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Abstract

Federated learning (FL) in healthcare suffers from non-identically distributed (non-IID)
data, impacting model convergence and performance. While existing solutions for the
non-IID problem often do not quantify the degree of non-IID nature between clients in
the federation, assessing it can improve training experiences and outcomes, particularly
in real-world scenarios with unfamiliar datasets. The paper presents a practical non-IID
assessment methodology for a medical segmentation problem, highlighting its significance in
medical FL. We propose a simple yet effective solution that utilizes distance measurements
in the embedding space of medical images and statistical measurements calculated over
their metadata. Our method, designed for medical imaging and integrated into federated
averaging, improves model generalization by downgrading the contribution from the most
distant client, treating it as an outlier. Additionally, it enhances model personalization by
introducing distance-based clustering of clients. To the best of our knowledge, this method
is the first to use distance-based techniques for providing a practical solution to the non-IID
problem within the medical imaging FL domain. Furthermore, we validate our approach on
three public FL imaging radiology datasets (FeTS (Pati et al., 2021), Prostate (Liu et al.,
2020b), (Liu et al., 2020a), and Fed-KITS2019 (Terrail et al., 2022)) to demonstrate its
effectiveness across various radiology imaging scenarios.

Keywords: Federated Learning, Non-IID Data, Personalization, Generalization, Medical
Segmentation, Medical Imaging.

1. Introduction

Federated learning (FL) in healthcare aims to achieve data collaboration while preserv-
ing privacy. It enables multiple institutions or healthcare entities (clients) to jointly train
or evaluate artificial intelligence (AI) models without sharing raw, sensitive patient data.
This collaborative and privacy-preserving approach improves predictive models, personal-
ized treatments, and disease detection, leveraging diverse datasets from various institutions
and democratizing the power of distributed clients. FL promotes inclusive model training,
incorporating diverse populations for robustness and generalizability. Studies like (Sheller
et al., 2020; Dou et al., 2021) highlight FL’s efficacy in medical applications, showcasing
the power of algorithms like federated averaging (FedAvg) (McMahan et al., 2017).

While traditional FL algorithms, like FedAvg, assume uniform data distribution across
clients, in contrast, real-world applications often face non-independently and identically

© 2024 CC-BY 4.0, J. Alekseenko, A. Karargyris & N. Padoy.

https://creativecommons.org/licenses/by/4.0/


Alekseenko Karargyris Padoy

distributed (non-IID) data challenges, where data across clients lacks uniformity. Factors
like disease manifestation, patient populations or image acquiring protocols contribute to
this heterogeneity, impacting model convergence and performance (McMahan et al., 2017).
Recent approaches on improving the generalization of the global model, such as FedProx by
Li et al. (Li et al., 2020), regulate local updates to improve model generalization, solutions
like FedBN (Li et al., 2021b) and FedCross (Xu et al., 2022) address non-IID scenarios by
optimizing feature spaces or sequentially training the global model across clients. Another
essential strategy in FL is personalization, which involves training a specific model for
each client while leveraging insights from others. Recent advancements in personalized
FL include training one model per participating institution through adaptations of meta-
learning (Fallah et al., 2020; Acar et al., 2021), multi-task learning (Marfoq et al., 2021),
utilizing partial model sharing (Pillutla et al., 2022), local fine-tuning (Li et al., 2021a; Yu
et al., 2020), and clustering solutions (Ghosh et al., 2022; Manthe et al., 2023).

However, the majority of proposed works aim to accept client data distributions as non-
IID without measuring the heterogeneity of the federation and integrating this information
into the pipeline. Assessing non-IID characteristics can provide crucial insights into training
challenges and generalizability, for instance, (Zhao et al., 2018) observed decreased accuracy
in federated models with higher Earth Mover’s Distance (EMD) in non-IID image datasets.
Yet, their study only evaluated classification problems with basic datasets like MNIST and
CIFAR-10, limiting its applicability to healthcare. In the medical domain, (Luo et al.,
2023) proposed analyzing data distributions related to site, tumor type, tumor size, dataset
size, and tumor intensity. They demonstrated a significant negative correlation between the
Dice score ratio and data distribution distances, particularly with EMD, in medical image
segmentation. However, practical solutions for improving the federation based on these
findings have not been proposed.

Our main contribution lies in integrating EMD distance-related insights into federated
averaging to offer optimal training for both generalization and personalization strategies,
surpassing the performance of traditional FL methods. Assuming that this approach may
not capture all non-IID characteristics, we explore non-IID measurements within the em-
bedding space of data (i.e., medical images). We utilize a publicly-available pre-trained
model to extract rich and meaningful embeddings, and then calculate the Euclidean dis-
tance (EUC) based on them. To the best of our knowledge, this is the first work in the
medical imaging FL to propose this concept.

2. Method

Our methodology, presented in Figure 1, aims to achieve two important yet opposing goals
in FL: a) model generalization, focusing on improving the accuracy and generalization of
the model, and b) model personalization, tailoring the model for the highest accuracy at
the client level. Our proposed methodology can be subdivided into two (2) steps. The
first step involves measuring the degree of data heterogeneity (non-IID) among clients. To
achieve this, our methodology runs two approaches in parallel. The first approach relies on
statistical distances (i.e., EMD) based on metadata from medical images (Subsection 2.1),
while the second one calculates EUC in the embedding space of these images (Subsection
2.2). For this, a publicly pre-trained model is deployed from the server to each client
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Figure 1: Proposed method for medical FL optimization.

for extracting embeddings. Subsequently, we extend the federated averaging algorithm by
incorporating the down-weighting of the most distant client to enhance generalization. We
also augment the personalization strategy by clustering closely-related clients (Subsection
2.3). While we hypothesize that the federation is trusted, we recognize the potential for
privacy enhancement. However, the investigation into the compatibility of our methodology
with privacy-preserving techniques (Jin et al., 2023), (Wei et al., 2020) is beyond the scope
of this study.

2.1. Non-IID Assessment with EMD Statistical Distance

To assess the non-IID nature of the federation, characterized by disparities between each
client data, we calculate the EMD distance on metadata available in training medical images
from each client. This metadata includes maximum intensity values and label volume
values related to specific use cases. For instance, in the Federation of Tumor Segmentation
(FeTS), where three labels (WT: whole tumor, TC: tumor core, ET: expanding tumor)
are segmented, we extract volume values corresponding to these labels. The choice of
this metadata is based on the assumption that it can be consistently extracted for all
experiments, making it inherently available for all medical radiological images.

Subsequently, the metadata vectors VMi for i = 1, 2, . . . , N obtained from each client
(where N is the total number of federated clients), representing the extracted metadata,
are transmitted to the server. Here, the EMD is computed for each client in relation to
other clients within the federation. The choice of this distance is intentional as it has
demonstrated its robustness to capture dissimilarity between probability distributions and
thus provide valuable insights into the distributional disparities among clients (Luo et al.,
2023). Other metrics may be considered in alternative domains.

2.2. Non-IID Assessment with Euclidean Embedding Distance

In contrast to computing non-IID solely based on metadata, which may not capture the
intricate characteristics within the data, we investigate computation in the embedding space
of data for its capacity to capture deeper and richer data representations. Given the domain
(i.e., medical imaging), a large publicly-available pre-trained MedicalNet model (Chen et al.,
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2019) is utilized for embedding extraction in our proposed methodology. Training on the
diverse 3DSeg-8 dataset, covering a wide range of modalities, organs, and pathologies, has
resulted in the development of a set of heterogeneous 3D neural network models. We adopt
the pre-trained 3D-ResNet18 network to extract embedding features from the local data on
each client. Specifically, image features are extracted from the network’ bottleneck layer,
known for providing concise and essential representations of input data. We compute the
angles between Principal Component Analysis (PCA) components (where PCA = 2) to
validate their alignment (more details in Appendix E). These components compress vectors
before transmission to the server, thereby enhancing privacy as reconstruction accuracy
drops by decreasing the number of components (Reddy and Jaya, 2021).

Subsequently, all client embedding vectors, denoted as VEi for i = 1, 2, . . . , N , each
with a dimension of client samples×(512, 2) and flattened to client samples×(1024), are
transmitted to the server. These vectors are then utilized for the computation of EUC
according to Equation (1):

EUC(VEi,VEj) =

√√√√ N∑
k=1

(VEik − VEjk)2, (1)

where VEi and VEj represent feature vectors from any two clients.

2.3. Generalization and Personalization Strategies

For generalization, we propose downgrading the most distant client (outlier) in the federa-
tion. To achieve this, we utilize the distances between clients computed during the non-IID
assessment step and incorporate this information into weights (ω) assigned to each client.
This approach is implemented using the FedAvg algorithm for the proof of concept, while
noting that any FL averaging method could be employed. The proposed update of the
global model in FedAvgw is defined in Equation (2):

wt+1 = wt − α ·
N∑
i=1

ωi,t · ∇fi(wt), (2)

where wt+1 is the updated global model, wi,t represents the weight for client i at iteration
t, fi(wt) is the local objective function for client i, and N is the total number of clients.

To identify a client for down-weighting, let DEMD and DEUC represent the matrices of
EMD and EUC distances between clients, respectively. By summing along each column, we
identify the client with the highest total (distant client) according to Equation (3), where
D represents either DEUC or DEMD:

imax = argmax
i

 N∑
j=1

Dij

. (3)

Following that, we degrade its contribution by applying the arbitrary weight values (ω)
of 0.1, 0.3 and 0.5 to demonstrate the trend in improving the performance. This procedure
enables us to assess the impact of reducing the influence of a single distant client (imax)
on the entire federation, thereby providing a clear illustration of the correlation between
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computed distances and the performance of the global model. The base weights (ω) for the
non-downgraded clients are 1.

Then, in our personalization strategy, we use the same distance matrices DEMD and
DEUC to build clusters of closely-related clients. The clustering algorithm minimizes total
distances within each cluster (i.e., C1 and C2). The process is outlined in Algorithm (1).

Algorithm 1: Cluster Assignment

Input: Distance matrix D and number of clients N
Output: Cluster assignments
// Step 1: Identify the most distant client imax
imax ← argmaxi

∑
j Dij ;

C2 ← {imax} ; // Initialize cluster C2 with imax
C1 ← {i | i ̸= imax} ; // Initialize remaining clients in cluster C1

// Step 2: Assign one or two closest clients inext to imax
while C1 is not empty do

inext ← argmini∈C1 Dimaxi;
Assign inext to C2;
C1 ← C1 \ {inext} ; // Remove inext from C1

if C1 has only 2 clients left then
Break ; // Break the loop if only two clients left in C1

end

end

This clustering approach promotes effective collaboration and information exchange
among clients with closer data distributions within each cluster. We limited the evalua-
tion to only two clusters to show the benefit of the clustering approach and its impact on
improving performance per client, while maintaining a reasonable number of experiments.

3. Experiments

3.1. Datasets

We used three publicly available FL datasets for our study. FeTS 2021 (Pati et al., 2021)
consists of glioblastoma multi-modality MRIs from multiple sites, with WT, TC, and ET
segmentations. For our experiment, we selected four (4) clients, ensuring a balanced distri-
bution of samples (Hospital6: 34 samples, Hospital13: 35 samples, Hospital20: 33 samples,
and Hospital21: 35 samples). The multi-site prostate MRI segmentation dataset (Liu et al.,
2020b), (Liu et al., 2020a) features T2-weighted MRIs with prostate segmentation masks.
We used four (4) balanced clients for our experiments: Client1: 39 samples, Client2: 32
samples, Client3: 40 samples, Client4: 39 samples. The Fed-KITS2019 dataset (Terrail
et al., 2022) focuses on kidney and tumor segmentation in CT scans. We created a 5-client
federated version, excluding one site (Client6: 30 samples) for a balanced distribution of
samples: Client1: 12 samples, Client2: 14 samples, Client3: 12 samples, Client4: 12 sam-
ples, Client5: 16 samples. Our focus on balanced and small federations promotes equal
and rapid contributions from each client, facilitating equitable evaluation of the FL model
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across datasets. The data in each group were divided into training (80%) and validation
(20%) sets, as originally proposed.

Additionally, we redistributed labels among clients to create non-IID federations, diver-
sifying client distributions. We followed the methodology proposed in (Luo et al., 2023).
For non-IID federations, we aimed to maintain consistency in assigning training and val-
idation samples across each set. However, if they were not available on the same client,
adjustments were made, potentially resulting in differences in the selected samples, while
preserving set sizes. Please refer to Appendix A for more details regarding the data, and
Appendix D for information on building non-IID federations.

3.2. Training and Validation

We used a 3D U-Net network (Ronneberger et al., 2015) along with the SGD optimizer with
a learning rate of 0.01 and momentum of 0.9, employing DiceLoss for training, following a
standard protocol for medical segmentation. Training was conducted using FedAvg (McMa-
han et al., 2017), along with its weighted variant (Equation 2), across 25 global epochs as
a balance between model convergence and optimized experiment time. We assessed perfor-
mance using the Dice Metric, considering inter-client standard deviation for variation. We
compared our methods against two representative FL algorithms: FedProx (Li et al., 2020)
and DITTO (Li et al., 2021a). Please refer to Appendix B for further details.

4. Results

4.1. Generalization Optimization

To further reduce computation of DEMD for FeTS clients with many modalities and labels,
we considered only the metadata where EMD values are maximum (EMDmax) among others
as having the greatest negative impact. This applies to both maximum intensity (EMDmaxI)
and label volume values (EMDmaxL). Please refer to Appendix C for more details. Table
1 presents the correlation between EMD and the performance of the FedAvg global model,
indicating that as EMD values increase, performance decreases. We refine the federation
with the lowest performanceA,B,C to enhance generalization and personalization strategies.

Table 1: Comparison of EMDmaxI , EMDmaxL, and Dice score across different federations.

FeTS Prostate Fed-KITS2019
Federations: Original WT TC ET Original Prostate Original Kidney + Tumor

EMDmaxI 1.60 1.45 1.19 0.59 6.88 0.38 1.17 0.51
EMDmaxL 1.56 6.31 6.83 10.96 0.48 9.83 0.87 11.62
Dice 0.867±0.10 0.856±0.04 0.843±0.05 0.828±0.12

A 0.325±0.10 0.271±0.06
B 0.459±0.03 0.423±0.02

C

Analyzing the distance matrices provides valuable insights into the relationships between
different clients (Table 2). In FeTSA, both EMD and EUC highlight client1 as the most
distant within the federation while for ProstateB, client4 emerges as the most distant. In
Fed-KITS2019C , while both metrics suggest significant differences between clients, the most
distant client differs. This discrepancy is attributed to the nature of the data each distance
operates on. EMD analyzes metadata distribution, while EUC operates in the embedding
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Table 2: Distances matrices (DEMD and DEUC) for FeTSA, ProstateB, and Fed-
KITS2019C .

FeTSA Clients
(EMD) 1 2 3 4 (EUC) 1 2 3 4

1 - 3.60 7.87 13.91 1 - 23 49 63
2 3.60 - 1.75 4.55 2 23 - 30 47
3 7.87 1.75 - 2.98 3 49 30 - 22
4 13.91 4.55 2.98 - 4 63 47 22 -

Sum 25.38 6.30 4.73 21.45 Sum 135 100 101 132
ProstateB Clients

(EMD) 1 2 3 4 (EUC) 1 2 3 4
1 - 1.24 3.01 8.54 1 - 51 83 122
2 1.24 - 2.70 11.05 2 51 - 60 98
3 3.01 2.70 - 4.31 3 83 60 - 59
4 8.54 11.05 4.31 - 4 122 98 59 -

Sum 12.79 13.75 7.02 23.90 Sum 256 209 202 279

Fed-KITS2019C Clients

(EMD) 1 2 3 4 5 (EUC) 1 2 3 4 5

1 - 0.92 1.45 2.46 13.86 1 - 936 1268 2743 1207
2 0.92 - 1.03 2.37 12.55 2 936 - 844 2211 600
3 1.45 1.03 - 1.15 11.03 3 1268 844 - 1602 303
4 2.46 2.37 1.15 - 4.89 4 2743 2211 1602 - 1548
5 13.86 12.55 11.03 4.89 - 5 1207 600 303 1548 -

Sum 18.70 15.95 13.21 8.40 42.34 Sum 6154 4591 4017 8104 3658

space, potentially capturing different data features. As a result, certain clients may appear
more distant in one assessment compared to the other.

Table 3 compares results across various learning approaches, including our down-weighting
strategy (FedAvgw) for distant clients. In FeTSA, FedAvgw leads to a relative increase in
performance compared to the default FedAvg approach and FedProx. For ProstateB, it
significantly enhances performance (+5% vs FedAvg, +16.6% vs FedProx). Similarly, in
Fed-KITS2019C , it improves Dice performance regardless of distance metric (EMD or EUC).

Table 3: Global model Dice scores (mean ± standard deviation between clients in the
federation). EMD indicates Earth Mover’s distance, EUC stands for Euclidean distance.

Algorithm/Dataset:
FeTSA:
Client1

ProstateB :
Client4

Fed-KITS2019C EMD:
Client5

Fed-KITS2019C EUC:
Client4

FedAvg, ωdefault = 1.0 0.828±0.12 0.271±0.06 0.423±0.02 0.423±0.02

FedProx, µ = 0.1 0.831±0.13 0.155±0.07 0.395±0.02 0.395±0.02

FedAvgw, ω = 0.1 0.812±0.14 0.321±0.06 0.438±0.02 0.449±0.02

FedAvgw, ω = 0.3 0.833±0.14 0.255±0.06 0.428±0.02 0.460±0.04

FedAvgw, ω = 0.5 0.840±0.12 0.290±0.07 0.409±0.03 0.456±0.03

4.2. Personalization Optimization

According to Table 2, for FeTSA and ProstateB clients, two distinct clusters based on min-
imum distances could be formed, facilitating potential collaboration and improving model
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performance within FL. Fed-KITS2019C clients also exhibit clustering, with differing per-
spectives from EMD and EUC. While EMD provides only one clear cluster assignment, with
EUC, we explore another assignment option based on the proximity of client3 to client5 as
well.

Table 4: Dice scores for FeTSA, ProstateB, Fed-KITS2019C personalization optimization.

Algorithm/Clients: 1 2 3 4 5 Average
FeTSA

FedAvgdefault 0.662±0.28 0.824±0.10 0.897±0.11 0.929±0.04 - 0.828
DITTO 0.698±0.25 0.832±0.08 0.893±0.10 0.938±0.03 - 0.840
FedAvg{1,2}{3,4} 0.702±0.25 0.864±0.06 0.914±0.07 0.947±0.03 - 0.857

ProstateB

FedAvgdefault 0.194±0.11 0.245±0.13 0.316±0.14 0.330±0.09 - 0.271
DITTO 0.232±0.12 0.276±0.14 0.343±0.13 0.355±0.10 - 0.302
FedAvg{1,2}{3,4} 0.337±0.17 0.347±0.15 0.337±0.11 0.422±0.12 - 0.361

Fed-KITS2019C

FedAvgdefault 0.398±0.36 0.4338±0.37 0.439±0.35 0.414±0.39 0.428±0.25 0.423
DITTO 0.367±0.33 0.429±0.35 0.400±0.32 0.400±0.39 0.430±0.23 0.405
FedAvgEMD:{1,2,3}{4,5} 0.441±0.37 0.437±0.38 0.433±0.39 0.468±0.38 0.594±0.22 0.475
FedAvgEUC:{1,2}{3,4,5} 0.442±0.39 0.446±0.39 0.433±0.40 0.497±0.41 0.528±0.30 0.469

Table 4 compares Dice scores for personalized models across different clients, revealing
insights into method performance. In FeTSA, FedAvg{1,2}{3,4} consistently outperforms
FedAvgdefault and DITTO, indicating improved segmentation with personalized learning
based on C1 = {1, 2} and C2 ={3, 4}. Similarly, in ProstateB, FedAvg{1,2}{3,4} shows

significant improvements over FedAvgdefault and DITTO. In Fed-KITS2019C , segmentation
either through EMD or EUC clustering consistently outperforms FedAvgdefault and DITTO.

5. Conclusion and Discussion

Our study underscores the significance of assessing client data heterogeneity (non-IID) in
medical imaging FL to optimize both generalization and personalization goals. We propose
a down-weighting strategy to enhance global model performance across datasets by reducing
the impact of a distant client. Additionally, we advocate for distance-based clustering of
clients as a personalization solution to enhance medical imaging segmentation accuracy
across diverse datasets.

While promising, our study is limited to medical imaging, particularly volumetric radio-
graphic datasets, and prioritizes balanced scenarios and small federations for faster compu-
tation and proof-of-concept purposes. Future research should explore unbalanced scenarios,
larger federations, alternative architectures for embedding extraction to broaden the appli-
cability of our proposed strategies.
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Appendix A. Detailed Data Information

Table 5 shows the number of samples in the training and validations splits of three segmen-
tation datasets used in this study.

Table 5: Number of samples in the training and validation splits of three datasets.

FeTS Prostate Fed-KITS2019

Client: 1 2 3 4 1 2 3 4 1 2 3 4 5

Training 34 35 33 35 39 32 40 39 9 11 9 9 12

Validation 7 7 7 7 7 6 8 7 3 3 3 3 4

We standardized our pre-processing and augmentation pipelines across all datasets to
uphold consistency and reduce their potential impact on results. While maintaining uniform
practices like ensuring channel-first representation and intensity normalization, we adjusted
specific parameters, such as spacing and cropping sizes for four patch extraction (number
of patches = 4) during training, to match the unique characteristics of each dataset.

For example, in the FeTs dataset, we utilized a spacing of (1.0, 1.0, 1.0), and a cropping
size of (224, 224, 144). In the Prostate dataset, the spacing was set to (0.3, 0.3, 1.0), and
the cropping size to (224, 224, 32). Meanwhile, for the Fed-KITS2019 dataset, we employed
a spacing of (2.90, 1.45, 1.45), and a cropping size of (256, 256, 64).

As for augmentation, random flipping is applied along each spatial axis with a probability
of 50%. Intensity scaling and shifting are applied with factors and offsets of 0.1, respectively,
with a probability of 100%.

Appendix B. Training and Validation

For the FeTS dataset, we utilized a batch size of 1, and sliding window inference with a
window size of (240, 240, 160) was applied. Similarly, for the Prostate dataset, the batch
size remained at 1, and sliding window inference was conducted with a window size of (224,
224, 32). For the Fed-KITS2019 dataset, we maintained a batch size of 1, and sliding
window inference was performed with a window size of (256, 256, 80).

All training and validation processes were conducted using the MONAI 1 and NVIDIA
FLARE 2 frameworks.

References:

1. MONAI: Medical Open Network for AI. https://monai.io

2. NVIDIA FLARE: Framework for AI Research and Development. https://developer.
nvidia.com/flare
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Table 6: DEMD matrix for the FLAIR modality and the ET (Enhancing Tumor) label.

FLAIR Enhancing Tumor (ET)
(EMDmaxI) 1 2 3 4 (EMDmaxL) 1 2 3 4

1 - 0.33 0.32 0.27 1 - 6.87 15.42 27.55
2 0.33 - 0.34 1.45 2 6.87 - 3.07 7.40
3 0.32 0.34 - 0.86 3 15.42 3.16 - 5.18
4 0.27 1.45 0.86 - 4 27.55 7.40 5.18 -

Appendix C. Computation of FeTS Distance Matrix

As an example, we calculate the final DEMD matrix for the non-IID ET federation of
FeTsA clients. Initially, we compute the Earth Mover’s Distance (EMD) for intensities
of all modalities across all clients: T2-weighted, T1-weighted, T1-weighted with contrast
enhancement (T1C+), and FLAIR. This provides us with the following values: EMDT2 =
0.393, EMDT1 = 0.247, EMDT1C+ = 0.290, and EMDFLAIR = 0.595.

Similarly, we perform the same process for the three available labels for segmentation:
WT (Whole Tumor), TC (Tumor Core), and ET (Enhancing Tumor) for each client with
respect to each other client. We obtain the following EMD values: EMDWT = 0.935,
EMDTC = 0.561, and EMDET = 10.96.

We select the maximum EMD in intensity modalities as EMDmaxI = 0.595, correspond-
ing to the FLAIR modality (EMDFLAIR), and the maximum EMD in label distributions
as EMDmaxL = 10.96, corresponding to the ET (Enhancing Tumor) label (EMDET ). Con-
sequently, we construct two DEMD matrices representing client-to-client correlation based
on these values, as presented in Table 6.

Table 7: Final DEMD matrix for the FeTSA clients.

DEMD for FeTSA

1 2 3 4
1 - 3.60 7.87 13.91
2 3.60 - 1.70 4.43
3 7.87 1.75 - 3.02
4 13.91 4.43 3.02 -

For the final DEMD matrix, we average these two matrices, with the result shown in
Table 7.

Appendix D. Building Non-IID Federations

As an example of building non-IID federations, we outline the main steps. In accordance
with (Luo et al., 2023), we utilized label sizes as a criterion for forming such federations. We
redistributed label sizes by organizing them from smallest to largest. Specifically, for the
FeTS dataset, this process was conducted for each specific use case (WT, TC, ET); for the
Prostate dataset, it was done for the prostate label; and for Fed-KITS2019, we examined
both kidney and tumor regions collectively.

Figures 2, 3, and 4 represent distributions of labels for each non-IID federation.
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Figure 2: Distribution of tumor labels (WT, TC, ET) for FeTSA: ET non-IID federation.

Figure 3: Distribution of the prostate label for ProstateB: Prostate non-IID federation.

Figure 4: Distribution of Segment 1 (kidney), Segment 2 (tumor), and average (Avg) labels
for Fed-KITS2019C : Kidney+Tumor non-IID federation.
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Appendix E. Angles of PCA Components

Figures 5, 6, and 7 show the angles between PCA components (1 and 2) for each non-IID
federation.

Figure 5: Angles between PCA components (1 and 2) for the FeTSA clients.
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Figure 6: Angles between PCA components (1 and 2) for the ProstateB clients.

Figure 7: Angles between PCA components (1 and 2) for the Fed-KITS2019C clients.

The formula to compute the angle between two PCA components v and w is given by:

Angle(v,w) = arccos

(
v ·w
∥v∥ · ∥w∥

)
where · represents the dot product, ∥v∥ and ∥w∥ represent the magnitudes of vectors v

and w respectively, and arccos is the inverse cosine function. We iterate over pairs of clients
and computes the angle between the corresponding components for a random sample on
each client.
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