

EPICATCH5 THE 5TH EPI-CATCH MEETING

Epi-biology of the mycotoxin producer *Fusarium graminearum vs.* host plant defense mechanisms

By Nadia PONTS

Who?

- Fungi
- Oomycetes
- Bacteria
- Viruses
- > Insects
- Nematodes
- Other plants

Outcome

- Beneficial
- Neutral
- Unfavorable
- All of the above

- > Fungi
- Oomycetes
- Bacteria
- Viruses
- > Insects
- Nematodes
- > Other plants

Outcome

- > Beneficial
- > Neutral
- Unfavorable
- > All of the above

> Fungal pathogen: attack

Outcome

- Beneficial
- Neutral
- Unfavorable
- > All of the above
- > Fungal pathogen: attack
- ➤ The plant: defense / counter attack mechanisms

Outcome

- Beneficial
- Neutral
- Unfavorable
- > All of the above
- > Fungal pathogen: attack
- The plant: defense / counter attack mechanisms
- Fungal pathogen: response to counteract the plant defense mechanisms

Outcome

- Beneficial
- Neutral
- Unfavorable
- All of the above
- > Fungal pathogen: attack
- The plant: defense / counter attack mechanisms
- > Fungal pathogen: response to counteract the plant defense mechanisms
- > And so on until a win...

Credit: L. Pinson-Gadais@INRAE-MycSA

Epigenetics of the biotic interactions

Outcome

- **Host plant** epigenome(s)
- Unfavorable
- All of the above
- > Fungal pathogen: attack
- The plant: defense / counter attack mechanisms
- > Fungal pathogen: response to counteract the plant defense mechanisms
- And so on until a win...

> The plant pathogen Fusarium graminearum

Problem #1:
Dramatic
yield losses
worldwide
\$\$\$\$\$

Fusarium graminearum

Fusarium Head Blight (FHB) on wheat ears

➤ The plant pathogen *Fusarium graminearum*

Problem #1:
Dramatic
yield losses
worldwide
\$\$\$\$\$

Problem #2:
Public health
concerns

Fusarium Head Blight (FHB) on wheat ears

Fusarium graminearum

> The plant pathogen Fusarium graminearum

Problem #1:
Dramatic
yield losses
worldwide
\$\$\$\$\$

PREVENTION

Problem #2:
Public health
concerns

Fusarium Head Blight (FHB) on wheat ears

Fusarium graminearum

Different isolates have different abilities to...

Infect wheat ... produce mycotoxins [DON] µg/g of dry weight % of infected ear 100% 200 80% 160 60% 120 40% 80 20% 40 0% **INRA-181 INRA-159 INRA-195 INRA-171 INRA-156 INRA-164**

What bases for such differences?

Different isolates have different abilities to...

What bases for such differences?

Genetics?

All isolates have the « same » potential to produce DON

High genetic diversity at other *loci*, but no association found (yet?)

>Role of chromatin structure in *F. graminearum*

Ecophysiology + targeted functional analyses approaches

>Role of chromatin structure in *F. graminearum*

Ecophysiology + targeted functional analyses approaches

Signals from the environment

(Reyes-Don

How does the genome structure relates to the epibiology of the *Fusarium graminearum*?

~37 Mb; >14k genes; 4 chromosomes

In situ Hi-C

1 - Isolating intact nuclei

2 - Preparation of sequencing-ready chimeric fragments

3 - Illumina® pairedend sequencing

In situ Hi-C

1 - Isolating intact nuclei

In situ Hi-C

1 pixel = 1 contact

Intensity ⇔ contact frequency

What we expect *vs*. what we observe

In situ Hi-C

Trans-interactions at centromere *loci*

1 pixel = 1 contact

Intensity ⇔ contact frequency

What we expect *vs.* what we observe

In situ Hi-C

1 pixel = 1 contact

Intensity ⇔ contact frequency

What we expect *vs.* what we observe

Observed *vs.* expected

Cis-regulatory structures visible

Pearson correlation between distances

Observed *vs.* expected

Cis-regulatory structures visible

Centromeres well-delimited & separated

Pearson correlation between distances

Observed *vs.* expected

Cis-regulatory structures visible

Centromeres well-delimited & separated

Pearson correlation between distances

MycSA

Observed *vs.* expected

Cis-regulatory structures visible

Centromeres well-delimited & separated

Pearson correlation between distances

Compartments of active *vs.* inactive chromatin?

MycSA

A/B compartments

A "active"
compartments
interspersed with "B"
inactive

A/B compartments

A "active"
compartments
interspersed with "B"
inactive

INRA©
EPICATCH5
July 11th 2024

(roughly speaking...)

A/B compartments

H3K4me3 is associated with A compartments, H3K27me3 with B

In situ Hi-C

(also roughly speaking...)

compartments

H3K4me3 is associated with A compartments, H3K27me3 with B

In situ Hi-C

(also roughly speaking...)

A/B npartments

H3K4me3 is associated with A compartments, H3K27me3 with B

Topologicallyassociated domains?

In situ Hi-C

(also roughly speaking...)

In situ Hi-C

EPICATCH5

July 11th 2024

Topologicallyassociated domains

>To remember...

- In situ Hi-C successfully applied to F. graminearum it's easy provided Xlinked nuclei can be
 - purified;
- Centromeres interact together, leaving telomeres and the rest of the chromosomes at a distance;
- A/B compartments can be delineated but do not necessarily correlate with no/low gene expression;
- Topologically-associated domains parallel to H3K27me3H3K4me3 (but not TADs...)

>To remember...

■ In situ Hi-C successfully applied to F. graminearum — it's easy provided Xlinked nuclei can be

purified;

- Centromeres interact together, leaving telomeres and the rest of the chromosomes at a distance;
- A/B compartments can be delineated but do not necessarily correlate with no/low gene expression;
- Topologically-associated domains parallel to H3K27me3H3K4me3 (but not TADs...)

Let's do it again in interaction with the host plant!

>Thank you all!

Special thanks to:

Aurelie Etier Fabien Dumetz

Jouy-en-Josas Versailles-Grignon Nancy Colmar Rennes Orléans Angers Dijon Tours Nantes Poitou-Charentes Clermont Theix Bordeaux Avignon Sophia Antipolis Antilles Montpellier Toulouse Guyane Corse

Gael Le Trionnaire & Nathalie Prunier-Leterme (INRAE Rennes)

