Modelling the behavior of HTS coils under overcurrent conditions

Gabriel Hajiri1Kévin Berger1Fréderic Trillaud1,2Jean Lévêque1gabriel.hajiri@univ-lorraine.frkevin.berger@univ-lorraine.frFTrillaudP@iingen.unam.mxjean.leveque@univ-lorraine.fr

¹ Université de Lorraine, GREEN, F-54000 Nancy, France

² Instituto de Ingeniería, Universidad Nacional Autónoma de México, 04350 CDMX, Mexico

Background

Airbus ASCEND program to explore liquid hydrogen and superconductivity for zero-emission aircraft

Ludovic Ybanez et al, 2022 IOP Conf. Ser.: Mater. Sci. Eng. 1241 012034

Design and in-field testing of the world's first REBCO rotor for a 3.6 MW wind generator (EcoSwing project)

Anne Bergen et al, 2019 Supercond. Sci. Technol. 32 125006

Most of **HTS applications** are intended to be connected to the **electrical grid**! **What about modelling**?

In this work, a coupling between an electrical system and an HTS coil in overcurrent conditions will be detailed.

Experience to be modeled

First validation of the model, including over regimes and heating effects, by discharging a capacitor bank into a superconducting coil. Overview of the experimental setup \geq Gate Thyristor Κ HTS Coil $R_{\rm coil}$ C, UD AC Coil MPULSE MAGNETIZER $L_{\rm coil}$ R_{Line} L_{Line} Transfo Rectifier 3 Simplified diagram of the experimental electrical circuit \succ 10 kJ – 25 kA 5 mF - 2000 VHTS Coil Capacitor bank Current clamp Capacitor Diode Oscilloscope with Resistive coil Resistive coil + Line $\dot{C} = 5 \text{ mF}$ 5 differential probe $R = 0.4 \Omega$ L = 2.5 mH U_{c0} up to 2 kV REBCO Coil + Cryostat $\gamma\gamma\gamma$ 3

REBCO tape and coil: DC characterisation @ 77 K

REBCO tape and coil: equivalent resistivity @ $T > T_c$

Overview of the TEFEM - ECM

□ Modelling and coupling between the Thermo-Electromagnetic Finite Element Models (TEFEM) and the Electrical Circuit Model (ECM)

Electromagnetic Finite Element Model (EFEM)

Gabriel Hajiri - 9th International Workshop on Numerical Modelling of High Temperature Superconductors - HTS 2024

Thermal Finite Element Model (TFEM)

The governing heat balance equation is:

Reduction of the Electrical Circuit Model (ECM)

Reduction of the Electrical Circuit Model (ECM)

Table. Comparison of TEFEM - ECM coupling for three configurations: LBM, TBM, and CBM

Model	DOF	$< R^2 > of current$	$< R^2 > of voltage$	Average Computation time $< T_{g} >$
LBM	71,243	Reference Model	Reference Model	6.097 h
ТВМ	57,536	0.9999998	0.9997832	1.396 h
СВМ	57,516	0.9999971	0.9990667	0.904 h
$<$ R ² > and $<$ T _q > are calculated from the average value of all pulses performed between $I_{max}/I_c = 1$ and $I_{max}/I_c = 5.6$.				

CBM comparison with experimental data

Temperature estimation from model vs. experiment

Groupe de Recherche en Energie Electrique de Nancy FIEREN

Thank you for your attention

Gabriel Hajiri, Tabriel (+33) (0)7 68 81 72 08 🖂 e-mail: gabriel.hajiri@univ.lorraine.fr

9th International Workshop on Numerical Modelling of High Temperature Superconductors - HTS 2024

