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Abstract— The Soil Moisture and Ocean Salinity (SMOS) 

satellite mission, operational since 2010, relies on an L-Band 

microwave interferometric radiometer to generate brightness 

temperature images along the swath, with global coverage every 

3 days. These images are then used to derive sea surface salinity 

(SSS) with an effective resolution of less than 50 km. However, 

signal acquisition in some ocean regions is intermittently and 

significantly disrupted by radio-frequency interferences (RFI) 

from various terrestrial military or civilian sources worldwide. 

We develop a new methodology based on principal component 

and regression analyses to extract the RFI signatures in time and 

space, thereby enabling the construction of a corrected SSS 

estimate along the swath. This method successfully filters out 

many disruptive features characterized by long and wide 

branches occurring around the RFI sources, hence recovering 

SSS variability as demonstrated in comparison to in situ 

reference data. This correction methodology is an alternative to 

separate filtering procedures that were applied on brightness 

temperature at Level 1. Independent information indicating the 

probability of RFI occurrence on land areas or nearby is used to 

verify the timing of oceanic RFI contamination inferred by the 

correction process. The methodology performs particularly well 

in areas where the probability is close to 1 for a significant and 

contiguous portion of the entire period. Already applied with 

significant improvement in three selected regions, this correction 

method is a starting point for expanding and systematizing the 

methodology to treat as many RFI-polluted regions as possible 

and to recover SMOS SSS variability. 

 
Index Terms— Sea surface salinity, radio-frequency interference, 

L-band microwave radiometry, principal component analysis, 

regression. 
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I. INTRODUCTION 

CEAN salinity plays a crucial role in global climate 

dynamics, influencing ocean circulation [1], serving 

as a fundamental marker for changes in the Earth's 

water cycle [2], and affecting the life cycles of marine 

organisms [3]. The Soil Moisture and Ocean Salinity (SMOS) 

mission, launched by the European Space Agency (ESA), has 

been instrumental in providing global observations of sea 

surface salinity (SSS). This satellite mission uses an L-Band 

(1.41 GHz) interferometric radiometer to infer brightness 

temperatures (BT), which are then used to retrieve SSS [4]. 

However, the accuracy of these measurements can be 

significantly affected by Radio Frequency Interferences (RFI, 

[5]). Although the L-Band is a protected band, RFI 

contamination often arises from illegal transmissions or 

malfunctioning equipment, including human-made sources 

such as radars, TV and radio stations, and satellite 

communication systems. These signals can contaminate the 

SMOS retrieved SSS (e.g. Figure 2b and Figure 2e of [6], 

Figure 3 of [7], and Figure 1 of this article). SMOS uses an 

interferometric array fitted with 69 equally spaced receivers 

[8]. SMOS BTs are reconstructed from the cross-correlations 

of signals collected by each pair of receivers, known as the 

visibility function [9]. However, strong discontinuities in the 

observed BT scene, such as those induced by RFIs, lead to 

oscillations in the reconstructed BT around the RFI source, 

attributable to the Gibbs phenomenon (chapters 3 and 5 of 

[10]). These oscillations result in both positive and negative 

biases in the retrieved SSS. This underscores the unique 

challenge of addressing RFI in SMOS data, setting it apart 

from missions with real aperture radiometers and emphasizing 

the need for specialized RFI mitigation strategies to ensure 

accurate SSS retrieval. 

In the past, significant efforts have been made to identify 

and filter RFI in SMOS data. The ensemble of methods for 

RFI detection in the SMOS mission operates across various 

signal processing domains [5]. At the Level 1 (L1) processing 

stage, RFI detection methods use a list of active RFI sources 

and flag the pixels around the sources according to the 

instrument impulse response characteristics. They also flag 

entire snapshots that contain significant RFI contamination. In 

the visibility domain (L1a), RFI treatment involves a detection 

and flagging algorithm that uses a user-defined threshold to 

identify and nullify RFI-contaminated visibilities, and applies 

a median filter to the correlated noise injection data to remove 

outliers caused by RFI [11], [12]. In the spatial domain (L1c), 

an RFI flagging mechanism is used to compute the RFI 

O 
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contamination level for each pixel based on the difference 

between the measured and the estimated RFI response. The 

RFI contamination level flags are assigned to each pixel 

according to four levels, and are stored in the L1c products 

[13], [14].  

At the Level 2 (L2) processing stage, both soil moisture and 

SSS RFI detection methods use screening and statistical 

behavior to detect the presence of RFI [15]. For SSS, they flag 

snapshots that contain pixels whose BT level exceeds the 

expected value by a certain threshold, or that have excessive 

spatial standard deviation (std). They also flag outliers based 

on the residuals of the model fit. 

Global RFI probability maps are generated by applying 

detection methodology and can be used to provide information 

to the national authorities for locating and eliminating RFI 

sources (Figure 8 of [16]). Also, a database is maintained 

where the output of the RFI monitoring tools is stored 

(ERMIT, [17]). This includes information on RFI sources, 

SMOS passes, maps, statistics, and reports. 

In this study, we focus on developing a new correction 

procedure for application in a post-processing stage, following 

the generation of L2 SSS data. While current RFI filtering 

effectively removes contaminated measurements, it also 

inadvertently eliminates SSS variability in the filtered areas. 

Thus, we face a choice between a) implementing stringent 

filtering that excludes SSS measurements across many areas, 

b) opting for moderate filtering, or c) creating a methodology 

to correct certain RFI contaminations. Presently, moderate 

filtering is employed in the SMOS L2 SSS processing. Despite 

the significant enhancements in L2 SMOS SSS through RFI 

detection and filtering noted in prior studies, RFI signatures 

persist in some SMOS SSS regions. Contamination by 

permanent RFI with constant intensities throughout the SMOS 

period can be managed by systematic corrections at the Level 

3 (L3) or Level 4 (L4) stage (e.g. [18]), yet the challenge lies 

with intermittently occurring RFI signals. Our goal is to 

develop methods that can detect and correct variable RFI 

contamination in the processed L2 SMOS SSS data, acting as 

an effective post-processing step. 

Section II of the paper presents the different datasets used 

for the creation and assessment of the corrections. The 

approach and methodologies are comprehensively explained 

in Section III. Section IV showcases the outcomes of 

implementing the correction methods. The paper concludes 

with Section V, which discusses the significance of the results 

and prospective future research, followed by Section VI, 

which provides the concluding remarks. 

II. DATA 

 

A. SMOS SSS dataset 

The SMOS mission, launched in November 2009, carries a 

passive microwave interferometric radiometer operating at L-

Band. It operates in a sun-synchronous, polar circular, dawn-

dusk orbit at a mean altitude of 764 km. It provides global 

observations of soil moisture and SSS. Due to the 18-day sub-

cycle of SMOS, a specific ocean location is observed with the 

same SMOS measurement geometry approximately every 18 

days. 

We use the SMOS SSS dataset from the 7th reprocessing 

(RE07), conducted at the Centre Aval de Traitement des 

Données SMOS (CATDS). The prequalification product (L2P) 

is employed, which contains the retrieved SSS prior to any 

subsequent SSS bias correction that results in the publicly 

delivered ‘L2Q’ product. These products are arranged daily 

for both ascending and descending orbits separately. For a 

comprehensive description of the CATDS RE07 processing, 

please refer to [19]. 

 

B. ISAS SSS dataset 

The In Situ Analysis System (ISAS) SSS dataset we utilize 

is generated using the ISAS v6 algorithm, an optimum 

interpolation (OI) tool designed for synthesizing global Argo 

data sets [20]. This tool creates monthly gridded salinity fields 

from in situ measurements, with spatio-temporal length scales 

that range from 300 km to four times the Rossby radius and 

from 3 weeks to 1 week. The extent of smoothing applied by 

the ISAS OI largely depends on the availability of in situ 

measurements, which, on average, is every 10 days and every 

3° × 3° pixel [21]. 

 

C. TAO mooring data 

Measurements from the long-term salinity records of the 

Global Tropical Moored Buoy Array (GTMBA) are used. 

Each buoy in this array continuously measures salinity near 

the sea surface (~1 m) in tropical regions, providing high 

temporal resolution data throughout the entire SMOS period. 

The GTMBA dataset includes contributions from the Tropical 

Atmosphere Ocean (TAO) project in the Pacific [22], the sole 

moored array referenced in this study. These buoys record 

salinity every 10 minutes, with the raw data subsequently 

post-processed into hourly increments, achieving an accuracy 

of 0.2 pss. For satellite data comparison, only the highest 

quality surface salinity measurements (at 1 m depth, QC flag = 

1) were selected. This study employs the monthly mean 

dataset and focuses on time series analysis at a specific 

location within the southwestern Pacific (170°W, 8°S). Time 

series from other locations are also used, but associated results 

are provided only as supplementary material. 

 

D. CESBIO probability dataset 

The probability dataset, derived from SMOS data, provides 

global daily maps of land RFI detection occurrences (see 

Appendix A for a more detailed description). These maps are 

Figure 1: SMOS SSS from CCI SSS Level 3 Version 3 on 

August 15th, 2018, in the southwestern tropical Pacific. 
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separated into ascending and descending orbits to account for 

the SMOS’s forward-tilted attitude effect. The RFI detection 

makes use of the L1c BT contaminated by RFI, as identified in 

Level 2 Soil Moisture (L2SM) UDP/DAP products [15]. The 

probabilities are computed as the ratio of the number of BT 

detected as contaminated by RFI to the total number of 

observed BT over a seven-day period. The RFI situation 

awareness reflected in these maps should be viewed as a best-

case scenario, with the actual level of contamination likely to 

be worse. The maps also indicate the occurrence of detected 

and removed BT as the probability level rises. 

We construct an aggregated dataset from these global daily 

maps, resampling them onto a grid with 1°×1° resolution 

every 7 days. At each time step, we select the maximum 

probability of occurrence within each grid box. These data are 

henceforth referred to as the RFI probability. 

III. METHODS 

Our approach operates on the SMOS SSS dataset presented in 

II.A. It uses principal component analysis (PCA, [23]) and linear 

regression to identify RFI signatures in both time and space, 

thereby enabling the construction of a correction term. This 

correction term is subtracted from the original dataset to yield the 

corrected SMOS SSS dataset. Building on this general approach, 

we have developed two methods: the Regional Method (RM) and 

the Pointwise Method (PM). The processes for these methods are 

outlined in Figure 2 and thoroughly explained from III.A to 

III.I. 

Due to SMOS image reconstruction, contamination from an 

RFI source extends over a large region. Consequently, SSS 

biases in contaminated pixels vary temporally in phase (or in 

opposite phase) with the RFI source. This property has been 

one of the bases for the development of RM; it is not used in 

PM. SSS biases depend on the latitude (𝜙) and longitude (𝜆) 

of the pixel: they generally decrease as the distance to the 

source increases. Furthermore, at a given location, SSS biases 

depend on the geometry of the SMOS measurements used for 

SSS retrieval. This geometry, referred to as 𝑥swath in the 

following, is characterized by the pixel's location across the 

satellite swath and by the satellite orbit orientation (𝑥orb, 

which can be either ascending (A) or descending (D)). True 

SSS is independent of 𝑥swath. Both RM and PM exploit this 

property to estimate SSS biases from systematic differences 

between SSS retrieved in one geometry and another. 

RM targets region-wide RFI signatures from a RFI source 

Ω, by examining variance across the four dimensions: time (𝑡), 

𝜙, 𝜆, and 𝑥swath. It uses the covariance between time series 

from different pixels within a limited 2D region, ℂ, 

surrounding Ω, and across various 𝑥swath. This process is used 

to derive a characteristic time series, 𝑈1(𝑡). The region ℂ is 

enclosed within a larger region ℝ, which is targeted for 

comprehensive RFI treatment. The 𝑈1(𝑡) series, which 

captures the temporal patterns of RFI within ℂ, is extrapolated 

to represent RFI’s temporal patterns within the entire region 

ℝ. This extrapolation is utilized for the  RFI mitigation 

throughout ℝ. By using 𝑈1(𝑡) and a spatial pattern derived 

from regression analysis, we separate RFI signatures 

associated with the source Ω from the true SSS signal.  

Conversely, PM processes each pixel ℳ independently of  

its neighbors, analyzing only variations in 𝑡 and 𝑥swath. This 

process isolates a characteristic time series specific to ℳ’s 

location, using it in a targeted regression to remove RFI 

signatures at ℳ. When PM successively applies this method 

across all pixels in the entire region ℝ, it offers an alternative 

to RM's 4-dimensional approach. PM emerged to address 

RM's limitations in handling multiple RFI sources and in 

defining its operational domain, as is discussed later. 

In Section IV, we examine three regions as examples of 

both methods applied to areas contaminated by RFI (TABLE 

I). While it is not necessary to pinpoint the exact locations of 

RFI sources, we always focus our analysis on a region 

surrounding a recognized RFI source. This is important for 

RM’s implementation. These sources can be inferred from 

SMOS SSS maps (as mentioned in Section I) or from RFI-

Figure 2: Schematic diagram of the RM and PM 

approaches. 
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specific tools such as the RFI probability dataset (Section 

II.D) or ERMIT [17]. 

A. 4- dimensional (𝑆) and 2-dimensional (𝑠) SSS functions 

The SSS data discussed in Section II are categorized based 

on (𝑡, 𝑥swath), where 𝑡 is discretized (𝑡 = 1,2, … ,132) and 

signifies the specific month from January 2010 to December 

2020, and 𝑥swath = −400, −375, … , +375, +400 km for both 

ascending and descending orbits separately (a total of 𝑁swath =
66 intervals). SSS for each class is then mapped onto an 

Equal-Area Scalable Earth Grid (EASE), resulting in a 4-

dimensional 𝑆(𝑡, 𝜙, 𝜆, 𝑥swath) field. This comprehensive field 

is used for RM. When the coordinates (𝜙, 𝜆) correspond to 

any grid pixel ℳ𝑖(𝜙𝑖 , 𝜆𝑖) analyzed using PM, we denote this 

as the 2-variable function 𝑠𝑖(𝑡, 𝑥swath), which equals 𝑆(𝑡, 𝜙 =
𝜙𝑖 , 𝜆 = 𝜆𝑖 , 𝑥swath), where 𝜙𝑖, 𝜆𝑖 specify a grid location by 

index 𝑖. For simplicity, we will not mention the index 𝑖 when 

there is no doubt. Refer to TABLE II for all method notations. 

 

TABLE I 

SPECIFICATIONS OF THE RFI REGIONS 

INVESTIGATED. 

 

Region Name Samoa Barbados 
Guinea 

Gulf 

RFI Source 

Coordinates 

(𝛀) 

13.9°S 

171.7°W 

13.23°N 

59.55°W 

5°N 

3°W 

Annular Area 

(ℂ) for RFI 

Time Series 

(RM) 

100 km -500 

km 

150 km - 

600 km 

100 km - 

500 km 

Region Limits 

(ℝ) for RFI 

Correction 

(RM & PM) 

30°S - 5°N 

170°E -

155°W 

5°S - 30°N 

75°W - 

45°W 

10°S - 20°N 

20°W - 

10°E 

 

B. Gap-filling procedure: 𝑆𝑓 and 𝑠𝑓  

The 𝑆 field and 𝑠 function as introduced above are not fully 

populated since they are composed of swath data that do not 

cover the entire space-time domain for any single 𝑥swath and 

𝑥orb. To help identifying the spatial and temporal patterns of 

the RFI signature, we initially fill in the missing values for 

each 𝑥swath and 𝑥orb using a temporal Gaussian convolution 

with a scale of 𝑇 = 2 months; we use a gaussian std given by 

𝜎𝑡 = 𝑇 (2√2 log 2)⁄ . Note that this Gaussian convolution is 

not used for smoothing, but solely for gap filling [24], [25]. 

This process results in the fully completed field  

𝑆𝑓(𝑡, 𝜙, 𝜆, 𝑥swath) and function 𝑠𝑓(𝑡, 𝑥swath). However, for 

both 𝑆𝑓 and 𝑠𝑓, pixels within the semi-permanent mask of the 

SSS data that cover land and sea ice are still excluded. On 

average, the filled values constitute about 59% of the total 

number of values in a time series (132). We employ a one-

dimensional filling process in time, rather than a 

multidimensional approach involving latitude/longitude and 

swath distance, to preserve the sharpness of the gradient along 

the spatial dimensions.  

Figure 3 provides examples of filled fields near the Samoa 

islands, in September 2018, and across the entire period and 

swath at a specific location and orbit orientation. The 

significant RFI contamination is evident in panels a and b, 

where SSS branches are approximately 1 pss saltier or fresher 

than the surrounding area, diverging from the source. The RFI 

signature can also be observed across the swath in panels c 

and d. Prior to 2014, the SSS appears rather homogeneous 

across the swath. However, from 2014 onward, the variability 

in SSS is strongly dependent on swath classes. 

 

C. Decomposition of SMOS SSS signal 

The 𝑆𝑓 field is assumed to comprise the following 

components: 

𝑆𝑓(𝑡, 𝜙, 𝜆, 𝑥swath) = 𝑆true(𝑡, 𝜙, 𝜆) + 𝐸RFI(𝑡, 𝜙, 𝜆, 𝑥swath) 
+𝐸other(𝑡, 𝜙, 𝜆, 𝑥swath) + 𝜀.             (1) 

 

Here, 𝑆true represents the actual “true” SSS at a given time, 

latitude, and longitude. It is independent of swath distance and 

orbit orientation. 𝐸RFI is an uncertainty component that 

characterizes the RFI contamination and is dependent on all 

variables. 𝐸other is an additional component that characterizes 

unspecified sources of uncertainty. Lastly, 𝜀 represents a 

Figure 3: (a) Filled SMOS 𝑆𝑓 field for September 2018 around 

the Samoa RFI source, displayed for 𝑥swath = −75 km, 𝑥orb =
′A′. Two concentric circles with radii 100 km and 500 km are 

drawn, centered on the RFI source. The domain between the 

two circles, annulus ℂ, is used for the subsequent RM PCA 

(see text). A black dot is also shown at 8°S, 170°W that 

indicates the location used for subsequent illustrations. (b) 

Same as (a), but for 𝑥orb = ′D′. (c) Time series of the 𝑠𝑓 field 

at the 8°S, 170°W location (black dot in (a) and (b)), for 𝑥orb =
′A′.  (d)  Same as (c), but for  𝑥orb = ′D′. 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3408049

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UPMC - Universite Pierre et Marie Curie. Downloaded on June 03,2024 at 08:27:25 UTC from IEEE Xplore.  Restrictions apply. 



5 

> TGRS-2024-00401 < 

 

TABLE II 

OVERVIEW AND NOTATIONS OF THE METHODOLOGICAL COMPONENTS 

 

 RM PM 

Main Principles  

Time Series Characterization 
In an annular region (ℂ) 

(see TABLE I) 
Pixel per pixel (ℳ) 

Applied Correction across the 

Swath 

In a large region (ℝ) 

(see TABLE I) 
Pixel per pixel (ℳ) 

Notations  

𝑡, 𝜙, 𝜆, 𝑥swath time, latitude, longitude, swath distance for each orbit orientation 

SSS 
𝑆(𝑡, 𝜙, 𝜆, 𝑥swath) 

𝑠𝑖(𝑡, 𝑥swath) or 𝑠(𝑡, 𝑥swath) 

(pixel index 𝑖 often omitted for 

simplicity) 

𝑆(𝑡, 𝜙𝑖 , 𝜆𝑖 , 𝑥swath) = 𝑠(𝑖)(𝑡, 𝑥swath) 

Filled SSS 
𝑆𝑓(𝑡, 𝜙, 𝜆, 𝑥swath) 𝑠(𝑖)

𝑓
(𝑡, 𝑥swath) 

𝑆𝑓(𝑡, 𝜙𝑖 , 𝜆𝑖 , 𝑥swath) = 𝑠(𝑖)
𝑓

(𝑡, 𝑥swath) 

SSS Fluctuation 
𝑆̇(𝑡, 𝜙, 𝜆, 𝑥swath) 𝑠̇(𝑖)(𝑡, 𝑥swath)  

𝑆̇(𝑡, 𝜙𝑖 , 𝜆𝑖 , 𝑥swath) = 𝑠̇(𝑖)(𝑡, 𝑥swath) 

Filled SSS Fluctuation 
𝑆̇𝑓(𝑡, 𝜙, 𝜆, 𝑥swath) 𝑠̇(𝑖)

𝑓
(𝑡, 𝑥swath) 

𝑆̇𝑓(𝑡, 𝜙𝑖 , 𝜆𝑖 , 𝑥swath) = 𝑠̇(𝑖)
𝑓

(𝑡, 𝑥swath) 

Swath-Averaged Field 
〈𝑋〉(𝑡, (𝜙, 𝜆)) =

1

𝑁swath

∑ 𝑋(

𝑥swath

𝑡, (𝜙, 𝜆), 𝑥swath) 

𝑋 = 𝑆𝑓 , 𝑠𝑓 , 𝑆̇, 𝑠̇, 𝑆̇𝑓 , 𝑠̇𝑓 

Difference Field 
∆𝑋(𝑡, (𝜙, 𝜆), 𝑥swath) = 𝑋(𝑡, (𝜙, 𝜆), 𝑥swath) − 〈𝑋〉(𝑡, (𝜙, 𝜆)) 

𝑋 = 𝑆𝑓 , 𝑠𝑓 , 𝑆̇𝑓 , 𝑠̇𝑓 (only for filled fields) 

RFI Characteristic Time 

Series 
𝑈1(𝑡) 𝑢1(𝑡) 

RFI Spatial Component 𝑊1(𝜙, 𝜆, 𝑥swath) 𝑤1(𝑥swath) 

RFI Probability 𝑃RFI(𝑡) 

Correction  

Additive Correction Term −𝑈1(𝑡) 𝑊1(𝜙, 𝜆, 𝑥swath) −𝑢1(𝑡) 𝑤1(𝑥swath) 

Corrected Filled SSS 

Fluctuation 
𝑆̇𝑐

𝑓
(𝑡, 𝜙, 𝜆, 𝑥swath) 𝑠̇𝑐

𝑓(𝑡, 𝑥swath) 

Corrected SSS Fluctuation 

Original Sampling 
𝑆̇𝑐(𝑡, 𝜙, 𝜆, 𝑥swath) 𝑠̇𝑐(𝑡, 𝑥swath) 

Correction Evaluation  

Mean Swath SSS Fluctuation, 

see (3) 

〈𝑆̇〉 and 〈𝑆̇𝑐〉  
depend on (𝑡, 𝜙, 𝜆) 

〈𝑠̇〉 and 〈𝑠̇𝑓〉 
depend on 𝑡 

In Situ Observation 

Benchmark 
𝑆̇obs(𝑡, 𝜙, 𝜆) 𝑠̇obs(𝑡) 

Timewise Std of Difference 

with Observations 

Υ = 𝑠𝑡𝑑𝑡(〈𝑆̇〉 − 𝑆̇obs) 

Υ𝑐 = 𝑠𝑡𝑑𝑡(〈𝑆̇𝑐〉 − 𝑆̇obs) 

depend on (𝜙, 𝜆) 

𝛾 = 𝑠𝑡𝑑𝑡(〈𝑠̇〉 − 𝑠̇obs) 

γ𝑐 = 𝑠𝑡𝑑𝑡(〈𝑠̇𝑐〉 − 𝑠̇obs) 

at a pixel 𝑖 
Improvement/ 

Degradation of Correction 
Υ − Υ𝑐 {

> 0 improves

< 0 degrades
 𝛾 − 𝛾𝑐 {

> 0 improves

< 0 degrades
 

Methods Comparison 
Υ𝑐(𝜙𝑖 , 𝜆𝑖) − (𝛾𝑐)𝑖 {

> 0 PM better

< 0 RM better
 

at a pixel 𝑖 
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random noise component, the dependency of which is not 

specified; 𝜀 notably includes random noise contribution from 

the gap-filling process. The same type of decomposition is 

applicable to 𝑠𝑓: 

𝑠𝑓(𝑡, 𝑥swath) =  𝑠true(𝑡) + 𝑒RFI(𝑡, 𝑥swath) 
+𝑒other(𝑡, 𝑥swath) + 𝛿.                  (2) 

 

𝑠true, 𝑒RFI, 𝑒other, and  𝛿 function analogously to 𝑆true, 𝐸RFI, 

𝐸other and 𝜀, respectively, but are specific to each pixel. 

 

D. Difference field 

Let us consider 𝑋(𝑡, (𝜙, 𝜆), 𝑥swath) as a function that 

depends on time, swath distance, and optionally, on latitude 

and longitude. We can represent the average of 𝑋 over all 

swath intervals as 〈𝑋〉, and the departure from this average as 

∆𝑋: 

〈𝑋〉(𝑡, (𝜙, 𝜆)) ≡
1

𝑁swath
∑ 𝑋(𝑥swath

𝑡, (𝜙, 𝜆), 𝑥swath)    (3) 

 

∆𝑋(𝑡, (𝜙, 𝜆), 𝑥swath) = 𝑋(𝑡, (𝜙, 𝜆), 𝑥swath) 

−〈𝑋〉(𝑡, (𝜙, 𝜆)).                (4) 

 

By applying the  ∆ operator to each term in (1), and noting 

that Δ𝑆true equals zero (as 〈𝑆true〉 = 𝑆true), we effectively 

eliminate 𝑆true’s contribution: 

∆𝑆𝑓 = ∆𝐸RFI + ∆𝐸other + 𝜀′.                  (5) 

 

In this context, 𝜀′ represents a noise term that includes 

noise from SMOS SSS as well as SSS variability between 

successive satellite passes at intervals of less than 18 days. 

∆𝑆𝑓 is derived from the data, and our working assumption is 

that it is predominantly influenced by ∆𝐸RFI  in RFI-

contaminated regions, with 𝜀′ being minor in comparison. 

Under this framework, ∆𝑆𝑓 should not incorporate 

geophysical signal variability from the true SSS. It is crucial 

to effectively distinguish between the variability caused by 

RFI contamination and the inherent geophysical variability. 

The same considerations can be applied to 𝑠𝑓 for any fixed 

location: 

∆𝑠𝑓 = ∆𝑒RFI + ∆𝑒other + 𝛿′.                   (6) 

 

E. SSS fluctuation 

Our primary objective is to detect and correct variable RFI 

contamination in SMOS SSS data. From this point forward, 

we focus exclusively on the variations from the temporal 

mean, which we refer to as “fluctuations”, for any variable 

under study. We employ the following notation for this 

purpose: 𝑋̇(𝑡) = 𝑋(𝑡) − 1 𝑁𝑡⁄ ∑ 𝑋(𝑡)
𝑁𝑡
𝑡=1 , where 𝑁𝑡 = 132 

denotes the total number of months in the given period. 

 

F. RFI characteristic time series 

In the context of PCA, it is implicitly assumed that RFI 

contamination is proportional to a singular temporal function 

that is shared across all swath distances. This assumption is 

applied in the PM approach at individual pixels, and this 

behavior can be partially attributed to the L1 reconstruction. 

The same assumption is extended to all pixels within a 

geographical domain in the RM approach. 

Thus, applying PCA to ∆𝑆̇𝑓 within a specific region ℝ for 

RM or to ∆𝑠̇𝑓 at a fixed pixel ℳ for PM addresses two key 

questions: 1) Does a dominant mode control the variability of 

cross-swath SSS differences, which should originate solely 

from measurement artifacts rather than geophysical 

variability? 2) Does the timing of this dominant mode 

coincide with the RFI source's activity in region ℝ for RM, or 

at a pixel ℳ for PM? 

1) RM Method 

The development of PCA, where the covariance matrix is 

computed using a time-wise inner product [25] is as follows: 

∆𝑆̇𝑓(𝑡, 𝜙, 𝜆, 𝑥swath) = 𝑈1(𝑡)𝑉1(𝜙, 𝜆, 𝑥swath) + ⋯ 
+𝑈𝑀(𝑡)𝑉𝑀(𝜙, 𝜆, 𝑥swath).         (7) 

 

Here, the 𝑈𝑘 represent the principal components (PC, or 

time series, unitless), and the 𝑉𝑘 the empirical orthogonal 

functions (EOF, or spatial patterns, in pss). The 𝑈𝑘 are 

centered in time (∑ 𝑈𝑘(𝑡)
𝑁𝑡
𝑡=1 = 0), normalized (∑ 𝑈𝑘

2(𝑡)
𝑁𝑡
𝑡=1 =

1), and orthogonal to each other (∑ 𝑈𝑘(𝑡)𝑈𝑙(𝑡)
𝑁𝑡
𝑡=1 = 0 if 𝑘 ≠

𝑙). The 𝑉𝑘 are orthogonal to each other (∑ 𝑉𝑘𝜙,𝜆,𝑥swath
𝑉𝑙 = 0 if 

𝑘 ≠ 𝑙), and their norm is equal to the singular value Γ𝑘, which 

is equal to the variance square root of the mode, 𝛤𝑘 =

(∑ 𝑉𝑘
2

𝜙,𝜆,𝑥swath
)

1 2⁄
. PCA is a variance-maximizing procedure, 

and the modes are ordered such that 𝛤1 > ⋯ > 𝛤𝑀 > 0. The 

percentage of variance of a mode 𝑘 is given by 100 ×
𝛤𝑘

2 ∑ 𝛤𝑙
2𝑀

𝑙=1⁄ . 

The total number of modes 𝑀 is determined by the rank of 

the covariance matrix and is here equal to or less than the 

number of months in the monthly time series (132).  

A first dominant mode is such that its variance is much 

larger than the variance from the second and all the higher 

modes: Γ1
2 ≫ Γ2

2. If we assume that there is a primary 

dominant mode, then the corresponding PC 𝑈1(𝑡) could 

represent the timing of RFI contamination in the region, and 

the associated EOF 𝑉1(𝜙, 𝜆, 𝑥swath) the RFI signatures in the 

region and along the swaths. To confirm that the RFI timing 

is captured by 𝑈1(𝑡), we compare it to the time series of the 

RFI probability introduced in Section II.D, extracted from the 

grid box that encompasses the location of the RFI source. 

This probability time series is subsequently referred to as 

𝑃RFI(𝑡).  
While PCA can be utilized across any geographical area, 

in RM it is confined to an annular area ℂ centered around 

the localized RFI-source, as illustrated in Figure 3a-b and 

specified in TABLE I. The chosen annulus has a maximum 

radius on the order of 500 km, which is sufficiently large to 

accurately capture the RFI signal originating from the 

source, yet small enough to minimize the likelihood of 

interference from other RFI sources. The annulus’ inner 

radius, typically over 100 km, acts as a barrier against other 

potential contaminations near the RFI source, such as land-

sea contamination. This geographical limitation aims to 

achieve the most accurate RFI timing characterization 

associated with the specific RFI source. 
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2) PM Method 

Similar to the RM approach and (7), the PCA of  ∆𝑠̇𝑓 at a 

fixed pixel (𝜙, 𝜆) results in the following equation: 

∆𝑠̇𝑓(𝑡, 𝑥swath) = 𝑢1(𝑡)𝑣1(𝑥swath) + ⋯ 
+𝑢𝑚(𝑡)𝑣𝑚(𝑥swath).                 (8) 

 

In contrast to RM, the RFI timing characterization is solely 

based on time variations across the swath at that pixel. The total 

number of modes, 𝑚, is determined by the number of swath 

distances (66), which is less than the number of months in the 

monthly time series (132). If the first mode is dominant, 𝑢1(𝑡) 

could represent the timing of some RFI contamination at this 

pixel, and 𝑣1(𝑥swath) the RFI signatures along the swaths. To 

verify if 𝑢1(𝑡) captures some RFI timing, we compare it with 

𝑃RFI(𝑡), extracted from the grid box closest to the pixel (𝜙, 𝜆) 

under consideration. 

 

G. RFI spatial component 

The time series 𝑈1(𝑡) represents our timing 

characterization of RFI contamination emanating from the 

target RFI source in the treated region, while 𝑢1(𝑡) represents 

our timing characterization of RFI contamination at a single 

examined location, independent of all other locations. We 

employ a regression procedure to generate the correction 

spatial component as follows. 

Regression coefficients relative to 𝑈1(𝑡) and 𝑢1(𝑡) are 

computed as the direct projection of the initial dataset that we 

aim to correct, 𝑆̇𝑓(𝑡, 𝜙, 𝜆, 𝑥swath), onto 𝑈1(𝑡): 

𝑊1(𝜙, 𝜆, 𝑥swath) = ∑ 𝑈1(𝑡)𝑆̇𝑓(𝑡, 𝜙, 𝜆, 𝑥swath)𝑁𝑡
𝑡=1       (9) 

 

and  𝑠̇𝑓(𝑡, 𝑥swath) onto 𝑢1(𝑡): 

𝑤1(𝑥swath) = ∑ 𝑢1(𝑡)𝑠̇𝑓(𝑡, 𝑥swath)𝑁𝑡
𝑡=1 .           (10) 

 

Since 𝑈1(𝑡) is centered and normalized, it naturally 

follows that 𝑊1(𝜙, 𝜆, 𝑥swath) is the statistical regression 

coefficient at each location and for each swath interval of 𝑆̇𝑓 

onto 𝑈1. Identically, 𝑤1(𝑥swath) is the statistical regression 

coefficient of 𝑠̇𝑓 onto 𝑢1 for each swath interval. 

 

H. RFI correction 

We thus have the two elements 𝑈1 and 𝑊1 for RM,  𝑢1 and 

𝑤1 for PM, that enable us to construct a corrected dataset 𝑆̇𝑐
𝑓
 

for RM within the entire region 𝑅, and  𝑠̇𝑐
𝑓
 for PM at a single 

pixel ℳ: 

𝑆̇𝑐
𝑓(𝑡, 𝜙, 𝜆, 𝑥swath) = 𝑆̇𝑓(𝑡, 𝜙, 𝜆, 𝑥swath)       

−𝑈1(𝑡) 𝑊1(𝜙, 𝜆, 𝑥swath)       (11) 

and 

𝑠̇𝑐
𝑓(𝑡, 𝑥swath) = 𝑠̇𝑓(𝑡, 𝑥swath) − 𝑢1(𝑡) 𝑤1(𝑥swath).    (12) 

 

By design, the projections of 𝑆̇𝑐
𝑓
 onto 𝑈1 and of 𝑠̇𝑐

𝑓
 onto 𝑢1 

are zero: we thus eliminate any covariance between the 

SMOS SSS dataset and the RFI characteristic time series in 

the treated region or pixel. 

 

I. Evaluation of the corrected datasets 

1) Preliminary Procedures 

In Section IV, we focus on characterizing the corrected 

dataset and evaluating its improvement over the initial dataset 

by benchmarking against in situ references.  

To construct the final corrected dataset and facilitate 

comparisons with in situ datasets, we revert to SSS with the 

original time-space sampling prior to gap filling. Hence, we 

make comparisons using, for RM, the fields 𝑆̇ and 𝑆̇𝑐 derived 

from 𝑆̇𝑓 and 𝑆̇𝑐
𝑓
, and for PM, the functions 𝑠̇ and 𝑠̇𝑐  derived 

from 𝑠̇𝑓 and 𝑠̇𝑐
𝑓

 , by applying the initial mask. 

Before comparing with in situ datasets, we average the 

salinities across all swath classes, resulting in 〈𝑆̇〉 and 〈𝑆̇𝑐〉 for 

RM, and  〈𝑠̇〉 and 〈𝑠̇𝑐〉 for PM at all pixels, as defined in (3). 

These averaged salinities depend solely on time and 

geographical location. 

2) Visualization of the comparisons to ISAS 

The SSS differences with respect to ISAS are examined 

around the RFI source using a representation we will call  

“polar-Hovmöller.” In this representation, the fields 〈𝑆̇〉 and 

〈𝑆̇𝑐〉 are averaged over small angular sectors originating from 

the RFI source and encompassing the entire annular domain, 

as shown in Figure 4. This leads to time series for sub-angles 

between east (E), northeast (NE), north (N), etc. This allows 

for a comparison with the observational field dataset ISAS 

and the results from RM and PM, as demonstrated in the 

upcoming Section IV.  

3) Validation metrics 

The in situ observation dataset, denoted as 𝑆̇obs(𝑡, 𝜙, 𝜆), or  

𝑠̇obs(𝑡) at any pixel, serves as a benchmark for evaluating the 

methods. This dataset could be either ISAS SSS or mooring 

SSS, as discussed in Sections II.B and II.C respectively. The 

primary evaluation metric used is the timewise std of the 

difference between the SMOS SSS fluctuation and 𝑆̇obs. The 

Figure 4: All-time std of  〈𝑆̇〉 at each location around the 

Samoa RFI source. The RFI source (Ω) and annular domain 

(100-500 km) are indicated as well as the rose angles N, NE, 

etc. used in the polar-Hovmöller representation. 
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timewise std is calculated as follows (seeing that the variable 

𝑋̇ is already centered): 

𝑠𝑡𝑑𝑡(𝑋̇) = (
1

𝑁𝑡
∑ 𝑋̇(𝑡)2𝑁𝑡

𝑡=1 )
1 2⁄

.                (13) 

 

Using this, we can define the evaluation metrics for the 

original and corrected datasets. For RM, the metrics are 

defined as: 

{
Υ = 𝑠𝑡𝑑𝑡(〈𝑆̇〉 − 𝑆̇obs)

Υ𝑐 = 𝑠𝑡𝑑𝑡(〈𝑆̇𝑐〉 − 𝑆̇obs)
                        (14) 

and for PM: 

{
γ = 𝑠𝑡𝑑𝑡(〈𝑠̇〉 − 𝑠̇obs)

γ𝑐 = 𝑠𝑡𝑑𝑡(〈𝑠̇𝑐〉 − 𝑠̇obs) 
                       (15) 

 

iterated for all pixels. Henceforth, we will refer to these 

metrics as “std of difference”. 

This allows us to generate maps of these metrics for the 

region under study. The smaller the values of Υ𝑐  or γ𝑐, the 

more effective the correction methods are compared to the 

observational benchmark. The differences Υ − Υ𝑐 and γ − γ𝑐 

provide measures of the correction methods’ effectiveness. 

Since the PM method is applied to all pixels within a region, 

we likewise obtain maps of the comparison metrics. 

Furthermore, by comparing Υ𝑐(𝜙𝑖 , 𝜆𝑖) − (𝛾𝑐)𝑖  for all pixels 𝑖, 
we produce a map illustrating the relative strengths and 

weaknesses of both methods across the region (refer to 

TABLE II for summary). 

In addition to std of difference, we use the Pearson 

correlation at any pixel, defined by: 

𝑟 =

1
𝑁𝑡

∑ 〈𝑠̇〉(𝑡) × 𝑠̇obs(𝑡)𝑁𝑡
𝑡=1

𝑠𝑡𝑑𝑡(〈𝑠̇〉) × 𝑠𝑡𝑑𝑡(𝑠̇obs)
 .                     (16) 

IV. RESULTS 

We conduct our study in three specific regions known for 

RFI contamination: the Samoa region surrounding the Samoa 

islands in the southwestern tropical Pacific; the Barbados 

region around Barbados island in the Caribbean Sea; and the 

Guinea Gulf region encompassing the Ghana coast and 

neighboring countries (TABLE I). In each region, we 

identified an RFI source initially through visible signatures in 

the SMOS SSS data, later confirmed by RFI probability data 

and ERMIT reports. The boundaries were chosen to centrally 

locate the RFI source, facilitating the testing and comparison 

of correction methods within these areas. 

 

A. Samoa region 

1) Results from RM 

As outlined in Section III.F.1, we apply PCA to ∆𝑆̇𝑓 in the 

annular region surrounding the RFI source in Samoa depicted 

in Figure 4. The first mode contributes to nearly 50% of the 

total variance and is largely superior to the second (5%) and 

all subsequent modes (Figure 5). The PCA time series 

associated with the first mode 𝑈1(𝑡) distinctly indicates an 

RFI activation in 2014, remaining relatively stable before and 

after this period (Figure 6). This is consistent with the 

observational data in Figure 3c-d, where RFI signatures are 

evident after 2014. The RFI probability time series 

𝑃RFI(𝑡) further corroborates that the RFI source becomes 

fully active starting in early 2014, as it consistently hovers 

close to 1, while it fluctuates between 0 and 0.8 prior to 2014 

(Figure 6). 𝑈1(𝑡) and 𝑃RFI(𝑡) are highly correlated with 

correlation of 0.90. Note that to ensure consistency across 

temporal scales, 𝑃RFI(𝑡) was processed through a low-pass 

filter using a Gaussian convolution with a 1-month scale [24], 

[25]. EOF spatial patterns 𝑉1(𝜙, 𝜆, 𝑥swath), tied to the annular 

Figure 5: Distribution of the percentage variance among the 

PCA modes derived from the PCA of the filled differential 

dataset ∆𝑆̇𝑓 within the Samoa annular region. The error bars, 

computed as per [26], provide a somewhat broad yet 

dependable indication of the separability of the modes. 

Figure 6: (Blue) Time series 𝑈1(𝑡) (see text) associated to 1st 

mode of the PCA of ∆𝑆̇𝑓 within the Samoa annular region as 

shown in Figure 3a-b. (Grey) RFI probability time series for a 

location near 13.9°S, 171.7°W which is identified as the RFI 

source location in this region. The probability axis undergoes a 

transformation by raising it to the power of 6 to highlight its 

similarity more effectively with the PC. Correlation of 𝑈1(𝑡) 

with 𝑃RFI(𝑡) is 0.90. 
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domain and fundamental to PCA, are excluded from this 

presentation, as we do not use them in our methodology, and 

they do not add further insights beyond those offered by the 

regression-derived spatial components discussed later (figures 

are provided as supplementary material). 

The spatial component 𝑊1(𝜙, 𝜆, 𝑥swath) characterizes RFI 

signatures that are prominently visible, with both positive and 

negative branches stemming from the source on the Samoa 

Islands (Figure 7). Some of these branches stretch over 1000 

km, particularly those pointing towards the south, northeast 

and north-northeast. Other intense branches are noticeable in 

the northwest, originating from another RFI source outside 

the studied region. RFI signatures also radiate from the Fiji 

Islands, situated west-southwest of Samoa. These features 

from other sources are visible as their timing has some 

correlation with 𝑈1(𝑡). Note that 𝑊1 is similar in construction 

to 𝑉1. However, 𝑉1 is relative to the differential dataset ∆𝑆̇𝑓  

and to the annular domain, while 𝑊1 is relative to the total 

dataset 𝑆̇𝑓 within the large region which we aim to correct. 

Before we explore the correction results, we briefly discuss 

the context of SSS variations in the Samoa region. A 

significant portion of this region falls within the South Pacific 

Convergence Zone (SPCZ), an area known for its strong 

interannual variability in SSS [6], [27]. In the area 

surrounding the RFI source, the ISAS SSS fluctuation (𝑆̇ISAS) 

exhibits markedly positive values across the region prior to 

2014, particularly during the latter halves of 2011 and 2012 

(Figure 8a). Post-2013, 𝑆̇ISAS reveals widespread and intense 

negative fluctuations. 

From 2010 to 2013, the variability observed in the original 

SMOS SSS fluctuations, 〈𝑆̇〉 (Figure 8b), aligns with the 

variability identified by 𝑆̇ISAS  and is influenced by ENSO 

signals [6]. However, starting in 2014, the variability in 〈𝑆̇〉 

no longer matches that in 𝑆̇ISAS  and is predominantly affected 

by directional variability around the RFI source. This period 

is characterized by pronounced RFI signatures with extremely 

high values, which persist and exhibit either positive or 

negative signs across various angular intervals. 

Starting from 2014, the corrected SMOS SSS fluctuation 

〈𝑆̇𝑐〉 no longer displays the overpowering RFI signatures 

(Figure 8c). The fluctuation range is approximately 1 pss, and 

the temporal variability now exceeds the variability across 

angles. This change is due to the elimination of the star-like 

RFI contamination pattern that previously affected the SMOS 

satellite measurements. Furthermore, the variations in 〈𝑆̇𝑐〉 

are now largely in sync with 𝑆̇ISAS  for most of the 

observation period. In terms of magnitude, 〈𝑆̇𝑐〉 shows strong 

positive values over the region during specific periods, 

notably the latter halves of 2011 and 2012, similar to 𝑆̇ISAS. 

However, at the end of 2015 and beginning of 2016, and 

again late 2017 through late 2019, 〈𝑆̇𝑐〉 remains strongly 

positive, whereas 𝑆̇ISAS shows more moderate values. 

Between these periods, we observe fresher water, though less 

fresh compared to 𝑆̇ISAS.  

Single-location time series distinctly demonstrate the 

improvements made by the RM approach (Figure 9). For 

instance, severe RFI contamination, occasionally reaching up 

to 3 pss in proximity to the source (~250 km), is significantly 

reduced by the correction method (Figure 9a-c). Metrics 

comparing with ISAS generally indicate an improvement 

after correction, characterized by a reduction in the std of 

difference and an increase in correlation (TABLE IIIa-c). 

However, not all RFI corrected locations see an increase in 

correlation, as shown by the data in Figure 9b and the 

corresponding values in TABLE IIIb (note that changes in the 

correlation coefficient are sometimes challenging to visually 

discern in time series plots, particularly when the most 

significant change occurs in the std of difference). A similar 

occurrence is observed in the Guinea Gulf region (location h), 

which will be discussed later. Considering the 95% 

confidence intervals associated with the correlation 

coefficients, changes in correlation, whether increases or 

decreases, are generally not significant. The exception is 

Figure 7: Projection 𝑊1(𝜙, 𝜆, 𝑥swath) of the 4-dimensional 

dataset 𝑆̇𝑓 onto the RFI characteristic time series 𝑈1(𝑡) for the 

Samoa region. Maps are shown for the case 𝑥swath = −75𝑘𝑚. 

(a) For 𝑥orb = ′𝐴′. (b). 𝑥orb =′ 𝐷′. The -75km interval is 

selected out of the 33 swath intervals for illustration. 
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location a and, as seen later, e and f, where the correlation 

significantly increases (note also that the significance of a 

coefficient change is related to the overlap between 

confidence intervals before and after correction; the change is 

most significant when there is little or no overlap). 

Conversely, the std of difference significantly decreases in 

most locations impacted by RFI contamination. 

As mentioned previously, strong deviations from ISAS, 

about 1 pss or more (in std of difference), are observed within 

a few hundred kilometers of the RFI source (Figure 10a). 

These deviations are considerably reduced due to the 

correction method (Figure 10b). Other RFI contamination 

features, such as the far-reaching branches, are also 

eliminated. The improvement achieved by the method is 

distinctly noticeable in Figure 10c, denoted by the blue 

domain. Intriguingly, a positive correction is also observed 

around the Fiji Islands, situated to the west-southwest of 

Samoa, where another RFI source is identified (ERMIT). The 

reason for this occurrence, whether due to Samoa’s proximity 

or the chance that the RFI characteristic time series 𝑈1(𝑡) 

captures some aspect of the timing associated with the Fiji 

RFI source, was not investigated in this section but will be 

revisited in the discussion of the PM results. Despite these 

effective corrections, some degradation, approximately 

−0.05 pss (red areas), is also detected at locations far from 

the RFI source.  

Generally, few moorings are located near areas affected by 

RFI contamination. In the Samoa region, a TAO mooring at 

8°S, 170°W lies within an RFI branch extending over 600 km 

from the Samoa source (indicated by a bullet in Figure 10). 

The RFI impact here is moderate compared to locations 

nearer the source. However, Figure 10c shows a patch of 

significant improvement in SMOS SSS using the RM method 

around this pixel, with ISAS as a benchmark. The 〈𝑆̇〉 time 

series closely matches both the mooring 𝑠̇MOOR(𝑡) and 

𝑠̇ISAS(𝑡) up until early 2014 (Figure 9d; notice a gap in 𝑠̇MOOR 

between early 2012 and late 2014). From mid-2014 to 2020, 

〈𝑆̇〉 shows a consistent negative bias of about 0.5 pss relative 

to both 𝑠̇ISAS and 𝑠̇MOOR. The corrected series 〈𝑆̇𝑐〉 agrees 

more closely with in situ data during this period. Before the 

RFI activation, 〈𝑆̇𝑐〉 closely follows 〈𝑆̇〉, as the correction’s 

RFI time series 𝑈1(𝑡) is near zero, assuming its 2010-2013 

mean is also removed (Figure 6).  

Figure 8: (a) ISAS SSS fluctuation (𝑆̇𝐼𝑆𝐴𝑆) relative to the 2010-2013 period, presented as a polar-Hovmöller diagram, with the 

center at the RFI source as shown in Figure 4 (see text for details). (b) Same as (a), but for the swath-averaged initial SMOS SSS 

fluctuation (〈𝑆̇〉). (c) Same as (a), but for the swath-averaged SMOS SSS corrected using RM (〈𝑆̇𝑐〉). (d) Same as (a), but for the 

swath-averaged SMOS SSS corrected using the pointwise method at all pixels (〈𝑠̇𝑐〉). 
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Figure 9: Time series of SMOS and observed SSS fluctuation, within the Samoa region at the locations: (a) 15.4°S, 170.3°W, 

(b) 15°S, 173.9°W, (c) 19.1°S, 176°W, (d) 8°S, 170°W; within the Barbados region at: (e) 11.6°N, 58.2°W, (f) 12.4°N, 59.3°W; 

within the Guinea Gulf region at: (g) 3.6°N, 1.9°W, (h) 4°N, 1.4°W. Location for (d) coincides with a TAO mooring. (Black) 

Initial SMOS 〈𝑆̇〉. (Blue) PM corrected SMOS 〈𝑠̇𝑐〉. (Orange) RM corrected SMOS 〈𝑆̇𝑐〉. (Green) ISAS 𝑆̇ISAS . (Red) TAO 

mooring 𝑆̇MOOR (when available). Std of difference and correlation results are indicated in TABLE III. 
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TABLE III 

STATISTICAL COMPARISON BETWEEN THE SMOS AND IN SITU (ISAS AND MOORING) SSS TIME SERIES AT 

SPECIFIC LOCATIONS, CORRESPONDING TO FIGURE 9. A 95% CONFIDENCE INTERVAL FOR THE METRIC, 

OBTAINED THROUGH A BOOTSTRAP METHOD [28], IS INDICATED IN PARENTHESES. 

 

Region Location Time Series Pair Std of Diff (pss) Pearson Correlation 

S
am

o
a 

(a)  170.3°W,15.4°S 

D(Source)=230km 

ISAS 

INIT SMOS 1.69 (1.60,1.80) -0.23 (-0.37,-0.08) 

RM SMOS 0.45 (0.40,0.52) 0.53 (0.41,0.63) 

PM SMOS 0.52 (0.46,0.61) 0.40 (0.26,0.52) 

(b)  173.9°W,15°S 

D(Source)=263km 

INIT SMOS 0.94 (0.88,1.01) 0.60 (0.48,0.70) 

RM SMOS 0.38 (0.34,0.43) 0.45 (0.32,0.57) 

PM SMOS 0.38 (0.34,0.44) 0.50 (0.37,0.60) 

(c)  176°W,19.1°S 

D(Source)=733km 

INIT SMOS 0.37 (0.33,0.40) 0.64 (0.55,0.72) 

RM SMOS 0.23 (0.20,0.26) 0.73 (0.63,0.79) 

PM SMOS 0.25 (0.22,0.28) 0.72 (0.63,0.79) 

(d)   170°W,8°S 

D(Source)=683km 

INIT SMOS 0.30 (0.27,0.34) 0.77 (0.70,0.82) 

RM SMOS 0.21 (0.19,0.24) 0.81 (0.76,0.86) 

PM SMOS 0.21 (0.19,0.24) 0.83 (0.78,0.87) 

MOORING 

INIT SMOS 0.33 (0.29,0.38) 0.69 (0.56,0.78) 

RM SMOS 0.19 (0.17,0.23) 0.81 (0.71,0.87) 

PM SMOS 0.21 (0.18,0.24) 0.81 (0.72,0.88) 

B
ar

b
ad

o
s (e)  58.2°W,11.6°N 

D(Source)=236km 

ISAS 

INIT SMOS 1.41 (1.29,1.54) 0.50 (0.39,0.60) 

RM SMOS 0.66 (0.57,0.88) 0.80 (0.70,0.85) 

PM SMOS 0.61 (0.52,0.85) 0.83 (0.72,0.87) 

(f)  59.3°W,12.4°N 

D(Source)=103km 

INIT SMOS 2.76 (2.40,3.15) 0.31 (0.13,0.45) 

RM SMOS 0.82 (0.70,0.97) 0.69 (0.59,0.77) 

PM SMOS 0.96 (0.83,1.17) 0.65 (0.50,0.75) 

G
u

in
ea

 

G
u

lf
 

(g)   1.9°W,3.6°N 

D(Source)=192km 

INIT SMOS 2.63 (2.24,3.07) -0.11 (-0.29,0.08) 

RM SMOS 1.04 (0.88,1.25) 0.09 (-0.08,0.24) 

PM SMOS 1.19 (0.99,1.47) 0.19 (0.03,0.34) 

(h)   1.4°W,4°N 

D(Source)=205km 

INIT SMOS 1.56 (1.32,1.84) 0.12 (-0.06,0.30) 

RM SMOS 0.93 (0.77,1.19) 0.04 (-0.13,0.23) 

PM SMOS 1.02 (0.89,1.21) -0.04 (-0.19,0.14) 
 

Metrics quantify RM’s improvement: std of difference 

decreases from 0.33 pss to 0.19 pss, and correlation increases 

from 0.69 to 0.81 (TABLE IIId). Additional comparisons at 

TAO locations (supplementary material), not significantly 

affected by RFI, demonstrate the correction methods’ 

performance in RFI-free areas. These analyses confirm from 

a local viewpoint that RM may reduce agreement with both 

ISAS and mooring data, especially far from the RFI source. 

2) Results from PM, and comparison with RM  

As earlier stated, the key distinction from RM is that the 

PM approach processes each location (𝜙, 𝜆) individually. It is 

applied independently to all grid pixels within a region. We 

first demonstrate this method at the pixel that coincides with 

the previously introduced mooring location at 8°S, 170°W. 

Here, in accordance with Section III.F.2, the first mode is 

dominant, contributing to 27% of the total variance, while the 

second mode accounts for 5%. The time series 𝑢1(𝑡) 

associated with this mode is shown in Figure 11, along with 

the RFI probability time series of the nearest RFI source 

𝑃RFI(𝑡). The two series exhibit a correlation of 0.89, 

signifying a robust correlation. However, the visual alignment 

between the two series is not as pronounced as the RM results 

depicted in Figure 6. This discrepancy arises because, in RM, 

𝑈1(𝑡) integrates the RFI temporal signature from multiple 

pixels surrounding the source, while 𝑢1(𝑡) is derived from a 

singular pixel. 

At the location 8°S, 170°W, the cross-swath correction 

component 𝑤1(𝑥swath) for the descending orbit peaks at 

𝑥swath = −200 𝑘𝑚 and increases, becoming positive for 

𝑥swath > 300 𝑘𝑚 (Figure 12). For the ascending orbit, 

𝑤1(𝑥swath) is positive between -100 and +200 km and turns 

negative outside this range. These patterns correspond with 

the variations in 𝑠̇𝑓 post-2014 when the Samoa RFI 

perturbation is active, as shown in Figure 3c,d for 

𝑥orb =′ 𝐴′, ′𝐷′. 
At 8°S, 170°W, PM operates a major rectification from 2014 

onwards, similar to RM (Figure 9d), a pattern also observed at 

the other locations shown (Figure 9a-c). At 8°S, 170°W, the 

time series corrected by both methods are nearly identical
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Figure 10: (a) Metric 𝛶 (see TABLE II), equal to the timewise std of difference at each location between the swath-averaged initial SMOS SSS fluctuation 〈𝑆̇〉 and 𝑆̇ISAS. (b) 

𝛶𝑐, same as (a) but for the corrected SSS using RM 〈𝑆̇𝑐〉. (c) 𝛶 − 𝛶𝑐 , the algebraic difference between maps (a) and (b). (d) Metric 𝛾𝑐 at all pixels, which is the same as (b), 

but for the corrected SSS using PM 〈𝑠̇𝑐〉. (e) 𝛾 − 𝛾𝑐 at all pixels, same as (c), but difference is between maps (a) and (d). (f) 𝛶𝑐 − 𝛾𝑐 at all pixels, the algebraic difference 

between maps (e) and (c). RFI source (black circle), TAO mooring locations (black bullet) and other locations for time series evaluation (black squares) are indicated (see   

TABLE I and TABLE III). 
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except for a few periods of larger differences around mid-2011, 

mid-2012, and mid-2014 

The comparison metrics, whether with ISAS or mooring 

data, are similar (TABLE IIIa-d). RM exhibits a higher 

correlation with ISAS, while PM shows a lower std of 

difference with mooring data. However, these PM/RM 

differences are moderated by the widths of the confidence 

intervals. At the non-mooring locations (a-c), PM and RM often 

show differences throughout the period, with RM’s std of 

difference being either equal to or less than that of PM’s, and 

RM achieving a higher correlation in two out of three cases. 

Specifically, at the 173.9°W, 15°S location (in b), both 

corrections occasionally degrade the correlation metric, possibly 

due to the introduction of noise to the SMOS SSS (but see the 

discussion on the significance degree of correlation changes in 

1) above). These four pixels are specifically highlighted, but a 

broader comparison of PM and RM across the entire region is 

discussed below. 

Upon examining the RFI source vicinity, PM significantly 

mitigates the RFI contamination, similar to the RM method 

(Figure 8d). Both PM and RM effectively eradicate major RFI 

disruptions in the SMOS SSS, thereby restoring variability 

consistent with that of ISAS (Figure 8a). 

The effectiveness of PM across the entire region, as 

compared to ISAS, mirrors that of RM (Figure 10d,e). 

However, Figure 10f reveals some differences between RM and 

PM outcomes in the region. Considering ISAS as the accurate 

SSS reference, we observe that: 1) RM is more effective near 

the Samoa islands and the source, within a 200-300 km range, 

as evidenced by (slightly) better std scores for RM compared to 

PM; 2) In contrast, PM avoids the widespread (minor) 

degradation observed with RM far from the source, around 

1000 km away; 3) PM also shows greater efficiency near the 

Fiji Islands, west-southwest of Samoa. These observations 

suggest PM's unique advantage of operating independently at 

each pixel, allowing for a distinct RFI characteristic time series 

𝑢1(𝑡) at each location, unlike RM, which uses a single series 

𝑈1(𝑡) for the entire region. 

 

B. Barbados region 

Due to the scarcity of mooring data in the Barbados and 

Guinea Gulf regions, comparisons are exclusively made with 

the ISAS observational field. Additionally, to maintain 

brevity in the article, evaluation illustrations are limited to 

general performance maps of the methods, as exemplified in 

Figure 10c,e,f for the Samoa region. 

In the Barbados region, a significant RFI source was 

detected at approximately 13.23°N, 59.55°W, active from 

mid-2011 to the end of 2014. The RM PCA extracts a 

characteristic time series that correlates almost perfectly with 

the RFI probability, even though the variance of the first 

mode is only moderately dominant (Figure 13a). Note that in 

this case, the RFI probability is high (≥ 0.9) yet does not 

reach full saturation at a value of 1, contrasting with the 

situation in the Samoa region as depicted in Figure 6. As a 

result, the first PC effectively captures the variations in 

probability. 

In pixels near the RFI source, as indicated in Figure 9e,f, 

and whose locations are shown in Figure 14a-c, both RM and 

PM significantly improve the reliability of SMOS SSS 

estimates. Notably, the substantial disruptions observed in the 

initial SMOS SSS series from 2011 to 2014 are eliminated 

following the application of these corrections, with the effect 

of aligning the corrected estimates closely with the ISAS 

series. This improvement is evidenced by a reduction in the 

Figure 11: (Blue) Time series 𝑢1(𝑡) (see text) associated to 1st 

mode of the PCA of ∆𝑠𝑓̇  at the 8°S, 170°W location. (Grey) 

RFI probability time series for a location near 13.9°S, 

171.7°W which is identified as the RFI source location in this 

region. The probability axis undergoes a transformation by 

raising it to the power of 6 to highlight its similarity more 

effectively with the PC. 

Figure 12: Projection 𝑤1(𝑥swath) of the 2-dimensional 

salinity dataset 𝑠̇𝑓 onto the RFI characteristic time series 

𝑢1(𝑡) at the location 8°S, 170°W. (Blue) Ascending orbit. 

(Orange) Descending orbit. 
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Figure 13: Same as Figure 6, but for: (a) The Barbados 

region and the 150km-600km annular region centered on 

13.23°N,59.55°W; 1st mode variance percentage is 22%, 2nd 

mode, 6%: correlation of 𝑈1(𝑡) with 𝑃𝑅𝐹𝐼(𝑡) is 0.99. (b) The 

Guinea Gulf region and the 100km-500km annular region 

centered on 5°N,3°W; 1st mode variance percentage is 17%,  

2nd mode, 8%; correlation of 𝑈1(𝑡) with 𝑃𝑅𝐹𝐼(𝑡) is 0.79. 

std of difference and an increase in correlation with ISAS, as 

detailed in TABLE IIIe,f. 

The RM correction effectively mitigates the RFI 

contamination originating from the Barbados RFI source and 

extending along diverging RFI branches (Figure 14a). It 

seems as though some of these branches extend as far as the 

regions off French Guiana and the mouth of the Amazon 

River, a topic that is addressed from a more general 

viewpoint in the following paragraphs. 

PM appears to improve the reliability of the SMOS SSS field 

over a wider area compared to RM (Figure 14b,c). However, 

these findings warrant careful interpretation: 1) Near the 

Barbados RFI source, RM and PM show similar effects, with 

RM performing better at specific pixels, a pattern also noted 

near the Samoa source; 2) PM effectively corrects for RFI 

around the islands of the Dominican Republic and Puerto Rico, 

northwest of Barbados, areas clearly influenced by other RFI 

sources. This corrective feature is not present in RM. 3) PM 

brings a significant portion of the SMOS SSS field, extending 

east of Barbados from about 20°N to the mouth of the Amazon 

River, into closer agreement with ISAS data. This pattern, 

reaching to the eastern boundary of our study, does not seem 

related to RFI contamination and is not present in RM results, 

except in the regions off French Guiana and the mouth of the 

Amazon River.  

We conducted a more in-depth investigation, notably 

incorporating a Soil Moisture Active Passive (SMAP) L3 

dataset into our analysis (refer to Appendix B). Our findings 

suggest that PM does not improve the accuracy of SMOS SSS 

measurements in this highly dynamic region, which is 

significantly influenced by the Amazon River discharge. The 

reasoning behind this is that PM inadvertently aligns SMOS 

SSS more closely with ISAS. However, considering that ISAS 

may not be a dependable benchmark in this region, it implies 

that PM might actually lead to a systematic deterioration in this 

area. 

 

C. Guinea Gulf region 

In the Guinea Gulf region, a strong RFI source was 

detected near 3°W, 5°N, which was intermittently activated at 

least four times for brief periods (Figure 13b). Another RFI 

source, located approximately 8° to the east, was constant but 

had a lower intensity level (not shown), and its impact was 

not as significant as the former. Utilizing RM, PCA generates 

a characteristic time series with a notable correlation to the 

RFI probability, although this correlation is not as strong as 

observed in the Samoa and Barbados regions (Figure 13b). 

Moreover, the variance percentage attributed to the first mode 

is marginally dominant.  

However, as evidenced in selected pixels near the principal 

RFI source (Figure 14d-f), significant mitigation of RFI 

contamination is achieved following the application of either 

RM or PM, particularly from 2018 onwards (as shown in 

Figure 9g,h). In terms of the std of differences, RM 

outperforms PM slightly (TABLE IIIg,h). Yet, while PM 

significantly improves correlation in one of the two instances 

(i.e. g), the level of corrected SSS correlation is either 

diminished or remains marginal. Correlation is less reliable 

than the standard deviation of differences when dealing with 

noise, outliers, or uncertain reference data (see discussion). 

Therefore, reducing the standard deviation of differences is 

the preferred result of correction processes, even though any 

improvement in correlation is also beneficial.  

From a broader perspective, RFI contamination associated 

with branches diverging from the RFI source is diminished, 

resulting in a more reliable SMOS SSS field when compared 

to ISAS (Figure 14d,e). Like observed in Samoa, in the 

Barbados region, PM provides more extensive corrections than 

RM, especially at locations distant from the RFI source at 5°N, 

3°W (Figure 14f). Consistent with the patterns observed in both 

Samoa and Barbados, RM more effectively mitigates RFI 

contamination in areas close to the targeted RFI source. 

Conversely, PM effectively reduces RFI signatures around a 
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Figure 14: Same as Figure 10c,e,f, but for: (a), (b), (c) the Barbados region, and (d), (e), (f) the Guinea Gulf region. Hence, (a) and (d) show the metric 𝛶 − 𝛶𝑐  (see TABLE 

II), (b) and (e) 𝛾 − 𝛾𝑐, and (c) and (f) 𝛶𝑐 − 𝛾𝑐. RFI source (black circle) and other locations for time series (black squares) are indicated (see TABLE I and TABLE III). 
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secondary RFI source located approximately 8° to the east.  

Additionally, broad areas showing SSS modifications 

through PM are visible to the south, off the coasts of Cameroon, 

Equatorial Guinea, and Gabon, and to the north, from the coasts 

of Liberia to Mauritania. These features, which we do not 

immediately associate with improvement, may arise from 

causes such as those observed in the expansive correction areas 

in the Barbados region (see discussion about the reliability of 

ISAS in areas of strong SSS variability). 

V. DISCUSSION 

We address several discussion points concerning the 

comparative advantages and disadvantages of the two 

methods outlined in the preceding sections. 

On the one hand, RM can correct RFI contamination across 

a wide area, effectively restoring SSS variability that aligns 

with ISAS reference data. However, its application requires 

prior knowledge of the RFI source location, and assumes 

there is only one RFI source in the treated region. On the 

other hand, PM independently corrects RFI contamination at 

each location without any prior information about the RFI 

sources or affected regions. Nevertheless, PM may not be as 

robust as RM since it depends solely on cross-swath SSS 

variations and is more sensitive to uncertainties introduced 

from the gap-filling procedure and inherent noise in SMOS 

SSS data. RM demonstrates greater robustness near the 

targeted RFI source, as its approach to determining the RFI 

time series includes data from numerous locations around the 

source, alongside cross-swath variations at each pixel. 

To reconcile these aspects, a potential solution could 

involve an as-yet-unimplemented hybrid method that 

combines the strengths of RM and PM. Like PM, this method  

would process each grid pixel (𝜙, 𝜆) independently, but 

would also consider a surrounding area similar to RM to 

calculate a characteristic RFI time series and a spatio-

temporal correction term, which would ultimately be applied 

solely to the (𝜙, 𝜆) pixel. A circular area with a 400-km 

radius, encompassing the width of an SMOS swath, would 

serve as a suitable dimension for this “sliding region.” 

Both methods operate under the assumption that the RFI 

signature constitutes the primary mode of variability in the 

cross-swath SSS differences, as detailed in (5) and (6), and 

that this signature can be distinguished by a characteristic 

time series correlating with RFI probability. However, this 

assumption may not hold in certain regions or during periods 

where RFI contamination is either weak or sporadic, or where 

geophysical variability is particularly strong or complex 

within SMOS sub-cycle duration (18 days). For instance, 

Figure 15 illustrates variations across three regions of similar 

dimensions, demonstrating that the correlation between the 

PM-generated time series and RFI probability does not 

consistently exhibit the same level of coherence, making 

interpretation challenging. 

Specifically, in the Samoa region (Figure 15a), despite the 

presence of multiple RFI sources (Samoa, Fiji, Gilbert 

Islands), areas of high correlation (> 0.8) are relatively well-

defined. In contrast, within the Barbados and Guinea Gulf 

regions, where RFI contamination occurs more sporadically 

or with shorter durations, such pattern is not evident (Figure 

Figure 15: Absolute correlation value between 𝑢1(𝑡), the 

PCA time series obtained from the first mode in the PM 

method and calculated at each pixel, and 𝑃𝑅𝐹𝐼(𝑡), the RFI 

probability time series from the closest identified RFI source. 
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15b,c). Notably, the region to the east of the Barbados RFI 

source, depicted in Figure 14b, exhibits negligible correlation 

in Figure 15b. Conversely, RFI sources along the African 

coast, west-northwest of the RFI source at 5°N,3°W, are 

responsible for the positive correction observed with PM (as 

shown in Figure 14e and Figure 15c). In this context, the 

implementation of a hybrid method, as proposed earlier, 

might improve coherence. 

One significant challenge involves developing an 

intermediary step to determine whether to apply the 

correction. The primary obstacle is the absence of a 

completely reliable observational reference dataset for 

method training and evaluation. Nevertheless, treating ISAS 

as a potentially fully reliable benchmark, we experimented 

with a procedure using PM. Instead of relying solely on the 

first PCA mode for correction, we considered using the first 𝑛 

modes for multiple regression, where 𝑛 could be zero if no 

correction is determined to be necessary, and 𝑛 ≥ 1 if it leads 

to improved results. The selection of 𝑛 at each grid pixel was 

based on a comparison with ISAS data. This approach 

produced a map indicating integer values for 𝑛 (not presented 

here). As expected, the “optimized” 𝑛 was zero at many 

pixels where RFI contamination appeared absent. However, 

attempts to interpret 𝑛 values across regions were not 

successful, and using only 𝑛 = 1 emerged as the optimal 

compromise since using 𝑛 ≥ 2 might suppress some short-

term SSS variability. 

The use of the ISAS dataset as a reference for validation, 

which relies on sparse in situ observations, warrants further 

discussion. Being derived from Argo float measurements, the 

ISAS dataset may offer limited spatial and temporal 

coverage, especially in highly dynamic oceanic areas like 

coastal zones and river mouths (e.g. discussed in [29]). 

Moreover, it undergoes interpolation and smoothing 

processes that might introduce biases or inaccuracies into the 

SSS estimates. For example, ISAS might not accurately 

capture the sharp gradients or mesoscale features identifiable 

by SMOS. This consideration is particularly relevant for 

some correction features produced by the PM approach, such 

as those observed in the eastern Barbados region. Hence, in 

this specific area of significant variability, we also employed 

SMAP SSS as a benchmark for testing. Indeed, as 

demonstrated by [30], in highly variable regions, such as river 

plumes, SMAP and SMOS exhibit similar SSS variability 

with greater consistency compared to Argo interpolated 

products. 

We evaluated our methods across three regions located 

within the tropical ocean’s warm waters. In fact, the L-band 

radiometric signal-to-noise ratio is more favorable in warm 

waters, resulting in lower uncertainty in SMOS SSS 

measurements compared to those in colder regions. Future 

work should aim to assess the effectiveness of these methods 

in colder waters, which are also known to be affected by 

numerous areas of RFI contamination. 

VI. CONCLUSION 

Leveraging the SSS observations across different swath 

distances and instrument geometries, we demonstrated the 

feasibility of correcting specific RFI contaminations. We 

employed principal component and regression analyses to 

adjust the SMOS L2 SSS data for RFI contamination across 

various regions. Our methods focused on identifying and 

eliminating RFI signatures in both time and space, utilizing a 

characteristic time series derived from the PCA of the 

differential SSS field measured under different instrumental 

configurations. We explored two approaches for deriving and 

applying this characteristic time series: a Regional Method 

RM and a Pointwise Method PM. 

These methods were tested in three selected regions known 

for active RFI sources impacting SMOS SSS data quality: 

Samoa, Barbados, and the Guinea Gulf. We evaluated the 

methods by comparing the corrected SMOS SSS data against 

the in situ gridded datasets ISAS and TAO mooring time 

series. 

The methods proved effective in mitigating the impact of 

RFI and improving the accuracy and variability of SMOS 

SSS, particularly in regions with high and consistent RFI 

probability. However, they also uncovered limitations, 

including dependence on precise RFI source location and 

timing, sensitivity to the specific region treated, and potential 

interference from other sources of uncertainty. 

While RM was better at preserving short-term SSS 

variability, PM performed better in cases of contamination by 

several RFI sources. Future work should concentrate on 

finding a tradeoff between both methods. 

The RM method has been implemented for generating 

version 4 of CCI SSS dataset, and both RM and PM have 

served as a starting point for expanding and systematizing 

RFI correction for SMOS SSS data. 

 

APPENDIX 

A. CESBIO probability dataset 

The probability dataset consists of global daily maps, 

divided into ascending and descending orbits. This is to 

account for the SMOS satellite’s forward-tilted attitude, 

which receives more incoming RFI signal from afar in the 

front than in the back. These maps display the probabilities of 

detecting land RFI occurrences, integrated over a seven-day 

sliding window (±3 days around the map’s date), providing 

insights into RFI occurrences rather than their magnitudes. 

The computation method is based on an algorithm derived 

from detection processes, identifying L1c BT data 

contaminated by RFI that are excluded in the L2SM

Figure 16: RFI probability map for ascending orbits on 2018, 

May 11th . 
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UDP/DAP products [15]. Probabilities are calculated as the 

ratio of the number of BT detected as contaminated by RFI to 

the total number of BT observed over the seven-day period for 

each land grid-point on the SMOS map. 

BT data are flagged as contaminated by RFI if either:  

1) Their magnitudes fall outside the natural physical range, 

being either too low or too high, thus indicating the presenceof 

strong RFI sources; this applies to both co-polarized and 

cross-polarized measurements. 

2) Their magnitudes lie within the physical range but exhibit 

an anomalous directional signature in the incidence angle of 

the Stokes-1 parameter, suggesting a lower level of 

contamination (a few to tens of K) from distant RFI sources, 

with signals propagating through the synthetic antenna 

sidelobes. 

These detections rely on thresholds set to account 

optimistically for natural radiometric noise variances, with a 

preference for acceptance over rejection. Therefore, when BT 

data are detected and excluded, it is highly probable they are 

indeed contaminated. However, BT data that do not trigger 

these detection thresholds may still be contaminated. 

Consequently, the RFI situational awareness presented in 

these maps should be considered a best-case scenario, with the 

actual level of contamination potentially being more severe. 

Localized sources are primarily detected through the criteria 

in item 1) above and appear as dots on the maps, while large, 

spatially diffuse contaminated areas are identified through the 

criteria in item 2) above. A probability of 0 indicates that no 

BT was detected as contaminated (Figure 16). This does not 

necessarily imply the absence of contamination but rather that 

any existing contaminations were below the detection 

threshold. A probability of 0.1 means that 10% of the BT 

observations were detected as contaminated. As the 

probability level increases to 0.15, 0.25, 0.5, and 0.95, the 

frequency of detected and removed BT correspondingly rises. 

Ultimately, a probability of 1.0 signifies that no BT 

observations passed the detection process, and therefore, no 

retrieval was attempted. This scenario is typically observed in 

the immediate vicinity of permanent RFI sources emitting 

continuous strong signals. 

 

B. Comparison with SMAP SSS at a non-RFI location near 

Barbados 

Launched by NASA in January 2015, the SMAP mission is 

an Earth-observing satellite mission. Like SMOS, it measures 

BT over the ocean to derive SSS. The SMAP L3 processing 

by Remote Sensing Systems (RSS) generates a smoothed SSS 

product with an approximate spatial resolution of 70 km. This 

smoothing is achieved by averaging the higher-resolution 

product, leading to reduced noise. Consequently, this 70 km 

resolution product is considered the standard for scientific 

applications and is appropriate for studies of both open ocean 

and coastal areas. The monthly-averaged version of this 

product is used in our analysis, with the time series 

fluctuations over the period from April 2015 to December 

2020 denoted by 𝑠̇SMAP(𝑡). 

In this appendix, we explore SSS variations in the Barbados 

region, focusing on the area east of the RFI source where PM 

adjustments bring SMOS SSS measurements closer to ISAS 

(Section IV.B. and Figure 14b). Through analysis of time 

Figure 17: Time series of SMOS, SMAP, and observational SSS fluctuation, within the Barbados region at the location 10.2°N, 

51.2°W. Time axis limited to 2015-2020 to align with the SMAP period and enhance visibility of discrepancies during fresh or 

salty peaks. (Black) Initial SMOS 〈𝑆̇〉. (Blue) PM corrected SMOS 〈𝑠̇𝑐〉. (Orange) RM corrected SMOS 〈𝑆̇𝑐〉. (Green) ISAS 

𝑆̇𝐼𝑆𝐴𝑆. (Red) TAO mooring 𝑆̇𝑀𝑂𝑂𝑅. (Magenta) SMAP 𝑆̇𝑆𝑀𝐴𝑃. 
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series at a specific location (Figure 17, corresponding to the 

diamond in Figure 14b), we observe that SMOS and SMAP, 

providing entirely independent measurements, exhibit excellent 

agreement in this RFI-free zone, which is marked by strong 

seasonal SSS variability. This variability is notably influenced by 

the proximity to the Amazon mouth, featuring peak-to-peak 

amplitudes of around 5 pss or more. In contrast, ISAS data show 

a significantly attenuated seasonal amplitude, particularly 

regarding the cyclical freshening during the Northern 

Hemisphere summer. Interestingly, in late summer 2019, both 

satellites recorded a salty peak, again with very similar values, an 

unusual event that is completely absent in the ISAS data. Such 

discrepancies suggest that ISAS may not serve as a reliable 

reference in this specific region. Furthermore, it indicates that it 

may be preferable not to adjust SMOS SSS using PM (or RM) 

corrections in this context. The inadvertent smoothing of 

pronounced seasonal freshening episodes in the corrected SMOS 

SSS by PM, thereby aligning it more closely with ISAS, brings 

to light the necessity of an automated decision-making process 

concerning whether to apply these correction schemes. This 

issue is further discussed in Section V. 
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