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ABSTRACT
There is growing interest in the development of renewable energies, particularly wind power.
However, wind turbines generate noise that can affect the sound environment of nearby residents.
This study focuses on the isolation of wind turbine noise (WTN) level from the surrounding total
noise. Our method is based on a Recurrent Neural Network (RNN) Architecture that captures
temporal dependencies in the acoustic signal. This proposal is compared to Non-Negative Matrix
Factorization (NMF) that has shown first promising results on a previous study on simulated sound
scenes.
Our approach relies on simple RNN Vanilla conducted using an end-to-end trained model, Gated
Recurrent Network (GRU), and a Long Short Term Memory (LSTM). The training and testing dataset
is constructed by superimposing measured background noise with synthesized specific noise; wind
turbine noise (WTN), effectively simulating realistic environmental conditions. This study aims
to assess the acoustic impact of wind turbines on communities and attempt to control turbine
operation using advanced machine learning techniques.
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1. INTRODUCTION

Residents living near wind farms have occasionally reported concerns about the noise
generated by wind turbines, which may adversely affect their sleep quality and general health
condition. In [1], Freiberg et al. provides a detailed study on the potential health effects of wind
turbine noise in residential areas.

To address these concerns, the French regulatory standards for onshore wind turbines
include specific criteria aimed to control the impact of the WTN. Today (national) standards set
the actual limits on the Emergence E noise level. E is defined as the difference between the total
noise level LT N (sound level during wind turbines operation) and the background noise level LB N

(when the wind turbines are inactive):

E = LT N −LB N . (1)

The regulation standard states: 1) the critical LT N threshold is set to 35 dB(A); 2) if the
measured LT N exceeds this critical value the current emergence E is evaluated; 3) on a 24h cycle,
the tolerated Emergence level must not surpass 5 dB(A) during the day (7 a.m. to 10 p.m.), and it
is limited to 3 dB(A) at night (10 p.m. to 7 a.m.).

A common strategy for enforcing this standard is to implement a curtailment plan aimed
at reducing the wind turbine acoustic noise emission. Nevertheless, the validity of the adopted
curtailment plan is frequently limited to a specific time duration in which LB N is assumed
stationary. This approach, based on directly measuring LB N , has a significant impact on the
electricity production. For the site in question, it may become either too restrictive, resulting
in electricity production below potential, while noise remains below the regulatory limits, or
insufficiently restrictive, with noise pressure levels exceeding the regulatory thresholds. The LB N

can be altered by the environmental variables and other intermittent noise sources, leading to
discrepancies in noise level estimates between the active and inactive phases of wind turbine
operation, other strategies can be employed in the design and operation of wind turbines to
minimize their noise [2].

To successfully wind turbine monitoring, to limit economic losses and to ensure more
regular noise controls, an automatic tool to estimate the emergence E without stopping the
turbines would be beneficial to wind farm operators and neighbour residents. Currently, a
NMF-based approach was used by Gloaguen et al [3]. NMF has attracted attention also for its
usefulness in sound classification [4].

Related to NMF limits, as the error is high when the Specific Noise LSN is dominant, we
are moving towards the use of deep neural networks, given their success in the field of source
separation [5], sound classification [6] and sound event detection [7].

In other works, we find the use of random forest regression [8] to predict the measurements
of noise emitted by a wind farm using the data recorded by the supervisory control and data
acquisition (SCADA), neuro-fuzzy methodology to estimate noise level of wind turbines [9].

Our paper proposes a new approach focusing on the use of RNN for the estimation of the LSN

level. We begin by construct the learning dataset in Section 2, followed by the method in Section
3. Subsequently, we delve into the experimental results in 4, and finally, we compare our approach
with NMF in Section 5.

2. LEARNING DATA SET

To construct the data-set, LSN and LB N are needed, the LB N noise can be obtained using
sonometers during periods when the turbines are not operational, while the LSN is inherently
mixed with the surrounding background noise. To overcome this limitation a specific noise
synthesis method is employed. This method allows to generate synthetic turbine noise samples
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that mimic the characteristics of the machine noise is able to simulate the real-world noise
conditions.

2.1. Background noise

Measurements of background noise, in one-third-octave per second, at a local resident’s
home near a future wind farm, are collected together with meteorological data (wind speed and
direction) obtained by a ground LIDAR near the fictive turbine position. The figure below is a
sample from the measured LB N .

Figure 1: Measured background noise

2.2. Specific noise

Every wind turbine comes with a Machine Specifications (MS), it describes the sound Power
Level (Lw) in dB in each octave band, according to wind speed. LSN can be interpolated using the
MS and wind speed, recorded at the same moment when the sonometer capture LB N .

Figure 2: Sound Power Level Interpolated for the 1 kHz Frequency Band Across Various measured
Wind speeds

To combine the LSN , which is in the octave bands, with the LB N in the third-octave bands,
we need to switch from the octave band to the third-octave band. Switching from octave band
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to one-third octave band enables more precise resolution of the spectral characteristics of noise,
and is commonly used in acoustic analysis and measurement standards for applications such as
environmental noise assessment, building acoustics and hearing protection.

Figure 3: Sound power levels in octave band and translated third octave bands

The next step is to change the sampling frequency of the specific noise signal from 10
minutes to one second, using the Fourier transform, adapting to the desired sampling frequency
with an upsampling ratio of 1/600.

Figure 4: Original acoustic signal per 10 minutes and the interpolated per second

Having obtained a specific noise level in third-octave bands per second, it now becomes
important to account for the sound propagation of the wind turbine through the environment.
To achieve this, we use attenuation filters designed to be applied to the sound power level.
These filters are widely utilized to simulate how sound intensity diminishes as it moves through
the environment conditions, geometrical divergence, atmospheric absorption or ground effect.
This sound propagation model defines the celerity gradient that defines the acoustic sound
propagation (favorable or unfavorable) [10].
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Figure 5: attenuation filters for distances 500 m, 1000 m and 1500 m between the ground and the
wind turbine

2.3. Total noise

Finally the total noise LT N is obtained by summing the specific noise LSN with the
background noise LB N . It is necessary to apply an A-weighting filter (dB(A)), for the both LB N and
LSN :

LT N = LB N ⊕LSN , (2)

with the ⊕ symbol representing the energetic summation. Finally we have a Data Set (DS1) as a
nearly one-month time series of total noise and specific noise for each measuring point at 500 m,
1000 m and 1500 m, i.e. a total of 3 months of time series.

3. METHODS

3.1. Recurrent neural networks

Given the temporal nature of DB1, where each line represents the sound measurements
for a specific second t , and the subsequent line represents the following second t +1, it becomes
imperative to adopt RNN [11] architectures that effectively capture the temporal dependencies
within the time series data, At each instant t, the forward pass is modelled by the following
equations:

a(t ) = f (Waa ·a(t −1)+Wax · x(t )+ba), (3a)

y(t ) = g (Wy a ·a(t )+by ), (3b)

where x(t ) and a(t ) are respectively the network input and the activation at time t, f , g are
activation functions, W and b are respectively the weights and biases to be learned during network
training to compute a(t ) the hidden state and y(t ) the output at instant t .

To address this, the constructed architectures are leveraging both the basic RNN "Vanilla"
model, as well as specialized cells/units such as Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU). These architectures are well-suited for capturing long-term dependencies
and mitigating issues like vanishing gradients [12] commonly encountered in traditional RNNs, a
gradient explosion can also occur, but very rarely. To overcome these shortcomings, new RNN
variants have been introduced into the literature using the LSTM to overcome the problem of
gradient vanishing, it was initially proposed by Hochreiter et al [13], then improved in [14]. Using
the state of the cell in the final calculation makes LSTM very powerful in tasks where information
needs to be stored and used later (long-term dependency).
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Figure 6: Traditional RNN architecture with many-to-many mapping

The GRU was introduced in 2014 by Cho et Al [15] to solve the gradient limits encountered
by classical recurrent networks but also to propose an architecture with fewer parameters to
train compared to an LSTM, which can make GRU more powerful in some uses where long-term
memory is not required.

3.2. Architecture

Figure 7: The proposed architecture

Concerning the network architecture, a comparison of RNN cell type is proposed between
Vanilla, LSTM and GRU, using a common network design..

RNN is selected as the foundational layer of the architecture with return sequences. This
setting allows the RNN to output sequences instead of a single output, which is essential for
capturing sequential dependencies in data. A secondary layer without return sequences, which
aggregates the sequential outputs of the RNN and feeds them into subsequent layers. This layer
helps in extracting high-level features from the sequential outputs generated by the first RNN
layer.

To improve the stability and convergence of our model a batch normalization layer is added,
after the secondary layer by normalizing the activations of each layer across the mini-batch,
reducing internal covariate shift and accelerating training. A Dense layer follows the batch
normalization step, serving as a fully connected layer that learns complex mappings between the
features extracted by the RNN and the target output.

To prevent over-fitting and improve the generalization ability of our model, a Dropout
regularization layer used after the Dense layer. The architecture concludes with a final Dense
layer with a linear function for sound power level predictions LSN .

4. EXPERIMENTS

4.1. Setting and metrics

The three RNN models with the architecture mentioned in Figure 7 are learned with DS1
(Section 2) to provide comparison data. These models are designed to take as input a sequence
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of 60 seconds and 19 features, where each feature represents one-third octave band covers a
frequency range from 31.5 Hz to 2 kHz, and predict the LSN value using 60 neurons as output.

For an input sample, the output of the network is a value representing the estimated LSN

in dB(A), with the Mean Squared Error (MSE) serving as the loss function between the estimated
value ŷ and the target y , Loss = (y − ŷ)2, so we compute the cost as the mean loss:

MSE = 1

n

n∑
i=1

(yi − ŷi )2, (4)

along with the evaluation metric Mean Absolute Error (MAE):

MAE = 1

n

n∑
i=1

|yi − ŷi |. (5)

To minimize the cost function MSE, we chose the Adam optimizer, proposed by Kingma and
Ba [16], with a learning rate of 10−3 chosen through the experimentation as illustrated in Figure 8.
This choice ensures stable fitting. It minimizes the evaluation metric MAE as well.

Figure 8: Evolution of the MAE according to the change in the learning rate

Since the model is ready with metrics and hyperparameters, the input data LT N and target
LSN consist of 115,398 sequences obtained by dividing the number of seconds of DS1 by 60 as
the input sequence length. Notably, acoustic data in the various frequency bands include both
negative and positive values, so we decided not to normalize the input data.

4.2. Experimental results

This subsection presents the experimental results obtained from proposed RNN architecture
for the three models: Vanilla, LSTM, and GRU, by dividing DS1 into 70 % for training and 30 %
for testing. Within the 70 % training set, further partitioned 20 % as a validation subset. This
partitioning allowed to refine the models during training while maintaining a separate DS1 for
validation to monitor performance and prevent overfitting.

During the training phase, all models converged successfully, with a slight overfitting
observed for the Vanilla model training, indicated by a marginal difference of 0.4 dB(A) in MAE
between the training and validation sets. Notably, the Vanilla model required significantly more
evaluation time for the test set, 19 seconds against 5 seconds for the LSTM model and 4 seconds
for the GRU model. Both the GRU and LSTM models showed promising performance in the tests,
as shown in the following figures.
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Figure 9: Comparison of Mean Absolute Error (MAE) and Mean Squared Error (MSE) among
Models

Figure 9 demonstrates the cost function for the test data and the MAE metric for all three
models. Figure 10 illustrates the temporal evolution of the target and predictions across the three
models on an example extract.

Figure 10: Temporal evolution of earget LSN and predictions across models

The simple RNN "Vanilla," is not suitable to our problem with higher MAE errors and weaker
MSE cost function minimization. Therefore, we turned to more advanced RNN cells. While GRU
is faster in execution, and LSTM, which performs the best on the test set, as shown in the figures 9
and 10. For test set of DS1 results are promising, indicating good performance of the models.
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5. NMF COMPARISON

5.1. Data set

The dataset used in [3] on which NMF has been tested is now used to assess the performance
of the proposed approach, with pre-processing of this Data Set (DS2).

DS2 contains 30 independent wind turbines noise scenes, expressed in third octave bands
from 31,5 Hz to 2 kHz. As in [3], the scenes are expressed in dB(A) and propagated at 500 m,
1000 m and 1500 m with the same attenuation filters for 3 different propagation conditions
(homogeneous, favorable and highly favorable). Each of this propagated scene are merged with a
background noise measured in two different locations following a SNR such as : SN R = LSN −LB N

with SN R = {−9,−6,−3,3,6,9} dB(A). A complete description of this dataset can be found in [3]. In
all it is 3780 scenes of 600 seconds expressed in third octave band that are available.

With this formula, we calculate the new level of LSN according to a given SNR:

SN′ = SN×
(

EBN

ESN

)
×100.1×SNR, (6)

where:
- SN represents the specific noise sound pressure in Pascal.
- EBN and ESN represents respectively the median of background noise and specific noise for a
given scene.

5.2. Fine tuning the models

Given that the DS2 is small for training and testing our models and also contains a specific
measured noise, while the DS1 consists of synthesized specific noise, we opted for fine tuning
from pre-trained models on the DS1. The procedure consists in selecting SN R = {−9,0,9} dB(A)
from the DS2 for a single distance of d = 500 m, then test the models on the remaining portion of
the dataset and also on another dataset with a completely different background noise.

The pre-trained RNN models on DS1 are fitting well to the selected portion of DS2.
Evaluation of their performance MAE between the target LSN and the estimated L̂SN for an other
portion with a distance d = 1000 m, for various SNR values, as shown in the figure 11:

Figure 11: MAE error for different SNR values for each model

For Vanilla, it takes 2 seconds per epoch to fine-tune on a portion of DS2, exhibiting weak
convergence that may requires additional epochs to more converge. However, both GRU and
LSTM models, trained for the same number of epochs as Vanilla, require only 12 milliseconds with
robust convergence. Notice that GRU performs well under negative SNRs with additional errors
for positive SNRs. LSTM maintains consistent error levels across positive SNRs. The results across
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distances and propagation conditions show that, even with fine-tuning on a single specific case,
the models still perform better in estimating levels at distances of 1000 m and 1500 m.

5.3. Comparison

To compare RNN models with NMF, the actual emergence E and the estimated emergence
Ê are computed for each scene, then we calculate the mean absolute error (MAE) of emergence
using the formula cited for M = 30 scenes in the article [3]:

MAE =
∑M

m=1 |Em − Êm |
M

, (7)

Finally, the models are tested with another dataset containing a different background where
the NMF was tested, for d = 500 m and various SNR.

Models/SNRs -9 -6 -3 0 3 6 9

NMF 0,790 0,819 0,664 0,334 1,289 3,319 5,672

Vanilla 0,162 0,344 0,554 0,736 0,927 1,292 1,090

GRU 0,117 0,273 0,406 0,392 0,538 0,609 0,648

LSTM 0,098 0,223 0,368 0,407 0,597 0,605 0,596

Table 1: Comparison of emergence MAE for different methods

With this dataset which is different from the one used for fine-tuning models, the results
are very promising compared with those of NMF, especially for highly positive SNRs that was a
problem for NMF method. At high SNRs, the estimation of the emergence is much more sensitive
to the error made on the background noise: an underestimation of 0.5 dB(A) on the LBSN at a SNR
of 9 dB(A) leads to an overestimation of the emergence of 2 dB(A). The NMF’s initial error at these
SNRs prevented it from being applicable in cases where wind noise is predominant (e.g. night
period).

6. CONCLUSION

This paper proposes the utilization of deep learning models for estimating wind turbine
noise from total noise. Specifically, we employ RNNs with a fixed architecture for each RNN
unit/cell and we compare with NMF method on synthesized scenes combining measured
background noise and wind noise synthesized from weather and sound power data. RNNs all
have fewer MAEs than NMF, in particular LSTM is the most stable model at different SNRs.

To be sure of the results and enrich the work, there are avenues to be explored, working on
the generalization of the method, testing the method with several types of wind turbine and several
wind turbines in the same scene.

There are several ways for extending deep learning models, for example with two different
RNN units in the same model, implementing normalization and preprocessing techniques with a
larger and more realistic dataset, investigating convolutional neural networks CNNs, which have
shown promising initial results in our parallel work, and considering the integration of attention
mechanisms if necessary.
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