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Abstract: In this work, fully vertical GaN trench MOSFETs were fabricated and characterized to eval-
uate their electrical performances. Transistors show a normally-OFF behavior with a high ION/IOFF

(~109) ratio and a significantly small gate leakage current (10−11 A/mm). Thanks to an improved
resistance partitioning method, the resistances of the trench bottom and trench channel were extracted
accurately by taking into account different charging conditions. This methodology enabled an estima-
tion of the effective channel and bottom mobility of 11.1 cm2/V·s and 15.1 cm2/V·s, respectively.

Keywords: GaN; MOSFET; vertical device; resistance partitioning

1. Introduction

Over recent years, vertical gallium nitride (GaN) power transistors have demonstrated
increasing potential for efficient power switching applications. The wide-bandgap GaN
material is known to have superior intrinsic material properties over its silicon (Si) and
silicon carbide (SiC) material counterpart. Indeed, its larger critical electric field, higher
electron mobility, and higher saturation velocity favor the technological development of
high breakdown voltage and low on-state resistance devices. In addition, the vertical
topology is expected to be more adapted for high-power switching applications compared
to the lateral one (like the HEMT), due to its capability of reaching higher breakdown
voltages, its robustness to high electric fields, and its potentially higher power capability.

Nowadays, different vertical technology concepts have been under development,
such as the CAVET [1,2], the semipolar gate structure [3], the fin-FET [4], or the well-
known vertical power trench MOSFET [5–7]. Among these architectures, the vertical
power trench MOSFET shows even higher potential regarding the benefits granted by MOS
gate technology (high switching capability, low gate leakage current, gate robustness to
voltage overshoot...).

To improve its quality (and also its control), different research groups have tried
to fabricate vertical GaN trench MOSFETs and study the effects of MOS gate module
variation on the devices’ electrical performance (p-GaN doping [8], GaN trench surface
optimization [9,10], GaN trench orientation [7,11], gate stack comparison [12–14]). Some
studies have demonstrated, for instance, groundbreaking results with devices showing
adequate normally-OFF operation (Vth ~ 3–8 V [5,7]), very low RON,sp (<10 mΩ.cm2 [6,7]),
a high ION/IOFF ratio (~109), a significantly low gate leakage current (<10−11 A.mm−1
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for instance), as well as encouraging channel mobility results (~10–130 cm2/V·s [5,7]).
However, for the latter key parameter, the common methodology used in the literature to
estimate it is based on the calculation of the transconductance, extracted from the transfer
characteristic in the MOSFET linear stage of operation [7,10]. While this method allows
us to easily extract the effective field-effect mobility on a single device, its main drawback
is that it overestimates the channel mobility value considering the drift layer mobility
contribution in the output current value during the mobility calculation.

On the other hand, mobility extraction methods related to the more mature lateral
recessed MOS-HEMT use either the transconductance method [15,16], the Y-function
method [17], or the resistance partitioning one [18,19]. For the latter method, the resistance
and effective mobility are evaluated for the trench bottom and trench sidewalls separately.
To do so, sheet resistance and carrier density of the different trench regions must be
evaluated under the assumption of a uniform carrier density and identical electrostatic
behavior between the trench bottom and trench sidewall. While this methodology can
be used in the case of a lateral recessed MOS-HEMT, it is not the case for a vertical GaN
MOSFET since it does not take into account the difference in electrostatic behavior between
the n− GaN trench bottom and the p-GaN trench sidewall is this technology.

In this study, we present an improved methodology that aims to separate the resistance
contributions in the trench region and then extracts the effective mobilities of the trench
channel and trench bottom. Firstly, the fabrication and electrical characterization of fully
vertical GaN trench MOSFETs are reported. The transistors’ key parameters are extracted
by means of vertical I-V and C-V measurements, showing devices with a threshold voltage
Vth of ~1 V, a significantly small gate leakage IG (10−11 A/mm), and adequate switching
capability (ION/IOFF ~ 109). Then, using an improved resistance partitioning methodology
that takes into account the difference in electrostatic behavior between the trench bottom
and trench channel, we evaluate the effective mobilities of both of these areas as being
15.1 cm2/V·s and 11.1 cm2/V·s, respectively.

2. Materials and Methods

The epitaxy layers were grown on a free-standing (FS) 2-in n-type GaN wafer using
metal–organic vapor phase epitaxy (MOVPE). From bottom to top, the different doped
GaN layers were grown as follows: 100 nm n+ GaN drain layer (Si, 1 × 1019 cm−3), 10 µm
n− GaN drift layer (Si, 1 × 1016 cm−3), 700 nm p-GaN (Mg, NA − ND = 3.5 × 1018 cm−3),
and 200 nm n+ GaN source layer (Si, 6 × 1018 cm−3).

The process flow starts with the deposition of a 1 µm SiO2 hardmask by PECVD. Then,
the drain contact is fabricated with a Ti/Al/Ni/Au metal stack deposited on the wafer
backside by e-beam evaporation. The deposition is followed by rapid thermal annealing
(RTA) at 750 ◦C in N2 atmosphere for 3 min 30 s.

The process continues with the patterning through photolithography of the GaN gate
trench and a mesa structure that will terminate the n-p-n heterostructure. Firstly, the resist
pattern is transferred into the hardmask by performing CF4 dry etching in an inductive
couple plasma reactor (ICP-RIE). Secondly, the GaN trenches and the mesa are etched to a
depth of 1.1 µm through the epi layers by ICP-RIE using a Cl2 dry-etch process. Afterwards,
10 min RTA at 600 ◦C in O2 atmosphere is performed for p-GaN layer activation.

To reduce the etch-induced damages and remove the etch residues on the trench
sidewalls, a HCl pre-deposition wet surface treatment is applied to the sample for 4 min at
an ambient temperature. Immediately after this step, 20 nm of thermal Al2O3 is deposited
by ALD at 300 ◦C using a trimethylaluminium (TMA) precursor and H2O vapor oxidant
for the deposition. A total of 40 nm of TiN is then deposited as the gate metal through
sputtering. To finalize gate fabrication, the metal gate is patterned and etched on top of the
mesa structures by ion beam etching (IBE). Finally, 3 min RTA at 400 ◦C in N2 is performed
on the sample.

The process flow is followed by the fabrication of the source contacts. A dry-etch
fluorocarbide process is used to open the gate oxide as well as the SiO2 hardmask in the
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source contact region. The source contact is made of a Ti/Al metal stack defined by a lift-off
step to finalize MOSFET processing.

A schematic diagram of a processed vertical MOSFET along with its top-view SEM
image is shown in Figure 1a. As can be seen, the resulting MOS gate is located inside the
trench as well as all around the mesas, as a consequence of the deposition and etching steps
of the gate dielectric and gate metal. The dimension of the expected gate trench width
(Wtr) varies from 1 to 6 µm depending on the device studied. In addition to these test
structures, planar capacitors located on the drift layer are also included in the initial layout,
as illustrated in Figure 1.
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Figure 1. (a) A cross-sectional schematic of a given processed vertical MOSFET (device A) and planar
capacitor (device B) test structures, each device being linked to their top-view SEM image (b). The
main process flow steps to fabricate the vertical MOSFETs and planar capacitor test structures.

The high-angle annular dark field (HAADF)-STEM image in Figure 2a shows the gate
of a given processed trench MOSFET. While the dielectric and gate metal deposited seems
sufficiently conformal with the GaN surface, etch-induced non-uniformities can still be
observed along the trench sidewalls, as observed in Figure 2b.
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3. Results and Discussion

The transfer characteristics of a given fully vertical MOSFET are shown in Figure 3,
with the current values normalized to the mesa width (Zmesa, cf. Figure 1a). The transfer
characteristic on a linear scale (Figure 3a) confirms the transistor behavior and demonstrates
the normally-OFF switching operation of the device with a threshold voltage (Vth) of ~1 V,
determined through extrapolation of the linear region of the characteristic at VD = 2 V
(correlation factor r of the fitting as being around ~1). As shown in Figure 3b, the device
demonstrates a good ON/OFF current ratio of 109 and a significantly low gate leakage
current of 10−11 A/mm, indicating the benefits of both the n-p-n heterostructure and
the MOS gate building blocks. The value of the subthreshold slope calculated is around
~139 mV/dec.
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Focusing on the Vth value, different hypotheses can be made to explain its origins. In
our case, this Vth result could be related to the thinner gate dielectric (~20 nm) compared to
what can be found in previous works (80–100 nm [6,7,20]). Also, the presence of a positive
charge density trapped at the dielectric/GaN interface or inside the dielectric bulk could
have a detrimental effect on the Vth by shifting it toward negative values [21–23], thus
reducing the Vth of the device. Finally, the issue of the insufficient electrically activated Mg
doping concentration is still a major process concern nowadays, since a low Mg doping
concentration drastically reduces the Vth value [6,8,24].

The normalized C-V curves related to both the MOSFET and planar capacitor are
illustrated in Figure 4a. Firstly, a different capacitance behavior is clearly noticed as device
A is based on charge inversion and device B on charge accumulation. Consequently, a
higher Vth is observed for device A compared to the VFB for device B. This result can be
explained due to the p-type GaN layer integrated into the MOSFET heterostructure that
should enhance the work function of the GaN and thus enhance the VFB. A small hysteresis
of ~100 and ~47 mV is shown for device A and B, respectively, suggesting a dielectric/GaN
interface of good quality, despite the sidewall macroscopic roughness observed in Figure 2b.

Since the capacitance is by definition related to a variation in charge with the applied
voltage VS, one can calculate the charge density (Qc) simply by combining the capacitance
from the onset voltage value Vonset (defined either by VFB (device B) or Vth (device A))
with the maximum voltage value Vmax of the applied voltage sweep, as described in
Equation (1):

Qc =
∫ Vmax

Vonset
C.dVS (1)

Thus, Figure 4b represents the calculated charge density as a function of the applied
voltage. Since the onset of the charge inversion (Vth ~ 0.14 V) in the channel regions for de-
vice A occurs at a different gate voltage than the charge accumulation in the bottom region
(VFB ~ −2.64 V), a difference in charge densities is clearly noticed at a given voltage value.
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Figure 4. (a) The capacitance–voltage characteristics measured at 10 kHz for device A and device B
(cf. Figure 1a for the schematic diagram of the test structures’ cross-section). (b) The evolution of the
calculated characteristics with applied voltage, calculated at the Vth (A) or VFB (B) for the same set
of devices.

To extract the mobility contributions in the trench region, based on our test structures,
we used an improved resistance partitioning method that takes into account the evolution
of the output current with the gate trench width [17,18], as well as the different electrostatic
conditions of device A and B illustrated in Figure 4. To do so, lateral ID-VG characteristics
based on the planar MOSFET configuration were measured. In this measurement config-
uration, one of the source electrodes was considered the drain on our MOSFET devices,
which means the current flows laterally from one source to the other.

Figure 5a shows the lateral ID − VG characteristics as a function of the gate trench
width at VD = 0.5 V. A clear reduction in output current is visible when increasing the
gate trench width (i.e., the trench bottom), meaning the total lateral resistance Rtot should
increase as well with this parameter. Thus, in Figure 5b, a visible linear dependence of the
total lateral resistance on the gate trench width can be observed (for ID values selected at
VG = 3 V, symbolized by the dashed line in Figure 5a). Since the current flows laterally
(Figure 5c), Rtot can be divided into different resistance contributions, defined as follows:

Rtot = 2RS + 2Rch + Rbot.Wtr = 2(Racc + Rcon) + 2Rch + Rbot.Wtr (2)

where RS is the source resistance, Racc is the access resistance, Rcon is the contact resistance,
Rch is the channel resistance, and Rbot is the trench bottom resistance.
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Figure 5. (a) The transfer characteristics of a lateral GaN-on-GaN MOSFET with different gate
trench widths, when one of the source contacts of the MOSFET is considered the drain. (b) The
evolution of the total lateral resistance with the expected gate trench width, calculated for ID values
at VG = 3 V. (c) A schematic diagram of resistance partitioning around the trench area in the planar
MOSFET configuration.

The Rbot term can be directly determined by the slope of the fitted curve shown in
Figure 5b and is evaluated as ~39.0 Ω·mm. The sheet resistance Rsheet,bot is then easily
deduced as being around ~39.0 kΩ·sq. In addition, one can estimate through extrapolation
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the resistance value for which Wtr tends to 0 (i.e., a very thin gate), symbolized by the
red cross on the y-axis. In that case, the associated resistance value is estimated at around
~179.4 Ω·mm and takes into consideration the source and channel resistance components
from the left and right trench sidewalls. The source contribution RS can then be measured
with transfer length measurements (TLMs), as shown in Figure 6. From these measurements,
for one source electrode, the contact and access resistance contributions can be calculated,
estimated as being around ~7.1 Ω·mm and ~5.9 Ω·mm, respectively.
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After removing the RS contribution (measured with TLMs as being around ~13 Ω·mm
for one source electrode) from the Rtot, and by considering the thickness of the p-GaN layer,
we estimated a channel sheet resistance Rsheet,ch of ~91.0 kΩ·sq.

At this point, since the resistance contributions and the charge densities are known,
one can extract the mobilities (µ) from the trench bottom and trench channel areas with
Equation (3):

µ =
1

QRsheet
=

1
qNRsheet

(3)

where ρ is the material resistivity, Q is the charge density, q is the elemental charge, N is the
charge carrier density, and Rsheet is the sheet resistance. The charge density and the charge
carrier density values chosen for devices A and B correspond to those selected at VS = 3 V
by the black dashed line in Figure 4b (i.e., the same gate voltage used for the previous
Rtot calculation in Figure 5b). Finally, synthesis of the main parameters extracted from
resistance partitioning (cf. Figure 5) and the C-V measurements (cf. Figure 4) is exposed in
Table 1.

Table 1. Synthesis of parameters extracted from improved resistance partitioning method for trench
bottom and trench sidewall areas.

Trench Area
Sheet

Resistance
(kΩ·sq)

Q
(C·cm−2)

N
(cm−2)

µ

(cm2/V·s)

Channel ~91.0 9.86 × 10−7 (A) 6.15 × 1012 (A) 11.1
Bottom 39.0 1.70 × 10−6 (B) 1.06 × 1013 (B) 15.1

Consequently, applying Equation (3) with the parameters in Table 1 leads to the
extraction of the effective trench bottom and channel mobilities of 15.1 and 11.1 cm2/V·s,
respectively. As explained in [25], this poor channel mobility value could be mainly related
to the damaged trench sidewalls following the GaN trench etching step, which is a critical
process step for the fabrication of vertical GaN trench MOSFETs [7,26,27]. This should
result, on the one hand, in carrier scattering coming from surface roughness (as seen in
Figure 2b), and on the other hand, in oxide interface traps at the dielectric/GaN interface,
significantly reducing channel mobility.
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Finally, a way higher channel mobility of 30 cm2/V·s is obtained when using the
transconductance method defined as follows:

µch = gm.
L
Z

.
1

Cox
.

1
VD

(4)

where gm is the transconductance, Z is the channel width of 200 µm, L is the channel
length of 0.7 µm, Cox is the gate oxide conductance of 354.8 nF.cm−2, and VD is the drain
voltage defined at 1 V. This low channel mobility is in agreement with the values reported
in the literature for state-of-the-art vertical GaN MOSFETs. Indeed, among the research
groups that extracted the mobility using the transconductance method, studies from Khadar
et al. [7], Ishida et al. [10], and Zhu et al. [28] have fabricated vertical GaN MOSFETs that
demonstrate channel mobilities ranging from 15 to 41 cm2/V·s, while the current record
has been reached by Otake et al. [5], with a channel mobility of ~131 cm2/V·s.

Consequently, the mobility results estimated in this study pave the way for further
improvements, especially by applying a finer post-etch GaN surface treatment to mend the
trench sidewalls from etching damages [10], or by improving the critical dielectric/GaN
interface with a higher-quality gate dielectric [13].

4. Conclusions

This study aimed to evaluate the electrical performances of a fully vertical GaN trench
by means of I-V and C-V measurements. We first proved the normally-OFF behavior
(Vth ~ 1 V), the adequate switching operation (ION/IOFF ~ 109), as well as the significantly
small gate leakage current (10−11 A/mm) of our devices. Then, the resistances of the trench
bottom and trench channel were also extracted using an improved resistance partitioning
method. Subsequently, by considering the difference in electrostatic behavior between
the devices linked to these trench areas, we estimated the effective channel and bottom
mobilities to be 11.1 cm2/V·s and 15.1 cm2/V·s, respectively. These mobility values are
promising and act as a starting point to be improved upon thanks to the optimization
of the gate module, with, for instance, a well-controlled trench etching process, a better
pre-deposition GaN surface treatment, or the integration of an alternative alumina dielectric
into the MOS gate.
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