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Abstract

Transfer learning, also referred as knowledge transfer, aims at reusing knowledge from a source

dataset to a similar target one. While several studies address the problem of what to transfer, the

very important question of when to answer remains mostly unanswered, especially from a theoretical

point-of-view for regression problems. A new theoretical framework for the problem of parameter

transfer for the linear model is proposed. It is shown that the quality of transfer for a new input

vector depends on its representation in an eigenbasis involving the parameters of the problem.

Furthermore, a statistical test is constructed to predict whether a fine-tuned model has a lower

prediction quadratic risk than the base target model for an unobserved sample. Efficiency of the

test is illustrated on synthetic data as well as real electricity consumption data.
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1. Introduction

The traditional statistics and machine learning approach is to learn a model on training data

and then perform inference on some new unseen data. This paradigm supposes two main underlying

hypotheses, which are not necessarily true in practice. The first one is that enough samples are

available to learn a good model which will be used to perform the predictions. However, in many

real-life situations, data will be scarce (either because it is difficult or expensive to label or only

newly available). Take for instance the problem of predicting orders for a newly contracted customer.

Without a sufficiently large order history, a learned model may yield poor forecasts. Another

hypothesis is that the data on which inference will be performed stems from the same underlying

distribution as the one used for training. In practice, data often evolves with time and space, and

thus rigorously speaking it will rarely be true. For example, in natural language processing (NLP),

words and their frequency of usage change over time (as well as new words being introduced).

Therefore, a state-of-the-art text classification model learned on a corpus a decade ago may not be

perfectly suited anymore and have deteriorating results.

Nonetheless, in the previous example the model learned on the 10 year-old corpus will probably

still hold some truth and would simply require to be "updated" on a recent corpus. As for the

customer order prediction problem, information from long-term customers could be leveraged as

they should hold at least some similarities in behavior patterns with the more recent ones. This is

the setting of transfer learning (TL), which gained a lot of attention in the statistics and machine

learning communities in the past decades. Just like humans who generally use their experience

and knowledge to adapt to a new task instead of learning from scratch (e.g. learning how to

play the guitar after knowing how to play another instrument), the concept of transfer learning

is to use a source task to improve the results on a target task which is of main interest (Weiss,

Khoshgoftaar & Wang, 2016). Pan & Yang (2009) and Yang, Zhang, Dai & Pan (2020) are two

grounding references in transfer learning where the authors enumerate three key questions. What

kind of knowledge can be transferred: this aspect mostly focuses on finding the informa-

tion that common between tasks and what can be brought from the source to the target. How

transfer can be achieved: it deals with the specific method by which the transfer is performed.

The authors cite 4 types of approaches: instance-based algorithms, where the source samples

are added to the target dataset with a certain weight (Cai, Gu, Ma & Jin, 2019); feature-based
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algorithms, where features are crafted with the help of the source for the target (Yin, Yu, Sohn,

Liu & Chandraker, 2019); model or parameter-based transfer, where a source model or are part of

it is transferred to the target one; and relation-based transfer, where the associations within the

source data are propagated to the target samples (Mihalkova, Huynh & Mooney, 2007). When

to use transfer learning: if source and target are too dissimilar, the transfer procedure can be

detrimental. Thus, this aspect deals with finding the situations when transfer should be performed,

but has received significantly less attention than the two first ones. Moreover, the question is

crucial from a practical aspect in order to make the decision of using a transfer scheme or not.

Of course, the transfer can not be beneficial in every situation (for instance is the source and tar-

get data sets are too dissimilar) and thus a tool to help the practitioner to make the decision is useful.

This is why in our work we focus on when to perform parameter transfer between two linear

regression tasks. We have at our disposal a target dataset DT = {XT ,YT } with

YT = XTβT + εT ,

where YT = (y1, y2, . . . , yNT
) is the response vector of size NT , XT ∈ RNT×D is the design matrix

with D predictors (including the eventual intercept) and εT ∼ N (0, σ2T INT
) is a vector of identically

distributed and independent (i.i.d.) Gaussian noise (with IN denoting the identity matrix of size N).

Supposing that XT has full column rank, the commonly used estimator is the ordinary least squares

(OLS) one defined by β̂T = (X⊤
T XT )

−1X⊤
T YT . Predictions for a new sample x is then achieved by

using ŷT = x⊤β̂T . However, if the target sample size NT is too small, the quadratic risk of the

prediction using β̂T defined by R(ŷT ) = E[(y − ŷT )2] will be high as it decreases in O(1/NT ). Let

us then suppose we have a source dataset D = {XS ,YS} with:

YS = XSβS + εS ,

where YS ∈ RNS , XS ∈ RNS×D and εS ∼ N (0, σ2S INS
) for which NS ≫ NT . Intuitively, if the source

and target tasks are "close" (in a sense to refine), using this source data available will compensate

the lack of target data. Hence, our goal is to construct an estimate of the coefficients β̂TL such

that the prediction error of ŷTL = x⊤β̂TL defined by R(ŷTL) = E[(y− ŷTL)2] will be lower than the

target one R(ŷT ). The procedure is illustrated in Figure 1.
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Figure 1: Parameter transfer procedure for the linear model

The framework of parameter transfer for the linear regression has been extensively studied in

the literature. On the theoretical level, Maurer (2006) establishes bounds on the average prediction

error over m tasks for a linear predictor in a Hilbert space, but do not investigate in which situation

learning on multiple sources could be beneficial for a specific target. In Lounici, Pontil, Tsybakov

& Van De Geer (2009); Lounici, Pontil, Van De Geer, Tsybakov et al. (2011) the authors consider

the setting of sparse multi-task learning in high dimension with a common sparsity pattern within

the regression vectors. They obtain oracle inequalities on the prediction error, albeit for the same

data on which the parameters were learned. A more practical study is proposed in Bouveyron &

Jacques (2010) to transfer the parameters of a linear model. After obtaining an estimate β̂S of

the coefficients on the source data, the enriched estimation is obtained by a linear transformation

β̂TL = Λ̂β̂S where Λ̂ = diag(λ̂0, λ̂1, . . . , λ̂D−1) (λ̂0 corresponding to the intercept) is calculated

on the target set only. Since learning all the coefficients of Λ̂ would erase all the benefits of

transfer, the authors rather constraint Λ̂ to have only 1 or 2 coefficients to learn. For example

it could be λ̂1 = · · · = λ̂D−1. Their results showed significant improvement when the number of

target samples is small on two real datasets. Nonetheless, the most successful approach introduced

in their paper corresponds to the situation where Λ̂ has only two free coefficients, which gives

very low adaptation freedom. Chen, Owen, Shi et al. (2015) propose another transfer method
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(referred to as "enrichment") where the transferred estimator is obtained by a matrix combination

of the source and target ones β̂TL = W β̂T + (ID −W )β̂S where W is a matrix that can take

different forms. In their paper, the two forms of interests are W = ω ID (convex combination of

source and target estimations) and W = Wλ obtained by adding a ridge penalty accounting for

the difference between source and target tasks. Their main result consists in proving that under

certain hypotheses, a certain choice of ω yields a β̂TL that has lower prediction error than β̂T , and

they propose a plug-in estimator for it. They also propose a plug-in estimator for an optimal Wλ.

However, their results remain mainly theoretical. Very recently, new results have been obtained for

the problem of transfer for linear regression in Dar & Baraniuk (2020, 2021). Both focus on the

problem of leveraging source coefficients for the estimation of the target in the theoretical framework

when the features are i.i.d. according to N (0, ID). In the first paper they transfer coefficients

directly, whereas in the second one they use a "fine-tuning" scheme that consists in adding a

Ridge penalty similarly to Chen et al. (2015). They prove that transfer is beneficial in the under or

overparametrized cases. Furthermore, they prove that transfer learning can overperform the Bayesian

framework even when using the true prior that served to generate the coefficients in their experiments.

Thus most of the aforementioned papers remain theoretical or are too restrictive for real estima-

tion or prediction problems. Moreover, they are lacking one important transfer approach, namely

fine-tuning by gradient descent. It consists in reusing a part of the learned parameters on the

source (for instance neural network layers or linear model coefficients) and adjusting them on the

target with a few gradient iterations (Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura & Summers,

2016). The main question with transfer is hence when to perform it, i.e. when it will be beneficial.

Ben-David, Blitzer, Crammer, Kulesza, Pereira & Vaughan (2010) indirectly address the issue of

negative transfer for the problem of binary classification. Considering the transfer problem as a

special case of a multi-task objective, not only do they obtain an upper bound on the transfer

prediction error, but they also prove the existence of phases depending on the number of samples

NS and NT available for source and target respectively. Fawaz, Forestier, Weber, Idoumghar &

Muller (2018) approach the problem empirically: after defining a distance between datasets based

on the dynamic time warping (DTW), they show that in general negative transfer will happen when

the defined distance between source and target is large.
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We propose to address this issue practically albeit with theoretical considerations in the case

of linear regression. Transfer is said beneficial for a new sample (x, y) when E[(y − x⊤β̂TL)
2] <

E[(y − x⊤β̂T )
2]. We want a practical decision rule that tells us that fine-tuning will be beneficial

for this instance x. In our work we derive a new quantity referred as gain quantifying the benefits

of transfer, without any assumption except the one of the linear model. While the hypothesis of

a linear model may seem restrictive, it includes many variants such as generalized linear models

(GAM) (Wood, 2017) that make it possible to capture highly nonlinear effects through the use of

spline bases. We will also show that it is possible to derive a hypothesis test to predict in practice

whether the transfer is positive or not. The contributions of the paper are the following:

1. We formalize the problem of negative transfer for the fine-tuning of a linear regression model.

Our framework is valid for a broad class of transfer procedures for the linear model found in

the literature.

2. We show that the transfer gain for a new feature vector x depends on its representation on an

eigenbasis depending on the parameters of the linear model.

3. We suggest a statistical test to choose for a new observation x between the target model or a

fine-tuned one.

4. The statistical test has been applied on synthetic data as well as two sets of real electricity

consumption data sets, proving the benefits it brings.

The rest of the paper is organized as follows. Section 2 introduces the theoretical framework and

methodology leading up to the test of transfer. In Section 3 we illustrate the benefits brought on

synthetic data as well as real data, while Section 4 concludes our work and suggests further research

possibilities. Finally, in the Appendix proofs of theoretical results are given.

2. Framework & Methodology

We suppose that the matrices Xν (ν ∈ {S, T}) are full-rank such that Σν = X⊤
ν Xν are both

invertible. The transfer methodology on which we focus is fine-tuning. The idea is to start from

the source estimator β̂S = Σ−1
S X⊤

S YS and to perform batch gradient descent (GD) of stepsize α on

the least-squares objective JT (β) =
1

2
∥YT −XTβ∥2. Intuitively the idea is hence to incorporate
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information of the few target samples available with the source estimate as basis. For the linear

model the following result can be proven (see Appendix A.1).

Proposition 1. At iteration k ∈ N the fine-tuned estimator of βT is:

β̂k = Akβ̂S + (I −Ak)β̂T , (1)

where A = ID − αΣT and ID is the identity matrix of size D.

Therefore the fine-tuned estimator is a matrix combination of source and target estimators. In

fact this observation can be taken further in the right vector basis to give more insight on this

expression. Since ΣT is symmetric and real-valued, let P be an orthogonal diagonalization basis

matrix such that ΣT = PΛP⊤ with Λ = diag(λi, i = 1, . . . , D) the diagonal matrix of eigenvalues

of ΣT . Let β̃ν denote the coordinate of β̂ν in ΣT ’s eigenbasis. Hence β̂ν = P β̃ν . As detailed in

Appendix A.2, reusing equation (1) yields:

β̃k = (ID − αΛ)kβ̃S + (ID − (ID − αΛ)k)β̃T , (2)

which means that for every coordinate i in this basis we have:

β̃
(i)
k = (1− αλi)kβ̃(i)S +

(
1− (1− αλi)k

)
β̃
(i)
T . (3)

Hence when α is small enough and in the right basis, each coordinate of the fine-tuned coefficient

is a convex combination of the source and target coefficients, albeit with different weights depending

on the eigenvalues λi. For small eigenvalues of ΣT the fine-tuning procedure will give a larger weight

to the source whereas it is the opposite for larger ones.

Note that these expressions relate this transfer strategy to the ones introduced in Chen et al.

(2015), where they consider two types of transfer for the linear model. The first one is the pooling

of source and target data, leading to estimators of the form β̂λ = Wλβ̂S + (ID −Wλ)β̂T where

Wλ is a matrix depending on the penalty parameter λ > 0. The second one is a simple convex

combination β̂(ω) = ωβ̂S +(1−ω)β̂T for a constant weight ω ∈ [0, 1]. Hence transfer by fine-tuning

is between those two approaches: in the right basis and for α small enough each coefficient is a

convex combination of the source and target ones, albeit with different weights depending on the

eigenvalue λi which allows for more adaptability than for a constant ω. It is interesting to note that

in the end two popular transfer approaches, namely data pooling and fine-tuning yield estimators
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of the same class β̂(W ) = W β̂S + (ID −W )β̂T with specific forms of W ∈ RD×D. In the case of

data pooling the expression of W is more complex and it is generally not symmetric (see Chen

et al. (2015)). To our knowledge such a strong relationship between the approaches has never been

highlighted in literature before.

2.1. Transfer Gain

The quality of a model will be evaluated for a new independent sample (x, y) drawn from the

underlying distribution of the target data. We want to know if for this given x the fine-tuned

model Mk relying on the estimator β̂k learned on the source data but fine-tuned on the target

one is better than the pure target model MT using the basic estimator β̂T . Following what was

discussed in the introduction we introduce the algebraic gain ∆Rk(x) for sample (x, y) defined by:

∆Rk(x) = E[(y − ŷT )2]− E[(y − ŷk)2] where ŷT = x⊤β̂T and ŷk = x⊤β̂k. We have the following

result in the case of fine-tuning.

Proposition 2. For transfer by fine-tuning as presented by equation (1), at iteration k the gain is:

∆Rk(x) = x⊤Hkx where Hk = σ2T (Σ
−1
T − α

2ΩkΣTΩk)− σ2SAkΣ−1
S Ak −AkBAk, (4)

with Ωk = 1
αΣ

−1
T (ID −Ak), B = (βT − βS)(βT − βS)⊤. When it is positive, the transfer is beneficial

for the sample (x, y), and negative otherwise.

Proof. See Appendix A.3.

Therefore it can be seen that the matrix Hk plays a significant role for the transfer problem. The

gain will be positive for vectors in the span of the eigenvectors of Hk associated to positive eigenvalues.

The role of the noise in the data as well as the distance between the regression parameters also

becomes clear with this formula and seems intuitive. When ∥βS − βT ∥ is large, i.e. the means of

yν ’s will differ significantly, transfer is likely to be detrimental. When σ2T is large (the target data

is noisy), the gain will increase since learning from the target data may be difficult. Note that

this expression of the gain does not require any hypothesis on x, which is a major difference with

previous works. We also see that a uniformly positive transfer may be impossible, and that the

benefits of transfer are a local property: therefore for some x it may be beneficial to use a fine-tuned
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model, whereas for others not. From (4) bounds on the prediction error can easily be derived:

E[(y − ŷk)2] ≤ E[(y − ŷT )2]− λmin (Hk) ∥x∥2 ,

E[(y − ŷk)2] ≥ E[(y − ŷT )2]− λmax (Hk) ∥x∥2 ,

(5)

where λmin and λmax respectively denote the minimum and maximum eigenvalues of ΣT . Again

those bounds do not require any assumptions and hold for any x ∈ RD and only require Hk to be

symmetric, which is the case when performing transfer by fine-tuning. As one can see the transfer

is always positive when λmin(Hk) > 0. More generally, a similar expression to (4) is possible for

any estimator of the form β̂(W ) = W β̂S + (ID −W )β̂T . However when W is not symmetric,

interpretability of transfer in terms of eigenvector direction is lost and the inequalities of (5) cannot

be established in the same way. Consequently if Hk was accessible, one would know which model to

use exactly for a given x. However the issue is that many quantities in the matrix are unknown,

namely the true regression parameters βν and the true variances of the noise σ2ν . A naive approach

would consist of considering the "plug-in" estimate Ĥk by replacing the parameters by their estimates,

but experiments have shown that this is a rather poor choice in most situations. Another strategy

is therefore proposed in the next section. Finally we emphasize again that x is potentially a novel

observation on which we require no hypothesis. In the aforementioned papers the bounds hold only

under specific conditions that did not allow for any x ∈ RD, making our result broader.

2.2. Statistical Test for the Positiveness of Transfer

We simplify our problem to knowing in advance whether the transfer will be beneficial or not, i.e.

if ∆Rk(x) > 0. Therefore an alternative is to define the problem as hypothesis testing. Considering

that Mk is likely to be biased, we choose the null hypothesis H0 : {∆Rk(x) ≤ 0} against the

alternative H1 : {∆Rk(x) > 0}. This boils down to choosing between two models, the pure target

one and the fine-tuned one for a given target sample. The idea of achieving the best performance in

transfer learning by taking advantage of multiple models could be related to Gao, Fan, Jiang & Han

(2008) where they weighted classifiers according to the local properties of target observations. The

main result of the paper is given in Theorem 1.

Theorem 1. Let x ∈ RD be any observation. Let σ̂2S and σ̂2T be the estimations of the noise

variances defined by σ̂2ν =
∥∥∥Yν −Xνβ̂ν

∥∥∥2 /(Nν −D). Let ρ be such that ρ ≥ ∥βT − βS∥ /σT . Then
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the following test is of approximate level a to test H0 against H1:

1

( σ̂2T
σ̂2S

x⊤(Σ−1
T − α2ΩkΣTΩk)x− ρ2

∥∥Akx∥∥2
x⊤AkΣ−1

S Akx︸ ︷︷ ︸
:=ψk(x)

> q1−a
)
, (6)

where q1−a is the quantile of order 1− a of the F(NT −D,NS −D) Fisher-Snedecor distribution of

degrees of freedom NT −D and NS −D1. The p-value for the observed data is:

pk(x) = PF∼F(NT−D,NS−D)

(
F ≥ ψk(x)

)
. (7)

Proof. See Appendix A.5.

The parameter ρ can be seen as a prior on the distance between the source and target distribu-

tions. Indeed, in the gaussian case one can easily prove that 2DKL

(
N (x⊤βS , σ

2
S)||N (x⊤βT , σ

2
T )
)
≤

g
(σ2

S

σ2
T

)
+ρ2 ∥x∥2 where DKL denotes the Kullback-Leiber (KL) divergence and g(u) = u− log(u)− 1.

The larger ρ is, the more significant the difference between source and target distributions is allowed

to be and thus the less likely the transfer will be beneficial. When ρ = 0 (i.e. βS = βT ) only the

variances differ. Note that the Cauchy-Schwarz approximation lowers the power of the test (see

appendix for more details). An issue is that pk(x) −→ 0 when k → +∞. Hence when the number

of gradient iterations goes to infinity, the test will almost systematically reject the null hypothesis,

despite the gain converging to 0. Elements of mathematical proof are given in the Appendix A.6,

as well as numerical illustrations of the phenomenon. Therefore a choice of a reasonable k is of

crucial importance. Finally the test can only be obtained when using a symmetric weight matrix W ,

making it not possible to generalize to Chen et al. (2015) for now for instance.

Hence with this test we can define a new modelM∗
k which usesMT when the null hypothesis is

kept (typically pk(x) > 0.05) and the fine-tuned modelMk otherwise. This procedure of use of the

test is summarized in Figure 2

1The Fisher-Snedecor distribution of degrees of freedom d1 and d2 is defined by F = F1/d1
F2/d2

where the Si are

independent chi-squared distributed of degree of freedom di.
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New features x

pk(x) < 0.05

UseMT

ŷT = x⊤β̂T

UseMk

ŷk = x⊤β̂k

pk(x) ≥ 0.05

Figure 2: Usage of the test defining M∗
k in practice.

2.3. Choice of α, k and ρ

Three quantities must be tuned before usage of the test: the gradient step size α, the number of

iterations k and the approximation parameter ρ. Equation (3) suggests that 0 < α < 1/λmax(ΣT )

so that the coordinates remain a convex combination of the source and target ones. Additionally

according to Bertsekas (2015), a step size α∗ = 2/
(
λmax(ΣT ) + λmin(ΣT )

)
allows to converge at

maximal speed. However in our case convergence to β̂T is not desirable since it would erase benefits

from β̂S . Taking α = α∗/5 or α∗/10 has proven to be a good choice in practice since it ensures the

condition 0 < α < 1/λmax(ΣT ) while remaining close to α∗. Experimentally we observed that a too

low value of α could be compensated by a larger k, making the choice of the gradient step size not

crucial. More recent results in a theoretical framework similar to Dar & Baraniuk (2020) have even

proven that the choice of the gradient step size α has no impact on the maximum value of the gain,

thus comforting our experimental observations.

Ideally, one would choose the smallest k such that λmin(Hk) ≥ 0 (whose existence is not ensured,

but would ensure an exclusively positive gain). However it depends on unknown parameters, and

again a plug-in estimate yields poor results. We suggest two empirical approaches to determine

the number of iterations k, although it remains a work in progress. The first one is to proceed

by leave-one-out cross-validation (LOOCV) on the few samples of target data available. We let

X
(−i)
T and Y

(−i)
T denote the data where the sample i has been removed and β̂

(−i)
T the corresponding

estimator. Thus for each sample i = 1, . . . , NT we compute the estimator β̂
(−i)
T and then perform

the fine-tuning procedure with gradient descent, obtaining an estimator β̂
(−i)
k . The prediction error

for Y (i) can then be calculated, yielding in the end the LOOCV error (8):

1

NT

NT∑
i=1

(Y
(i)
T − Ŷ

(i)
T )2 − (Y

(i)
T − Ŷ

(i)
k )2. (8)

The number of gradient iterations k is taken to maximize this quantity, with an eventual
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compromise to avoid an excessive number of iterations (akin to an elbow rule). The following

approach yields satisfactory results as well and completes the LOOCV method. Let us denote by

NT = N (x⊤βT ;σ
2
Tx

⊤Σ−1
T x) and Nk = N (x⊤βk;x

⊤Vkx) the distributions of the predictions, where

βk = E[β̂k] and Vk = σ2SA
kΣ−1

S Ak + σ2Tα
2ΩkΣTΩk. It can be proved that (see Appendix A.7):

∆Rk(x) = −2σ2T x⊤Σ−1
T xDKL(Nk||NT )− σ2T x⊤Σ−1

T x ln
( x⊤Vkx

σ2T x
⊤Σ−1

T x

)
(9)

Let Uk(x) denote the second term of the right-hand side. Ideally one would choose k∗ maximizing

the gain accross all possible x according to their distribution Px, i.e. k∗ = argmaxkEx∼Px

[
∆Rk(x)

]
.

It can be shown that there exists a constant C > 0 such that:

Ex∼Px

[
∆Rk(x)

]
≥ −2C Ex∼Px

[
x⊤Σ−1

T x
]
+ Ex∼Px

[
Uk(x)

]
.

Considering the first term on the right hand side does not depend on k, maximizing Ex∼Px

[
Uk(x)

]
will maximize the gain as well. Since the true distributions are unknown, as usual we approximate it

with an empirical average on both source and target to have more samples at disposal, thus yielding

Uk. Finally since the amount of target data is limited, we cannot afford to perform this procedure

on a hold-out set. Therefore k is selected by maximizing Uk := 1
NS+NT

∑NT+NS
i=1 Uk(xi) where the

true variances have been replaced by their empirical counterparts. In case of absence of a local

maximum, the elbow rule is applied instead. The two method will be tested, and as the results will

show the criteria mostly coincide.

Finally, the choice of ρ is performed by considering a range of possible values (typically between

10−5 and 1) and checking the precision and recall of the test when used on the joint training data

DS ∪DT . We refer by k̂ and ρ̂ the choices of k and ρ made with this procedure. The whole transfer

procedure has been summarized in Algorithm 1.
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Algorithm 1: Full proposed transfer procedure.
Choice of hyperparameters α and k (Section 2.3):

Set α to between α∗/10 and α∗/5.

Calculate the LOOCV and Uk to select k̂.

Perform k̂ GD iterations (Section 2).

Choice of hyperparameter ρ (Section 2.3):

Set ρ by checking the recall and precision of the test on DS ∪ DT .

for every new sample x do
Calculate the p-value pk̂(x)

if pk̂(x) < 0.05 then
ŷ = x⊤β̂k (reject H0);

else
ŷ = x⊤β̂T (keep H0);

end

end

3. Numerical Experiments

In this section, the benefits of our framework, with the test in particular, are illustrated on

synthetic and real-world datasets. Our goal is twofold: first we want to assess the fine-tuning

procedure for the linear model itself, ensuring that it yields a strong prediction that performs better

than the one obtained using the pure target modelMT . To make the assessment even more relevant,

we will compare our results with two enriched estimators from the literature:

• The modelM2 of Bouveyron & Jacques (2010), which yielded the best results in their study.

It obtains the fine-tuned estimator by β̂FT = Λ̂β̂S where Λ̂ = diag(λ̂0, λ̂1, . . . , λ̂1) with the

two coefficients λ̂0 (for the intercept) and λ̂1 calculated on the target data.

• The modelMλ̂ based on the estimator β̂λ̂ =Wλ̂β̂T + (ID −Wλ̂)β̂S with λ̂ as given in Chen

et al. (2015).

The second objective is to assess how beneficial the test on the gain introduced in this paper is,

i.e. how much improvement is brought withM∗
k overMk.
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3.1. Synthetic - Polynomial Data

First we consider the problem of the estimation of the coefficients of a target polynomial

PT (x) = βT,0 + βT,1x + βT,2x
2 + βT,3x

3 where βT = (−1,−1.8, 1.2, 1)⊤. The advantage of this

example lies in how it can be visualized, as one will see afterwards. We have NT = 20 independent

target observations yT,i = PT (xT,i)+ εT,i with xT,i randomly sampled in [−3, 1] and εT,i ∼ N (0, σ2T ).

Additionally we have NS = 100 independent source observations yS,i = PS(xS,i) + εS,i with xS,i

sampled in [0, 3] and εS,i ∼ N (0, σ2S). The coefficients of PS are the ones of PT plus a gaussian

noise of mean 0 and standard-deviation 0.3. Finally the noise variances are set to σ2T = σ2S = 0.5.

This situation corresponds to mostly disjoint supports of source and target, for which transfer can

be beneficial. Considering the locations of the samples for the source and target, the transfer is

expected to be beneficial mostly for x ≥ 1.

The choice for the three hyperparameters follows the strategies proposed in Section 2.3. The step

size is set to α = α∗/5. For the number of gradient iterations, we aim at maximizing the LOOCV

error on the target set and the criterion Uk calculated on DS ∪ DT which have been represented in

Figure 3. While both criteria reach a maximum around k = 1000 iterations, their growth significantly

slows down after 500 iterations. Since β̂k converges towards β̂T , taking a too high value of k risks to

erase the benefits brought by the transfer procedure. This is why we take k̂ = 500 here for instance.
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Figure 3: Criteria for k (NS = 100, NT = 20)

Finally the value of ρ is obtained by applying the test on the training data DS ∪DT and finding
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a good compromise between recall and precision on it. It must not be taken too small as else it will

systematically reject H0, and usually we set it such that it corresponds to the "edge of the cliff"

where the recall drops and precision soars as represented in Figure. 4.
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Figure 4: Choice of ρ̂.

The true polynomial PT as well as different estimates have been represented Fig. 5 with the

gain defined by (4). As one can see, the pure target estimate is good for x ≤ 0 typically but very off

the true curve for x > 0. The estimates obtained by Chen et al.’s approach and ours are very close

in this instance and significantly improve upon the pure target estimation. However Bouveyron &

Jacques (2010)’s estimate is mostly off as well (except for high values of x) because of the lack of

adaptability inherent to the method as discussed in introduction. These observations concur with

Figure 6 (a) where the gain is positive for the corresponding x’s. One also sees the benefits brought

by our tuning method for k over a choice of k = 50 for instance, which does not leverage the target

set enough. Finally the p-value of our test has been represented in function of x Figure 6 (b). It is

high (i.e. the null hypothesis is kept) for x < 0, which corresponds to the domain where the target

estimate was decent. However on the domain where the target model faired poorly and whereMk̂

was close to the true polynomial the p-value is small, which is conformed to intuition.
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Figure 6: Overlap of PT and its different estimates.

In order to assess the results, we also compare the coefficient estimation error
∥∥∥β̂ − β̂T

∥∥∥ as well

as the prediction root-mean-square error (RMSE)

RMSE =

Ã
1

T

T∑
t=1

(yt − ŷt)2,
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where T the number of (new) test samples. Thus in total five different predictions errors are given

corresponding to the three aforementioned benchmarks (MT ,M2 from Bouveyron & Jacques (2010)

and Mλ̂ from Chen et al. (2015)) as well as our fine-tuned model Mk̂, and the one constructed

through the statistical test M∗
k̂
. In order to evaluate the performance brought by our test, we

consider the oracle prediction which knows in advance whether to use MT or Mk̂ (i.e. when

E[(y − ŷk)2] < E[(y − ŷT )2], ŷk is used for prediction, and ŷT otherwise). Thus the closer M∗
k̂

is

to the oracle, the better. The results are given in Table 1. Both the pure target model and the

one of Bouveyron & Jacques (2010) yield very poor results as was expected. The best results are

obtained here with our fine-tuned model for the prediction, albeit Chen et al.’s estimate is better

for estimating the coefficient βT itself. Finally the benefits of our test is illustrated on the final

line of the table, improving uponMk̂ by 0.02 points. The oracle is only marginally better, with a

prediction RMSE of 0.902.

Model
∥∥∥β̂ − β̂T

∥∥∥ Prediction RMSE

MT 0.427 2.679

M2 0.944 2.023

Mλ̂ 0.181 1.407

Mk̂ 0.233
0.945

M∗
k̂

0.925

Oracle - 0.902

Table 1: Errors for the different approaches.

3.2. GEFCOM2012 electricity consumption

This dataset was used during the GEFCOM2012 electricity consumption forecasting competition

(Hong, Pinson & Fan, 2014). It consists of the electricity consumption of 21 areas (zones) located in

the United-States available from the 1st of January 2004 to the 31st of December 2007 with a 1 hour

temporal resolution (yielding 38,070 samples in total) that we normalized. Input variables include

calendar ones such as the day of the week, time of the year, but also the temperature measurements

of 10 meteorological stations over the same period. Typically, demand has an annual periodicity

with peaks in winter. Mean demand is around 0.35(±0.12) for the target data and 0.25(±0.10) for

the source. The nature of our transfer is twofold: across time (period on which a model has been
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trained) and space (from one area to another). We will use the measured load at 8a.m. of zone

13 as source and zone 2 as target. To focus on the benefits of our test and to avoid time series

stationarity issues, both load time series have been detrended. The overall load as well as the daily

profiles have been represented in Figure. 7.
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Figure 7: Comparison of the load demand for zones 13 (source) and 2 (target).

In our work we focus on the use of our hypothesis test and not achieving pure predictive

performance. Therefore the model we consider for both source and target is very simple:

yν,t = βν,0 + βν,1| sin(ωt)|+ βν,2WEt +
5∑
j=3

βν,jθt 1
(
θt ∈ Ij

)
+ εν,t, ν ∈ {S, T}, (10)

where yν,t is the load demand at 8a.m. for day t, ω = 2π
365 . The sine term is used for the annual

periodicity, WEt is a binary variable whose value is on 1 on weekends. θt is the temperature and

its effect has been cut into three intervals to translate the impact of heating and cooling on the

electricity demand (Pierrot & Goude, 2011). Whether it is the source or the target data, the training

data will be included within the year 2004, whereas the test data on which performance is finally

evaluated will be the whole 2005 year of zone 2. The metrics of evaluation will be again the RMSE

introduced earlier, as well as the mean absolute scaled error (MASE) defined by:
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MASE =

1

T

T∑
t=1

|yt − ŷt|

1

N − 1

N∑
i=2

|yi − yi−1|

,

where the denominator is calculated on the train data of size N .

3.2.1. First scenario

In this scenario we suppose that the data for the source S is available for the whole year 2004.

The target training data will only be available from October the 1st to the end of the year. Hence

NS = 366 and NT = 92. The RMSE and MASE for different values of k are represented in Figure

8, with a vertical line corresponding to our chosen k̂ with the strategy described in Section 2.3.

Precise numerical values are given in Table 2. Here the improvement brought by the test is only

marginal, for k below a threshold. This is due to the discussed phenomenon at the end of Section

2.2 where when k →∞ the test tends to systematically reject H0. Note that the RMSE is close to

being minimal for k̂. The errors forM2 andMλ̂ have been calculated and represented as dashed

horizontal lines. While the former yields results very similar to the fine-tuning approach, the latter

in this case yields poor results, as in this situation β̂λ̂ is almost identical to β̂T . Most importantly

the modelM∗
k̂

is always as good asMk̂: the test can thus be used safely in practice. The p-value

over time on the test set is also represented Fig. 9. One sees that it’s almost always close to 0,

except locally for cold months. SinceMT was trained on a similar period the year before, such a

behavior is logical.
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Figure 8: Results on the test data (first scenario).
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Figure 9: P-value over time for the first scenario (k = k̂).

3.2.2. Second scenario

We consider the case where the training data from the source zone is available between April

the 1st and September the 30th 2004. The training data from the target one is available between the

1st of September and the 31st of December 2004, and thus NS = 182 and NT = 122. In practice it
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could correspond to the case where a customer breaks his contract, and a new one arrives.

Results on the test data for the different approaches are given Fig. 10. We see that this time the

test significantly improves upon the individual forecasts, lowering the RMSE by up to 0.04 RMSE

compared to Mk̂ in general. The test efficiently detects the situations of positive and negative

transfer, thus taking advantage of each model’s specificities. However in this case the value of k̂

obtained by the tuning procedure is too low (yielding k̂ = 30 despite a better value being 40).

Nonetheless the efficiency of the test is shown as the RMSE is reduced by about 0.02 compared to

MT and is very close to the oracle. Chen et al.’s estimator is once more very close to β̂T , while

this time Bouveyron et al.’s approach yields poor results. Note that before the test all transfer

approaches struggled: this is because of the important differences between source and target data.

The test efficiently allows to take advantage of the specificities of each model.

The p-value over time on the test set for k = 40 is also plotted Figure 11. It is close to 0 on a

period similar to the one the source model was trained the year before, and large during the cold

months where the modelMT is expected to be better.
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Figure 10: Results on the test data (second scenario).
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Figure 11: P-value over time for the second scenario (k = 40).

Model RMSE MASE

MT 0.135 1.29

M2 0.114 1.12

Mλ̂ 0.135 1.29

Mk̂ 0.114 1.11

M∗
k̂

0.114 1.10

Oracle 0.110 1.01

Table 2: Errors for the first scenario.

Model RMSE MASE

MT 0.111 1.09

M2 0.146 1.245

Mλ̂ 0.111 1.089

Mk=40 0.146 1.23

M∗
k=40 0.087 0.841

Oracle 0.073 0.669

Table 3: Errors for the second scenario.

Finally it is important to assess the sensibility of our approach with respect to the hyperparame-

ters. To achieve that, we represented the difference of RMSE ofM∗
k andMT in function of k and ρ

in Figure 12. The area surrounding our choice of k̂ and ρ̂ corresponds to one of significant benefits

of the test, even if a couple of gradient iterations more would have been beneficial as highlighted

previously. Ergo the results are not excessively sensitive to the values of the hyperparameters.

Additionally this plot also shows that the use of the test is almost exclusively beneficial and has

very low inherent risk.
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dot. Blue areas correspond to a higher accuracy of the test-based model.

4. Interpretation of the gain with sample sizes

A natural question to ask is how the gain evolves with the sample sizes NS and NT . One would

for instance expect the gain to increase when the number of source samples is order of magnitudes

higher than the target one. In order to analyze these dependencies, we consider the following

experimental framework. We suppose that the source and target data are i.i.d. xν,i ∼ N (0, ID) (thus

Σν ∼ WD(ID, Nν) where WD(Ψ, n)) denotes the Wishart distribution of scale matrix Ψ ∈ RD×D

and degrees of freedom n. For (NS , NT ) in a grid IS × IT , we calculate and average the gain ∆Rk(x)

over B = 50 simulations for x ∼ N (0, ID) as well. Algorithm 2 summarizes the procedure. This ex-

periment is conducted for a dimension size D = 15, k ∈ {0, 10, 50}, α = α∗/5 and ∥βS − βT ∥ = 0.25

(both coefficients have been randomly sampled). In order to improve the readability, the gain has

been thresholded to the range [−0.4, 0.4]. The results are represented in Fig. 13.

Phases are observed depending on the values of NS and NT , and follow the intuition. When no

fine-tuning is performed (i.e. k = 0) the gain will be positive only when the number of target samples
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Figure 13: Transfer phases in function of NS , NT and k.

NT is small and the number of source ones NS is large enough. For NT above a certain threshold,

negative transfer will systematically happen. When k increases, the blue areas corresponding to

negative gain fade away thus meaning that at worst the transfer procedure will have a neutral

impact, even for large values of NT . The benefits of transfer through fine-tuning are particularly

visible for k = 10 with an increase of the size of the positive transfer areas: the fine-tuning procedure

allows to take advantage of both source and target samples. However as emphasized before, an

excessive number of gradient iterations may erase the benefits of transfer as seen in Figure 13 (c)

obtained for k = 50 where only for extremely small values of NT transfer can be beneficial. This is

because the fine-tuned estimator β̂k has come too close to the pure target one β̂T . Note that these

figures remind of Fig. 1 from Ben-David et al. (2010).
Algorithm 2: Gain simulation for varying NS & NT

Initialization: D,βν , σ2ν , k. IS = {30, 40, . . . , 1000} and IT = {30, 40, . . . , 500}.

for (NS , NT ) in IS × IT do

∆Rk(NS , NT )← 0;

for b = 1, . . . , B do

Generate Xν ∼ N (0, ID). Deduce Σν .;

Generate x ∼ N (0, ID);

Calculate ∆Rk(NS , NT )← ∆Rk(NS , NT ) + (1/B)x⊤Hkx;

end

end

24



5. Conclusion and future work

In this paper a novel framework for the problem of transfer learning for the linear model is

proposed. By defining the gain of transfer by a difference of quadratic prediction errors, we obtain

a quantity that measures how beneficial or detrimental transfer by gradient descent is for a new

(potentially unobserved) x. However the framework of the gain is applicable for any estimator of

the form β̂(W ) = W β̂S + (ID −W )β̂T , which encompasses many found in the literature. Since

this gain depends on unknown parameters in practice, we derived a statistical test relying of the

Fisher-Snedecor F distribution to predict negative transfer. The test was applied on synthetic as

well as real-world electricity demand data, where it proved its ability to predict negative transfer

for new observations. Furthermore our fine-tuning approach proved to be reliable no matter the

situation, never being completely off such as the benchmarks from the literature sometimes.

However despite its success, some points remain to investigate. How to choose the right number

of gradient iterations k remains problematic, although an empirical approach has been suggested.

Furthermore in order to obtain a tractable calculation and satisfying empirical results, we had to

rely on an approximation. Another possibility would be to transfer only a subset of parameters.

This is often the case for neural networks where only certain layers are transferred Laptev, Yu &

Rajagopal (2018), but could be adapted for linear models.

We have also supposed that the matrices Σν are invertible. However defining the gain without

this hypothesis is still possible although its form is slightly more complex, which makes it difficult

to adapt the test directly. Finally in this paper we made the hypothesis of linearity, which could

seem restrictive. However nonlinearity can be achieved through generalized additive models (GAM)

for instance. Since they boil down to a linear model, the formula of the gain is valid for it as well.

However as such, the test we introduced cannot be used with GAM yet, and how to extrapolate it is

currently under investigation.

Appendix A. Appendix

The appendix presents detailed proofs of the results from Section 2.

Appendix A.1. Proposition 1

Proof. We proceed by mathematical induction.
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• For k = 0 the property is trivial. β̂0 = β̂S = A0β̂S + (ID −A0)β̂T .

• Let k ∈ N be. We suppose the property true at rank k. We have

β̂k+1 = β̂k − α∇JT (β̂k) = β̂k − αΣT β̂k + αX⊤
T YT .

By definition of A = ID − αΣT and because X⊤
T YT = ΣT β̂T we obtain:

β̂k+1 = Aβ̂k + αΣT β̂T .

Finally by induction hypothesis:

β̂k+1 = A[Akβ̂S + (ID −Ak)β̂T ] + αΣT β̂T = Ak+1β̂S + (ID −Ak+1)β̂T ,

which concludes the induction.

Appendix A.2. Equations (2) and (3)

Proof. Let P be the orthogonal matrix of eigenvectors of ΣT be, i.e. such that ΣT = PΛP⊤ with

Λ = diag(λi, i = 1, . . . , D) and PP⊤ = P⊤P = ID. Thus β̂ν = P β̃ν ⇔ β̃ν = P⊤β̂ν . One can also

write that A = P (ID − αΛ)P⊤. Hence reinjecting in (1) gives:

β̂k = P (ID − αΛ)kP⊤β̂S + P (ID − (ID − αΛ)k)P⊤β̂T ,

and applying P⊤ on the left of this equation yields:

β̃k = (ID − αΛ)kβ̃S + (ID − (ID − αΛ)k)β̃T .

Finally the matrices involved are diagonal with respective terms (1− αλi)k and 1− (1− αλi)k,

thus resulting in equation (3).

Appendix A.3. Proof of Proposition 2

Proof. We remind that β̂S ∼ N (βS , σ
2
SΣ

−1
S ) and β̂T ∼ N (βT , σ

2
TΣ

−1
T ). By independence of β̂S and

β̂T we thus have:

β̂k ∼ N
(
AkβS + (ID −Ak)βT , σ2SAkΣ−1

S Ak + σ2T (ID −Ak)Σ−1
T (ID −Ak)

)
.
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It is easy to see that σ2T (ID −Ak)Σ
−1
T (ID −Ak) = σ2Tα

2ΩkΣTΩk. We will note βk = E[β̂k] and

Vk = Var(β̂k). For an independent y = x⊤βT + ε with ε ∼ N (0, σ2T ) we obtain that:

y − ŷT = x⊤(βT − β̂T ) + ε ∼ N
(
0, σ2T (1 + x⊤Σ−1

T x)
)
,

y − ŷk = x⊤(βT − β̂k) + ε ∼ N
(
x⊤(βT − βk), σ

2
T + x⊤Vkx

)
.

Thus R(MT ) = E[(y − ŷT )2] = Var(y − ŷT ) + E[y − ŷT ]2 = σ2T (1 + x⊤Σ−1
T x) and R(MT |S) =

E[(y − ŷk)2] = σ2T + x⊤Vkx+
(
x⊤(βT − βk)

)2
. Therefore:

∆Rk(x) = σ2Tx
⊤Σ−1

T x− x⊤Vkx− x⊤Bkx.

Finally noticing that βT − βk = Ak(βT − βS), we obtain that
(
x⊤(βT − βk)

)2
= x⊤AkBAkx

where B = (βT − βS)(βT − βS)
⊤ thus yielding the expected result.

Appendix A.4. Proof of the equations of (5)

Proof. Hk is symmetric. Hence we can introduce {ui}i=1..D an orthonormal basis of eigenvectors of

it with λi(Hk) the associated eigenvalues. Let x ∈ RD be with coordinates xi in this basis. Thus x

can be rewritten x =
∑D

i=1 xiui. Since {ui} is orthonormal (i.e. u⊤
i uj = 1 if i = j and 0 else) it

follows that:

x⊤Hkx =
D∑

i,j=1

λi(Hk)xixj u
⊤
i uj =

D∑
i=1

λi(Hk)x
2
i .

Since λmin(Hk) ≤ λi(Hk) ≤ λmax(Hk) we get that λmin(Hk) ∥x∥2 ≤ x⊤Hkx ≤ λmax(Hk) ∥x∥2.

Finally remembering that x⊤Hkx = E[(y − ŷT )2]− E[(y − ŷk)2] yields (5).

Appendix A.5. Proof of Theorem 1

Proof. It would be natural to reject H0 if an estimator δ̂(x) of the gain is above a certain threshold.

Hence a natural form of such a decision rule is 1(δ̂(x) > Ka), where Ka is a constant depending on

the desired level a of the test. We consider the estimator of ∆Rk(x):

δ̂(x) = σ̂2T x⊤(Σ−1
T − α

2ΩkΣTΩk
)
x− σ̂2Sx⊤AkΣ−1

S Akx− x⊤AkBAkx.

27



While the matrix B is not accessible in practice, we start from this estimator for the sake of

the simplicity of the calculations. We will address this issue later. It can be proved (see hereafter)

that the type I error, the probability of wrongly rejecting the null hypothesis, is the largest at the

boundary ∆Rk(x) = 0. Thus δ̂(x) > Ka is equivalent to:

σ̂2T /σ
2
T

σ̂2S/σ
2
S

+
σ̂2T
σ̂2S

x⊤AkBAkx

σ2Tx
⊤AkΣ−1

S Akx
>
Ka + x⊤AkBAkx+ σ̂2Sx

⊤AkΣ−1
S Akx

σ̂2Sx
⊤AkΣ−1

S Akx
.

Since σ̂2
T /σ

2
T

σ̂2
S/σ

2
S
∼ F(NT − D,NS − D), taking Ka = q1−aσ̂2Sx

⊤AkΣ−1
S Akx − x⊤AkBAkx −

σ̂2Sx
⊤AkΣ−1

S Akx+
σ̂2
T

σ̂2
S
x⊤AkBAkx (where q1−a is the quantile of order 1−a of the F(NT−D,NS−D)

distribution) yields the test of level a:

1

(
ϕk(x) :=

σ̂2Tx
⊤(Σ−1

T − α2ΩkΣTΩk
)
x− (σ̂T /σT )

2x⊤AkBAkx

σ̂2Sx
⊤AkΣ−1

S Akx
> q1−a

)
.

However B and σT are unknown in practice, we will thus have to rely on a lower bound of ϕk(x)

for the test. By hypothesis, we have ∥βT − βS∥ /σT ≤ ρ. Since B is symmetric x⊤AkBAkx ≤

λmax(B)
∥∥Akx∥∥2. Moreover B is a rank 1 matrix and thus its sole nonzero eigenvalue is λmax(B) =

∥βT − βS∥2. The aforementioned hypothesis leads to 1
σ2
T
x⊤AkBAkx ≤ ρ2

∥∥Akx∥∥2. Therefore we

have the following lower bound ψk(x) of ϕk(x) that can be used in practice:

ψk(x) =
σ̂2T
σ̂2S

x⊤(Σ−1
T − α2ΩkΣTΩk)x− ρ2

∥∥Akx∥∥2
x⊤AkΣSAkx

.

What remains to prove is that the type I error is maximum at the frontier, i.e. where ∆Rk(x) = 0.

If ∆Rk(x) ≤ 0 then:

ϕk(x) ≤
σ̂2T

σ2
Sx

⊤AkΣ−1
S Akx+x⊤AkBAkx

σ2
T

− (σ̂2T /σ
2
T )x

⊤AkBAkx

σ̂2Sx
⊤AkΣ−1

S Akx
,

with an equality on the frontier. Finally the r.h.s. can be simplified in F =
σ̂2
T /σ

2
T

σ̂2
S/σS

. Thus finally:

P∆Rk(x)≤0(ϕk(x) ≥ q1−a) ≤ PF∼F(NT−D,NS−D)

(
F ≥ q1−a

)
= P∆Rk(x)=0(ϕk(x) ≥ q1−a

)
= a,

which proves that the type I error is maximum at ∆Rk(x) = 0 and that the level of the test is a.
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Thus the p-value of the test relying on ϕk(x) can thus be upper bounded by PF∼F(NT−D,NS−D)

(
F ≥

ψk(x)
)
, proving all the results of the theorem.

Appendix A.6. Proof of pk(x)→ 0 when k →∞

When k →∞, the gain ∆Rk(x) converges towards 0 (i.e. transfer becomes neutral, as β̂k → β̂T ).

Hence when the number of gradient iterations k becomes large, it would be logical for the test to

keep the null hypothesis that transfer is not beneficial. However in fact ψk(x)→ +∞, and since

the test has the form 1(ψk(x) > q1−a) (Eq. (6)), the null hypothesis H0 (transfer is negative) will

systematically be rejected, no matter x. Elements of proof for the limit of ψk(x) are given hereafter,

as well as numerical illustrations in Figure A.14:

ψk(x) =
σ̂2
T

σ̂2
S

x⊤(Σ−1
T −α2ΩkΣTΩk)x−ρ2∥Akx∥2

x⊤AkΣ−1
S Akx

=
σ̂2
T

σ̂2
S

x⊤(2AkΣ−1
T −A2kΣ−1

T )x−ρ2∥Akx∥2
x⊤AkΣ−1

S Akx
.

Using asymptotic notations, it can be noted that x⊤A2kΣ−1
T x = o

(
x⊤AkΣ−1

T x
)

as well as∥∥Akx∥∥2 = o
(
x⊤AkΣ−1

T x
)
. Hence:

ψk(x) ∼
k→∞

σ̂2T
σ̂2S

2x⊤AkΣ−1
T x

x⊤AkΣ−1
S Akx

.

Now it is visible that the denominator converges towards 0 with higher speed, and thus ψk(x)→

+∞. We illustrated those results in two numerical settings: the first is the one presented in Section

3.1 with the polynomial dataset and yields Fig. A.14a. In the second one we consider a simple linear

regression problem where βT is randomly sampled on the uniform sphere of dimension D. The source

coefficients βS are obtained by βS = βT + rd where r corresponds to the desired ∥βS − βT ∥ and d

is a direction sampled on the uniform sphere again. The design matrices XS and XT are obtained

by i.i.d. sampling the rows respectively from N (0, 1) and U [−1, 1]. Figure A.14b corresponds to

this situation. In both instances the growth of the test statistic ψk(x) towards infinity is clear.
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Figure A.14: Behavior of the test statistic ψk(x) when k goes to infinity.

Appendix A.7. Proof of equation (9)

Proof. The KL divergence between two univariate gaussians directly yields:

2DKL(Nk||NT ) =
x⊤Vkx

σ2Tx
⊤Σ−1

T x
+

(x⊤(βT − βk)
)2 − σ2Tx⊤Σ−1

T x

σ2Tx
⊤Σ−1

T x
− ln

( x⊤Vkx

σ2Tx
⊤Σ−1

T x

)

=
−∆Rk(x)
σ2Tx

⊤Σ−1
T x

− ln
( x⊤Vkx

σ2Tx
⊤Σ−1

T x

)
hence the result.
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