝐵2𝑅|𝑖
−
[

𝑥
(

𝑦 − 𝑙0
)

𝑧
]𝑇
𝑖

‖

‖

‖

2 (25)
This energy will be used to solve the umbilical model.
Since a solution will be required to be evaluated in each

area, the different angles and lengths are grouped in a set of
parameters expressed in Definition 5.
Definition 5. Let’s define the area 𝐴𝑚 ∈ {A0, A11, A12,
A21, A22} and note𝑚 the referential associated to area𝐴𝑚
as defined in Definition 4. For (𝑥, 𝑦, 𝑧) ∈ ̄𝐴,𝑟, let

𝐴𝑚𝛼,𝜓,𝑙
(

𝛼1|𝑘

)

be the set of parameters

𝐴𝑚𝛼,𝜓,𝑙
(

𝛼1|𝑚

)

=
{

𝛼1|𝑘
, 𝛼2|𝑚

, 𝛼3|𝑘
,

𝜓1|𝑚
, 𝜓2|𝑘

, 𝜓3|𝑚
,

𝑙11, 𝑙12, 𝑙21, 𝑙22
} (26)

evaluated for the angle 𝛼1|𝑘
and (𝑥, 𝑦, 𝑧)𝑚

using respec-
tively

(1) [39, Theorem 4] for area A11,
(2) [39, Theorem 5] for area A12,
(3) [39, Theorem 6] for area A21,
(4) [39, Theorem 7] for area A22,
(5) For area A0, [39, Theorem 8] if 𝜓𝐹2|0

= 0, [39,
Theorem 9] else.

Let also note 𝑬𝑘

(

𝐴𝑚𝛼,𝜓,𝑙
)

the evaluation of (25) using

parameters inside 𝐴𝑚𝛼,𝜓,𝑙.

In order to lighten notations, 𝐴𝑚𝛼,𝜓,𝑙
(

𝛼1|𝑚

)

will be written
𝐴𝑚𝛼,𝜓,𝑙 in the next sections of the paper.

Theorems exposed in Definition 5 provide sets of param-
eters 𝐴𝑚𝛼,𝜓,𝑙 which will be used in Theorem 3 to solve the
system in areas A. Even if theses theorems are provided in
[39], more details and conditions used in these theorems will
be provided in the next sections.
7.3. Resolution of the system in areas A

Due to the strong non-linearity of system (7) and in
opposite to areas D described in Section 8, the model is too
complex to be solved analytically in areas A. The theoretical
solution can however be expressed, and a numerical resolu-
tion is proposed to find a solution to the system. These two
aspects are described in Theorem 3.
Theorem 3. Consider an area 𝐴𝑚 ∈ {A0, A11, A12, A21,
A22}, its associated referential 𝑚 and the set of parame-

ters 𝐴𝑚𝛼,𝜓,𝑙
(

𝛼1|𝑚

)

evaluated for an angle 𝛼1|𝑚
as defined

in Definition 5. For the coordinate (𝑥, 𝑦, 𝑧) ∈ ̄𝐴,𝑟, a solution
of system (7) exists in the area 𝐴𝑚 if there exists an angle
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𝛼1|𝑚
∈ [−𝜋, 𝜋] such as the associated 𝐴𝑚𝛼,𝜓,𝑙

(

𝛼1|𝑚

)

guarantee

𝐸𝐴𝑚min ≤ 𝜂 (27)
where

𝐸𝐴𝑚min = min
𝛼1|𝑚

∈ [−𝜋, 𝜋]
𝐴𝑚𝛼,𝜓,𝑙

(

𝛼1|𝑚

)

≠ ∅

𝑬𝑘

(

𝐴𝑚𝛼,𝜓,𝑙
(

𝛼1|𝑚

))

.

(28)
and with 𝜂 = 0 in theoretical case, 𝜂 ≥ 0 a chosen parameter
for numerical resolution.

If a solution exist, this solution 𝐴𝑚𝛼,𝜓,𝑙 can be expressed
as

𝐴𝑚𝛼,𝜓,𝑙 =
{

𝐴𝑚𝛼,𝜓,𝑙
(

𝛼1|𝑚

)

|𝑬𝑚

(

𝐴𝑚𝛼,𝜓,𝑙
(

𝛼1|𝑚

))

= 𝐸𝐴𝑚min,

𝐴𝑚𝛼,𝜓,𝑙
(

𝛼1
)

≠ ∅, ∀𝛼1|𝑚
∈ [−𝜋, 𝜋]

}

. (29)
In theory, the unique solution of the system (7) is 𝛼1|𝑚solution of (25), which is equivalent to solve (27) with 𝜂 = 0
in Theorem 3.

The proof of Theorem 3 is connected to the proofs of
Theorems 4,5,6,7,8 and 9 in [39] which will be exposed in
the next sections, each one for a specific areas.
7.4. Length calculation

The calculation of the length of cables 𝑙11, 𝑙12, 𝑙21 and
𝑙22 can be performed if the angles 𝛼𝑖 and 𝜓𝑖 for 𝑖 ∈ {1, 2, 3}
are known. In function of the umbilical configuration, some
lengths are already known, see Section 5. Note that the
umbilical lengths are identical in all references, so they can
be calculated with the angles of any referential.

The calculation is described in [39, Section 6.4].
7.5. Solution in Area A1

Theorems 4 and 5 in [39] proposes a set of parameters
𝐴11𝛼,𝜓,𝑙

(

𝛼1|1

)

and 𝐴12𝛼,𝜓,𝑙

(

𝛼1|1

)

, possibly solution in area
A11 in referential 1.

Based on properties made in Section 5 and Definition 2
for the sliding element 1, and the element 2 in contact with
𝑆 or 𝑅, the Definition 6 provides conditions which must be
satisfied to guarantee the physical and geometrical feasibility
of solutions in areas A11 and A12. Theses conditions are
applied in Theorem 4 and 5 in [39].
Definition 6. From Definition 2, a set of parameters 𝐴11𝛼,𝜓,𝑙
or 𝐴12𝛼,𝜓,𝑙 is a possible solution of system (7) in respectively
area A11 or area A12 iff the following condition 𝐶𝐴1 is
respected

𝐶𝐴1 =
(

𝐶𝐴11
)

&
(

𝐶𝐴12
)

&
(

𝐶𝐴13
)

&
(

𝐶𝐴14
) (30)

with

𝐶𝐴11 =
(

0 ≤ 𝑙11 ≤ 𝑙1
)

&
(

0 ≤ 𝑙12 ≤ 𝑙1
) (31)

𝐶𝐴12 =
(

𝑇 𝑆11|1
> 0

)

&
(

𝑇 𝑆12|1
> 0

)

&
(

𝑇 𝑆13|1
≥ 0

)

(32)
𝐶𝐴13 =

(

𝐹1.⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝐵1 > 0
)

&
(

𝐹1.⃖⃖⃖⃖⃖⃖⃖⃗𝐵1𝑆 < 0
)

(33)

𝐶𝐴14 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

True if element 2 is fixed or 𝑙2 = 0,
(

𝐹2.⃖⃖⃖⃖⃖⃖⃖⃗𝑆𝐵2 > 0
)

else if A11
(

𝐹2.⃖⃖⃖⃖⃖⃖⃖⃗𝐵2𝑅 < 0
)

else if A12

(34)
where 𝑇 𝑆11|1

, 𝑇 𝑆12|1
and 𝑇 𝑆13|1

are evaluated using (16).

7.6. Solution in area A2
The Theorems 6 and 7 in [39] propose a set of parame-

ters 𝐴21𝛼,𝜓,𝑙

(

𝛼1|2

)

and 𝐴22𝛼,𝜓,𝑙

(

𝛼1|2

)

, possibly solution in
areas A21 and A22 in referential 2.

Like for Definition 6 in area A1, the Definition 7 provides
conditions for areas A21 and A22. Theses conditions are
applied in Theorems 6 and 7 in [39].
Definition 7. From Definition 2, a set of parameters 𝐴21𝛼,𝜓,𝑙
or 𝐴22𝛼,𝜓,𝑙 is a possible solution of system (7) in respectively
area A21 or area A22 iff the following condition 𝐶𝐴2 is
respected

𝐶𝐴2 =
(

𝐶𝐴21
)

&
(

𝐶𝐴22
)

&
(

𝐶𝐴23
)

&
(

𝐶𝐴24
) (35)

with

𝐶𝐴21 =
(

0 ≤ 𝑙21 ≤ 𝑙2
)

&
(

0 ≤ 𝑙22 ≤ 𝑙2
) (36)

𝐶𝐴22 =
(

𝑇 𝑆11|1
≥ 0

)

&
(

𝑇 𝑆12|1
> 0

)

&
(

𝑇 𝑆13|1
> 0

)

(37)
𝐶𝐴23 =

(

𝐹2.⃖⃖⃖⃖⃖⃖⃖⃗𝑆𝐵2 > 0
)

&
(

𝐹2.⃖⃖⃖⃖⃖⃖⃖⃗𝐵2𝑅 < 0
)

(38)

𝐶𝐴24 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

True if element 1 is fixed,
(

𝐹1.⃖⃖⃖⃖⃖⃖⃖⃗𝐵1𝑆 < 0
)

else if A21
(

𝐹1.⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝐵1 > 0
)

else if A22
(39)

where 𝑇 𝑆11|1
, 𝑇 𝑆12|1

and 𝑇 𝑆13|1
are evaluated using (16).

7.7. Solution in Area A0
The Theorems 8 and 9 in [39] propose a set of parameters

𝐴0𝛼,𝜓,𝑙
(

𝛼1|0

)

, possibly solution in area A0 in referential
0. Like for Definition with area A1, the Definition 8 pro-
vides conditions in area A0. Theses conditions are applied
in Theorems 8 and 9 in [39].
Definition 8. From Definition 2, a set of parameters 𝐴0𝛼,𝜓,𝑙
is a possible solution of system (7) in area A0 iff the following
condition 𝐶𝐴0 is respected

𝐶𝐴0 =
(

𝐶𝐴11
)

&
(

𝐶𝐴21
)

&
(

𝐶𝐴22
)

&
(

𝐶𝐴01
)

&
(

𝐶𝐴02
) (40)
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with

𝐶𝐴01 =
(

𝐹1.⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝐵1 > 0
)

&
(

𝐹1.⃖⃖⃖⃖⃖⃖⃖⃗𝐵1𝑆 < 0
)

(41)
𝐶𝐴02 =

(

𝐹2.⃖⃖⃖⃖⃖⃖⃖⃗𝑆𝐵2 > 0
)

&
(

𝐹2.⃖⃖⃖⃖⃖⃖⃖⃗𝐵2𝑅 < 0
)

(42)

where 𝑇 𝑆11|0
, 𝑇 𝑆12|0

and 𝑇 𝑆13|0
are evaluated using (16).

8. Resolution model in areas D1, D2 and D3
Using a transformation of the referential, the solution

of system (7) in areas D (D1, D2 and D3) can be found
analytically. For that, the referential is transformed using
a translation and three rotations of , described in the
subsection 8.2.
8.1. Force applied at stop 𝑆

Let’s define 𝐹𝑆| =
[

𝐹𝑆𝑥| 𝐹𝑆𝑦| 𝐹𝑆𝑧|
]𝑇 the

force at the stop 𝑆 expressed as

𝐹𝑆| = 𝐹1| in area D1 (43)
𝐹𝑆| = 𝐹Σ| = 𝐹1| + 𝐹2| in area D2 (44)
𝐹𝑆| = 𝐹2| in area D3. (45)

This force will be used in the resolution of the model.
8.2. Change of referential 𝐷In the areas D, all the elements are in contact with a
stop. Thus, the umbilical between the anchor and the ROV
becomes the triangle 𝐴𝑆𝑅 with 𝐴𝑆 = 𝑙1 and 𝑆𝑅 = 𝑙2.
Moreover, there is a referential where the triangle 𝐴𝑆𝑅 and
all forces applied on 𝐴, 𝑆 and 𝑅 can be expressed in a 2D
plan (

𝑂𝑥⃗𝑦
). This referential, named 𝐷, can be obtained by

performing a translation and three rotation of the referential
, as illustrated in Figure 8. The Definition 9 defines the
referential 𝐷 associated to the resolution of the system in
the areas D1, D2 and D3.
Definition 9. The referential 𝐷 is defined as a translation
and three rotations of the referential. The vector of coordi-
nate 𝑋 =

[

𝑥 𝑦 𝑧
]𝑇
 and forces 𝐹𝑖|𝐷

∀𝑖 ∈ {1, 2, 𝑆}
can be expressed in 𝐷 such as

𝑋𝐷
=𝑀𝐷

(

𝑋 − 𝑇
) (46)

𝐹𝑖|𝐷
=𝑀𝐷𝐹𝑖| (47)

𝑀𝐷 =𝑀𝑥
(

𝜇𝐷(3)
)

𝑀𝑦
(

𝜇𝐷(2)
)

𝑀𝑧
(

𝜇𝐷(1)
) (48)

where

𝑇 =
[

0 𝑙0 0
]𝑇
 (49)

𝑋𝐷(1)
= 𝑋 + 𝑇 (50)

𝑋𝐷(2)
= 𝑀𝑧

(

𝜇𝐷(1)
)

𝑋𝐷(1)
(51)

𝐹𝑖|𝐷(3)
= 𝑀𝑦

(

𝜇𝐷(2)
)

𝑀𝑥
(

𝜇𝐷(1)
)

𝐹𝑖| (52)
𝜇𝐷(1) = −atan2

(

𝑦𝐷(1)
, 𝑥𝐷(1)

)

(53)
𝜇𝐷(2) = atan2

(

𝑧𝐷(2)
, 𝑥𝐷(2)

)

(54)
𝜇𝐷(3) = −atan2

(

𝐹𝑆𝑧|𝐷(3)
, 𝐹𝑆𝑦|𝐷(3)

)

(55)

8.3. Solution in areas D
Due to the change of referential 𝐷, the system (7) can

be expressed in two dimensions with the following general
form

𝑥𝐷
= 𝑙1 cos (𝛾) + 𝑙2 cos (𝛽) (56)

𝑦𝐷
= 𝑙1 sin (𝛾) + 𝑙2 sin (𝛽) . (57)

where {𝛾, 𝛽} are respectively equal to {

𝛼1, 𝛼2
} in area D1,

{

𝛼1, 𝛼3
} in area D2, and {

𝛼2, 𝛼3
} in area D3. A first set of

solutions can so be defined using only the geometrical prop-
erties of the system, described in [39, Theorem 11]. Since
the solution found is not unique, the dynamical properties are
added to find the current solution, as described in Theorem 4.
Theorem 4. Consider the system (7) with (𝑥, 𝑦, 𝑧) ∈ ̄𝐴,𝑟
and is inside the area D1, D2 or D3. Considering the
assumptions A1 to A8. In referential 𝐷, let’s define 𝐿𝛾,𝛽 =
{𝛾, 𝛽} the set of solution defined in [39, Theorem 11]. Then

(1) In area D1, 𝛼1|𝐷
= 𝛾 , 𝛼2|𝐷

= 𝛽, 𝛼3|𝐷
= 0,

𝑙11 = 𝑙1, 𝑙12 = 0, 𝑙21 = 𝑙2, 𝑙22 = 0, where (𝛾, 𝛽) ∈ 𝐿𝛾,𝛽
and respect the conditions 𝑬 = 0 and

(

𝑇 𝑆11|𝐷
> 0

)

&
(

𝑇 𝑆12|𝐷
> 0

)

(58)
(

𝐹1.⃖⃖⃖⃖⃖⃗𝐴𝑆 > 0
)

if element 1 is not fixed (59)
(

𝐹2.⃖⃖⃖⃖⃖⃗𝑆𝑅 > 0
)

if element 2 is not fixed (60)
(2) In area D2,𝛼1|𝐷

= 𝛾 , 𝛼2|𝐷
= 0, 𝛼3|𝐷

= 𝛽,
𝑙11 = 𝑙1, 𝑙12 = 0, 𝑙21 = 0, 𝑙22 = 𝑙2, where (𝛾, 𝛽) ∈ 𝐿𝛾,𝛽
and respect the conditions 𝑬 = 0 and

(

𝑇 𝑆11|𝐷
> 0

)

&
(

𝑇 𝑆13|𝐷
> 0

)

(61)
(

𝐹1.⃖⃖⃖⃖⃖⃗𝐴𝑆 > 0
)

if element 1 is not fixed (62)
(

𝐹2.⃖⃖⃖⃖⃖⃗𝑆𝑅 < 0
)

if element 2 is not fixed (63)
(3) In area D3, 𝛼1|𝐷

= 0, 𝛼2|𝐷
= 𝛾 , 𝛼3|𝐷

= 𝛽,
𝑙11 = 0, 𝑙12 = 𝑙1, 𝑙21 = 0, 𝑙22 = 𝑙2, where (𝛾, 𝛽) ∈ 𝐿𝛾,𝛽
and respect the conditions 𝑬 = 0 and

(

𝑇 𝑆22|𝐷
> 0

)

&
(

𝑇 𝑆23|𝐷
> 0

)

(64)
(

𝐹1.⃖⃖⃖⃖⃖⃗𝐴𝑆 < 0
)

if element 1 is not fixed (65)
(

𝐹2.⃖⃖⃖⃖⃖⃗𝑆𝑅 < 0
)

if element 2 is not fixed (66)

with ⃖⃖⃖⃖⃖⃗𝐴𝑆 = ⃖⃖⃖⃖⃖⃖⃖⃗𝐴𝐵1 + ⃖⃖⃖⃖⃖⃖⃖⃗𝐵1𝑆 and ⃖⃖⃖⃖⃖⃗𝑆𝑅 = ⃖⃖⃖⃖⃖⃖⃖⃗𝑆𝐵2 + ⃖⃖⃖⃖⃖⃖⃖⃗𝐵2𝑅.

The proof of Theorem 4 are provided in [39, Appendix G.3].
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Initial referential 1: Translation 2: Rotation around 𝐴𝑧

3: Rotation around 𝐴𝑦 4: Rotation around 𝐴𝑥⃗

Figure 8: Transformations to pass from the referential  to the referential 𝐷. After four transformations, one observes the part
𝐴𝑆𝑅 of the umbilical is contained inside the plan

(

𝑂𝑥⃗𝑦
)

𝐷
.

9. Numerical resolution
To find a solution to Theorem 3 of Section 7, we propose

to solve it numerically using a global optimization. Note that
a global optimization is required because the system has a
lot of local minimum due to the presence of cos, sin and
tan functions. In this section, some comments are made to
reduce the computation time and outline some numerical
problems which can occur.
1) In a numerical resolution, all conditions of form 𝑋 = 0

must be replaced by |𝑋| < 𝜖 where 1≫ 𝜖 > 0. In our
simulations, on takes 𝜖 = 0.01.

2) The Theorem 3 induces to test all 𝛼1 ∈ Λ with Λ =
[−𝜋, 𝜋], which can induce a long computation time.
However, it can be observed that

• A global research on Λ = [−𝜋, 𝜋] is required only
for the first estimation of the system and a first value
of 𝛼1. Then, if the new coordinates, forces and cable
length are close to the parameters of the previous, Λ
can be reduced to an interval Λ𝑘+1 = 𝛼1 (𝑘) + 𝜔
where 𝜔 =

[

− 𝜋
12 ,

𝜋
12

]

or smaller, close to the value
𝛼1 (𝑘) found at the previous iteration 𝑘. Note that in the
case where the solution was found in areas A21 or D3
where 𝑙11 = 0 and so 𝛼1 doesn’t exist, the optimization
must be done for parameter 𝛼2, because the value of
𝛼1 can change abruptly when the area changes.

• Since the calculation for each 𝛼1 are independent,
these ones can be made in parallel.

3) In the numerical resolution, a solution of Theorem 3 is
valid if its energy 𝐸𝐴𝑚min is bellow a defined threshold
𝜂 ≥ 0. The choice of 𝜂 can be tricky because a too
high threshold can admit a solution in a zone where
there should be none, and a too small threshold can
exclude solution where numerical rounding would be
too penalizing. 𝜂 must be found empirically. In our
simulation, we choose 𝜂 = 0.1.

4) The method is very sensible to small the variation of 𝛼1.
A final accuracy of 𝛿𝛼1 = 0.0001◦ is recommend for
simulation. In our simulations, three optimizations’
step were performed: a first loop with an accuracy of
𝛿𝛼1 = 0.01 is performed where all local minimal are
kept regardless of 𝜂, then a second research around
these local minimal with a step of 𝛿𝛼1 = 0.001, then
a last step where the minimal energy 𝐸𝐴𝑚min and the
threshold 𝜂 are considered.
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Part V

Simulation, results,
conclusion
10. Simulations and results
10.1. Examples of system

Simulations have been performed with Matlab R2019b,
using the tool “parfor” with 4 workers (maximum of the
computer used) to obtain a low parallelization of the oper-
ations.

In addition to the example in Figures 5 and 6, nine
examples of umbilical shape are illustrated in Figure 9 to
show the possibilities and performances of the model.

Sub-Figures 9(1) and (2) propose an exploration close
to the surface to avoid hull or underwater cavern ceiling.
Sub-Figures 9(4) and (5) propose an exploration close to the
seabed to avoid and dive between obstacles such as rocks.
Sub-Figure 9(6) adds presence of underwater current, with
a more realistic representation of sub-Figure 9(4) where the
anchor can move (here the “anchor” is a heavy ballast in the
model). This sub-figure illustrates also the main advantage
of using sliding element instead of fixed: the area marked
C* is inaccessible with a fixed ballast, but not with a sliding
ballast. Sub-Figures 9(3) and (9) use a motorized element
to create a vertical force, allowing to explore a cavern in
the wall. Finally, sub-Figures 9(7) and (8) show illustration
of area A0 with theoretical forces, not necessarily useful
or realistic in practice, but showing the performance of the
proposed model.

The configurations expressed in sub-Figures 9(1), (2),
(4), (5) and (6) have been tested experimentally in pool,
see Figure 10. The shape of the umbilical was also tested
at sea with a cable of 15 m with (1) two ballasts, (2)
one ballast and a buoy. Sliding elements were performed
using pulley with a neutral buoyancy. The umbilical used
was a Fathom ROV Tether1 with a single twisted-pair net-
work cable, 4mm in diameter. This thin cable allows very
good flexibility. Conversely, the same model with a four-
pair network cable and a 10mm diameter was too rigid to
achieve good results, even if umbilical management was
possible. A video of the first configuration is available
at https://www.youtube.com/watch? v=BfcRRaSGlJA. Re-
sults are described in Section 10.2.1.
10.2. Results and comments
10.2.1. Experiments results and comparison with

previous models
Experimental results of configurations illustrated in Fig-

ure 9(1), (4) and (6) are described in [37, 38]. Experimental
results of configurations Figure 9(2) and (5) are described
in [36]. In these previous works, each configuration had its
own model, and their accuracy with reality has already been

1https://bluerobotics.com/store/cables-connectors/cables/fathom-rov-
tether-rov-ready/

demonstrated. Tests have been performed in a pool of size 3
m × 4 m, with a depth of 3 m (not the pool where the photos
were taken).

The new general model allows to find the same geometri-
cal results as the previous works. The main difference is that
the computation time is lower than for the previous models,
as the assumptions made in these works allow simplifica-
tions that permit analytical resolution in all cases. It should
be noted, however, that most of these models cannot take
into account the presence of horizontal underwater currents
or three-dimensional cases, and testing a new configuration
would require redoing a complete study of the system. Con-
versely, the new general model enables us to calculate the
cable shape for all configurations using one or two elements.
10.2.2. A third element

A third element between 𝑅 and the ROV can be con-
sidered if, like the anchor, its position relative to the ROV
remains fixed: its coordinates become those of the ROV
in the calculations. This can be used to offset the cable
attachment point, for example with a buoy or ballast, for
better diving between rocks.
10.2.3. Observations made

A hierarchy has been observed between the different
areas. First, if area A0 exists, this configuration always has
priority over all other areas. Then, the areas A (A11, A12,
A21 and A22) have priority over the areas D (D1, D2 and
D3). We tested this hierarchy by prioritizing one solution
over another, and using the system’s energy in case of
conflict between two solutions inside areas A or inside areas
D. The same results were observed as those obtained using
only the system’s energy. Couple with graph theory, this
hierarchy could be an effective method to solve computation
time by testing first area A0, then areas A if no solution
is found and finally areas D. Unfortunately, no theoretical
study has been found to prove this hierarchy, thus there is no
guarantee of the reliability of this method.
10.2.4. Computation time

The computation time is proportional to the number of
areas to evaluate, thus we consider here configurations with
two sliding elements, 𝑖.𝑒. with the greater number of areas.
Between each iteration, a displacement of 0.5m for a cable
of 𝐿 = 15m is performed. The system is solved using
resolution described in Part IV.

After the first estimation of the system, the computation
time at each iteration is between 0.8s and 1.2s with Matlab
R2019b and its tool “parfor” with 4 workers. This compu-
tation time is too long for a real-time implementation. A
possible way to further speed up the real-time performance
of our implementation would be transpiling the Matlab code
to C++ or Python. An implementation on GPU to obtain
a better calculation parallelization would strongly improve
computation time. Other methods of resolution, for example
finite element (with only three elements), could also be
proposed. However, it can be noted that the computation
time of our method is completely independent of the length
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(1) 1 sliding ballast (2) 2 sliding ballasts (3) 1 sliding vertical thruster
𝐹1 = [0, 1, 0]𝑇 𝐹1 = [0, 1, 0]𝑇 , 𝐹2 =

1
2
𝐹1, 𝐹1 = [−1, 0, 0]𝑇

𝑙0 = 0, 𝑙1 = 10 𝑙0 = 6, 𝑙1 = 𝑙2 = 10 𝑙0 = 6, 𝑙1 = 9

(4) 1 sliding buoy (5) 2 sliding buoys (6) 1 fixed or sliding ballast, 1 sliding
𝐹1 = [0, −1, 0]𝑇 𝐹1 = [0, −1, 0]𝑇 , 𝐹2 = 2𝐹1 buoy, both with horizontal underwater current
𝑙0 = 𝑙1 = 10 𝑙0 = 10, 𝑙1 = 6, 𝑙2 = 4 𝐹1 = [0.5, 2, 0]𝑇 , 𝐹2 = [0.5, −1, 0]𝑇

𝑙0 = 0, 𝑙1 = 10, 𝑙2 = 2
C*= F if fixed ballast,

C*=A11 if sliding ballast

(7) Theoretical configuration (8) Theoretical configuration (9) 1 sliding ballast,
to illustrate A0 with opposing forces to illustrate A0 with opposing forces 1 fixed vertical thruster
𝐹1 = [−1, 0, 0]𝑇 , 𝐹2 = [0, 1, 0]𝑇 𝐹1 = [−1, 0.3, 0]𝑇 , 𝐹2 = [1, 0.3, 0]𝑇 𝐹1 = [0, 1, 0]𝑇 , 𝐹2 = [−3, 0, 0]𝑇

𝑙0 = 6, 𝑙1 = 9, 𝑙2 = 6 𝑙0 = 6, 𝑙1 = 9, 𝑙2 = 6 𝑙0 = 6, 𝑙1 = 9, 𝑙2 = 6

Figure 9: Example of configurations possibles obtained with the proposed model. Areas possible/visible are noted in the
illustrations. Grey areas: theoretical obstacles to illustrate the main interest of the illustrated configuration. In subfigure (1)-(3),
only area A1 exist (with A11 = A12 because only one element). Note that it’s the ratio between two lengths or distances that
matters, not the unit.

of the umbilical, unlike the finite element methods where
the computation increases linearly with the number of nodes,
and hence the length of the cable (as in [13]).
10.3. Limits of the method and overview

The model provides a good vision of the system in
offline, allowing to build a umbilical equipment and observe
its behavior. However, the model has some limitations.

First, as already discussed in Section 10.2.4, the com-
putation time is actually the major weakness of our method.
Suggestions for improvement have been made in Section 10.2.4.

The method is also limited to two elements: except the
case exposed in Section 10.2.2, each element added would
multiple the number of possible areas by three, making the
solution too complex to find and/or non-efficient in terms of
the computation time.
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Experiment of (1) Experiment of (2)
1 sliding ballast 2 sliding ballasts

Experiment of (4) Experiment of (5)
1 sliding buoy 2 sliding buoys

Experiment of (6) : 1 sliding ballast and 1 sliding buoy

Figure 10: Configurations exposed in Figure 9 tested in pools.
A robot BlueROV2 is used for the experiements.

More elements could be added with an more efficient
computation time by

• Use of a less general model, for example in 2D and/or
with elements having a specific orientation, or using
more fixed elements, like in [37, 36].

• Changing the method of resolution: solving the prob-
lem with theorems exposed in Part IV may be heavy
for some areas. By retaining assumption and proper-
ties proven in Part II, another type of resolution such
as finite-element might be more efficient.

It can however be remark that in practice, install more than
two elements can be useless or more unstable.

Another practical problem is knowing the forces applied
to the elements. While the forces of weight, buoyancy or
motorization are easy to obtain, it is more complex to know
the forces of underwater currents or other external factors in
practice. However, this problem is common to all umbilical
models.

It can also be noted that the system is solved with
quasi-static equilibrium hypotheses. Solutions to respect the
hypotheses of quasi-static have been proposed in Section 4.2
and a resolution of the system in dynamic will be the subject
of future studied.

10.4. Comparison with some existing models
This section compares our method with several open-

source ROV models with tether.
[18, 17] proposes a position-based models used in a

larger simulator of underwater environment. The tether
model is designed for visual simulations: it is visually
realistic, but does not correspond to real physical value
as it does not deal with the forces applied to the cable.
These simplifications enable it to have a lower computation
time than our method, and to model an umbilical moving
freely underwater without our assumption A3. However, it
cannot take into account additional elements such as ballast
unlike our study. Furthermore, no experiments have been
carried out to verify the validity of the model, although some
experiments have been performed with our model.

In [41], the tether has been modeled using a lumped-
mass approach. An external force can be considered on each
node, which would allow to consider the forces of external
elements as ballast, although this case has not been studied.
However, taking into account sliding forces on the cable
would be more complex, and the computation time increases
linearly with the number of nodes, i.e. with the tether’s
length in opposite with our study . Finally, the impact on
the ROV by the tether can be evaluated, as we perform in
Part III with the study of the forces applied on the cable.

In both models, the umbilical is supposed to be neutrally
buoyant with no variation of length, as in assumptions A1
and A2. More generally, it may be noted that the greatest
interest of our model is the sliding element model, little stud-
ied in the literature where only fixed elements are generally
considered. These sliding elements are at the center of the
self-management strategy we propose to avoid entanglement
and control the shape of the umbilical. This idea is closer to
the work in [31] which simulates the dynamics of a variable-
length cable in order to reduce its action on the ROV. In this
study, fixed buoys are used to relieve some of the cable’s
weight. The control of the tether shape is more limited than
with our method, but it considers a much longer cable and
its dynamics are provided where our study requires a quasi-
static equilibrium hypothesis.
10.5. Umbilical in presence of waves

In presence of waves, the position𝑂 of the boat becomes
sinusoidal, impacting the position of the anchor 𝐴, and then
buoys’ positions and forces inside the umbilical. When the
anchor does not touch the seafloor, this one can keep the um-
bilical stretched during the descent phase if its weight allows
it to accelerate and fall faster than the wave, as described
more in [37]. However, in case where the anchor touches
the seafloor (permanently or temporally due to the waves’
oscillations), the umbilical cannot be kept taut continuously,
which can be dangerous for the material and lead to a cable
breakage.

To avoid this problem, this section proposes a strategy
to counter the wave’s effect on the umbilical between the
anchor and the ROV while avoiding an umbilical breakage,
illustrated in Figure 11. Here, the umbilical between the boat
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Figure 11: System to counter-balance wave effect on the
umbilical and the ROV. Green: additional cable 𝑙3, fixed buoy
𝐵0 and sliding ballast 𝑀0. The system in green allows to
prevent waves’ effects in the umbilical between 𝐴 and 𝑅 and
avoid cable breakage.

𝑂 and the anchor 𝐴 is divides in two parts. The first part 𝑙3between the boat and a fixed buoy𝐵0, the second 𝑙01 between
the buoy 𝐵0 and the anchor 𝐴. A sliding ballast 𝑀0 can
move freely on the cable 𝑙3 between 𝑂 and 𝐴. The force of
the ballast is chosen such it can accelerate and fall faster than
the wave but stay smaller than the buoy’s strength. Moreover,
the anchor’s weight is much stronger than the force of buoy
𝐵0. The anchor 𝐴 is put on the seafloor at 𝑦floor. Since the
influence of waves is maximum at the surface and decreases
with depth, to become negligible, the length 𝑙01 is chosen
such direct waves influence on the buoys 𝐵0, 𝐵1 and 𝐵2is negligible, 𝑖.𝑒. one has at least 𝑙01 < 𝑦floor − ℎ𝑤 where
ℎ𝑤 the wave’s height. Finally, the length 𝑙3 is chosen such
the ballast can never touch the seafloor and cannot come in
contact with the buoy 𝐵0, 𝑖.𝑒. 𝑙3 < 𝑦floor −

(

ℎ𝑤 + ℎ𝐵
) and

𝑦floor + ℎ𝑤 < 𝑙3 + 𝑙01 where ℎ𝐵 the ballast height.
Using this system, when boat moves due to the action of

the wave, the sliding ballast falls or works in opposition to
keep the cable 𝑙3 stretched in all situations, while the buoy
𝐵0 oscillates to absorb the waves’ effect, and the anchor stays
immobile on the seafloor. Since the anchor stays immobile,
no action from the waves affects the part of the umbilical
between 𝐴 and 𝑅.

11. Conclusion
This paper presents a novel approach to passively man-

age the umbilical of an ROV by adding additional ele-
ments such as ballasts, buoys, or an oriented thruster. The
purpose is to stretch the umbilical in a controlled manner,
ensuring a predictable shape and preventing entanglement
with obstacles or itself. These elements can either be fixed
or move freely along the umbilical, with stops in place
to restrict constant contact. Unlike previous studies, this
proposal introduces a general model capable of estimating
the three-dimensional shape of the umbilical regardless of

the applied force’s orientation, allowing to consider the pres-
ence of underwater currents, passive or motorized elements
on the tether, and the inclusion or exclusion of a TMS.
The geometry and forces applied upon the umbilical are
calculated using a quasi-static assumption.

The model provides a good vision of the system, allow-
ing to build a umbilical equipment and observe its behavior.
Example of different set up, adapted to specific missions, are
proposed and tested in pool. The limits of the method have
been discussed, specifically the computation time which can
be improved. Suggestions for improvement have been made.

These improvements will be the subject of future works.
Future works will also study the dynamics instead of a quasi-
static equilibrium, with also variations of the sea current and
uncertainties on parameters. Finally, measurements at sea
during a true mission will be performed. the curvature of
the cable will also be taken into account.
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