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ABSTRACT

We have introduced in [1] a method for unsupervised clas-
sification of PolSAR data, on the manifold of Hermitian pos-
itive definite matrices obtained from the polar decomposi-
tion. In this paper we investigate the polarimetric information
preservation of the Hermitian factor using manifold gradient
computation. We provide an algorithm to select the optimum
number of classes based on the Calinski-Harabasz criterion in
the Riemannian geometry context.

Index Terms— clustering, PolSAR, polar decomposition,
Hermitian, factor, unitary factor, Riemannian distance

1. INTRODUCTION

In computer science, clustering methods are divided into sev-
eral groups, as for example: partitional, hierarchical, density,
grid or model-based. While such methods are popular for Pol-
SAR unsupervised classification, centroid-based approaches
belonging to the partitional category are the most prevalent.
The introduction of the Wishart classifier has been a major
milestone in PolSAR unsupervised classification [2]. The ini-
tialization of the centroids is obtained by the H − α decom-
position. This is applied as a prerequisite and an estimate
centroid is provided for each class in the H −α plane (which
fixes the number of clusters to eight). After each run, the cen-
troids are updated by averaging the redistributed matrices of
each class.

With the constant increase in spatial resolution, different
non-Gaussian clustering strategies have been adopted for Pol-
SAR data classification. Based on the conventional product
model, we can distinguish two main directions in introducing
heterogeneity. By adopting either non-Gaussian target vectors
(such as K-, Kummer-U, G0-distributed clutter models) or
compound covariance/coherencies (like scale mixtures, G0-
or K-Wishart models) different classification algorithms have
been proposed [3, 4].

Being simple and effective, the Wishart classification still
remains one of the most employed clustering methods in prac-
tical applications. Its popularity and fundamental importance

has been proven also by many publications, which by modi-
fying one or more stages in the generic algorithm have arrived
to new or improved versions. Notable changes can be found
in the: a) initialization and number of clusters [5], b) class
assignment logic [6], or c) the distance metric.

The reminder of this paper is organized as follows. Sec-
tion 2 offers some background on the use Riemannian geom-
etry for unsupervised clustering of PolSAR data. Sections
3 and 4 introduce the manifold sample gradient computation
method and the Calinski-Harabasz criterion. Section 5 analy-
ses the experimental results. Finally, the conclusions are dis-
cussed in Section 6.

2. RIEMANNIAN GEOMETRY IN POLSAR

It has been more than a decade since the Riemannian man-
ifold embedding is used with PolSAR data, exclusively in
evaluating the coherency/covariance matrices. In the general
literature, some methods operate directly on the Riemannian
manifold, while others operate with projections (i.e., onto the
tangent space, embeddings of lower dimension, etc.). The
method proposed in [1] fits the first direction. It is described
by three different processing stages:
Step 1: The scattering matrix is decomposed using the left1

polar decomposition, to obtain the Hermitian H and unitary
U factors:

S = UH. (1)

Step 2: An identification of coherent scatterers based on the
98th percentile criterion proposed by Lee et al. [7] is per-
formed, at first. For the coherent scatterers, no additional
steps are needed and the Hermitian factors are used directly
for clustering (Step 3). With all other pixels, barycenters (cen-
ters of mass) are otherwise computed. This is the analogous of
a N-look geometrical center of mass estimation in the mani-
fold of Hermitian polar factors. The barycenters H0 are com-
puted through an iterative method applied in square, local,

1Since similar results have been obtained when considering alternatively
the left or right polar decomposition, we refer hereafter exclusively to the use
of the left polar factorization.



sliding neighbourhoods of fixed size:

argmin
H0

m∑
i=1

dgeod,P(n)(H0,Hi)
2. (2)

Here, the Affine Invariant Riemannian Metric (AIRM) pro-
vides a closed-form distance measure

dgeod,P(n)(A,B) = || log(A−1/2BA−1/2)||F , (3)

which can be interpreted as a similarity/dissimilarity crite-
rion. The operation of evaluating the Riemannian barycenters
in the manifold of Hermitian factors is designated by the
acronym PolBaRi (POLar decomposition BArycenters esti-
mation on the RIemannian manifold).

Step 3: A modified k-means algorithm is applied to the
set of points containing barycenters and coherent Hermitian
factors. The computation is kept into the native Riemannian
manifold of positive-definite matrices using the AIRM met-
ric to evaluate intercluster separation. Here, the class centers
are randomly initialized using the k-means++ seeding with
the AIRM distance. Progressively, each (barycenter) matrix
from the set obtained in Step 2 is allocated to one of the K
classes and the cluster centers are updated. The operation is
repeated until the interclass transfer is lower than a predefined
threshold.

3. MANIFOLD GRADIENT WITH SOBEL KERNEL

For an extended evaluation of the polarimetric information
contained in the Hermitian barycenters, a gradient assessment
is performed in the manifold space.

The conventional Sobel operator [8], known primarily for
edge detection, proposes a sample computation of the first
order derivative. It operates with two 3 × 3 kernel filters.
Each of them, used as a sliding window, is convoluted with a
spatial neighbourhood of the same size to produce the vertical
and horizontal gradient components.

We propose an adaptation for gradient computation on the
Hermitian manifold. The same weights as in the Sobel kernels
multiply barycenter matrices within a 3 × 3 spatial neighbour-
hood, while an adequate metric is used for distance dissimilar-
ity (AIRM with Hermitian matrices). Both the vertical (GV)
and the horizontal (GH) manifold gradient components are
evaluated.

Considering Pi,j a barycenter matrix located on row i,
column j. The following expressions can be written:

Gi,j
V = d(Pi,j

↑ ,P
i,j
↓ ), (4) Gi,j

H = d(Pi,j
→,Pi,j

←), (5)

where

Pi,j
↑ = Pi-1,j-1 + 2Pi-1,j +Pi-1,j+1 (6)

Pi,j
↓ = Pi+1,j-1 + 2Pi+1,j +Pi+1,j+1 (7)

Pi,j
← = Pi-1,j-1 + 2Pi,j-1 +Pi+1,j-1 (8)

Pi,j
→ = Pi-1,j+1 + 2Pi,j+1 +Pi+1,j+1. (9)

and the magnitude of the gradient is

G =
√

G2
H +G2

V. (10)

(a) (b)

Fig. 1: Brétigny Dataset, magnitude [dB]: (a) Hermitian barycenters
(h11, amplitude, [dB]) and (b) gradient computation for the Hermi-
tian barycenters using the Sobel Filter kernels and the AIRM metric.

Fig. 1 shows the Hermitian barycenters Sobel gradi-
ent estimate for the Brétigny PolSAR dataset. The shape
of the three important structures from the image (horizontal
West-Center of the image, left-oblique North-West and right-
oblique North-East) is easily distinguished, as well as the
field contours. Bright pixels are clearly isolated.

4. CALINSKI-HARABASZ CRITERION

Given the geometrical nature of the k-means clustering, it is
straightforward to define a simple objective criterion for data-
driven evaluation of the classification result. By modifying
the Calinski-Harabasz (variance ratio) criterion [9] with the
AIRM metric, we obtain:

CHk =
varB
varW

· N −K

K − 1
, (11)

varB =

K∑
i=1

ni · dgeod,P(n)(Ci,Htot)
2, (12)

varW =

K∑
i=1

∑
Hj∈Ci

dgeod,P(n)(Hj,Ci)
2, (13)

where N is the total number of pixels in the PolSAR image,
K is the number of clusters, Htot is the overall barycenter
of the sample PolSAR data and ni refers to the number of
observations in cluster i, of centroid Ci.



5. RESULTS AND DISCUSSION

Firstly, we aim to assess for any contextual information
present with the unitary barycenters. The points for which
the barycenters are not convergent are masked-out and can
be observed in white in Figs. 2-(a),(b) (≈ 25% of the image
pixels) .

Starting from a complex unitary matrix, U ∈ C2×2, with

U =

(
u11 u12

u21 u22

)
=

(
|u11| · eiφ1 |u12| · eiφ2

|u21| · eiφ3 |u22| · eiφ4

)
. (14)

The phase normalized unitary matrix Uph− can be written in
parametric form:

Uph− = U

(
e−iφ1 0
0 e−iφ4

)
=

(
|u11| |u12| · ei(φ2−φ4)

|u21| · ei(φ3−φ1) |u22|

)
(15)

=

(
cos θ − sin θ · e−iϕ

sin θ · eiϕ cos θ

)
(16)

After performing the phase normalization, as in (15), the
angular θ and phase ϕ parameters are easily obtained for the
unitary barycenters of the PolSAR dataset. The results are in
Fig. 2-(a) and Fig. 2-(b) respectively, with histograms below
the main figures. It is to be mentioned that with the Brétigny
dataset about 25% of the image pixels do not attain unitary
barycenter convergence.

The θ angle parameter takes values below 25◦ (Fig. 2-
(d)), while the phase absolute values are normally spread in
the entire [0◦, 180◦] interval (Fig. 2-(f)). As example, we
can observe the zone corresponding to the building located
West-Center, where multiple coherent scatterers are present
(red ellipse selection). Here, the θ values approach zero de-
grees. The phase values present also an extreme (i.e. ± 180◦).
Such observations indicate that the phase normalized unitary
barycenters at those locations are (almost) identity matrices.
In turn, this may also imply that the original unitary polar
factors, used in estimating the barycenters, are themselves
close to identity. For such a case, the Hermitian polar fac-
tors are completely descriptive and (almost) equal to the orig-
inal scattering matrices. This result confirms the choice from
the design of the PolBaRi algorithm [1] of performing the
pre-selection of coherent scatterer and attributing to those lo-
cations directly the Hermitian factor, without barycenter esti-
mation.

Removing the effect of rotations imposed on the line-of-
sight backscattering direction as well as the search of rotation
invariant descriptors is of particular interest in polarimetric
radar applications. The topic has a significant line of work
associated for both coherent and incoherent PolSAR decom-
positions.

With the polar decomposition, we have shown that the
unitary matrices can be described by two random phases and
two parametric values (an angle and a phase). With coherent
scatterers, discarding the unitary polar factor does not pro-
duce significant changes, while for other scatterers the re-
moval of unwanted rotations from the original scattering ma-
trix is highly beneficial. Evidence from both simulated and
real data shows that the contextual and spatial information is
preserved by the Hermitian polar term. Such observations le-
gitimize the key role of the Hermitian barycenters with the
PolBaRi algorithm clustering method.

Finally, in order to find the correct number of classes, dif-
ferent Riemannian k-mean clustering runs are operated on a
300×300 sub-image from the Foulum dataset [1]. Fig. 3
shows the results obtained with K ∈ {4, 7, 16}. For each
K, 2×K trials have been performed and the maximum CHk
value has been computed in each case. Fig. 3-(a) illustrates
the normalized index CHk as function of K. The optimal
number of classes with respect to this sub-dataset corresponds
to argmaxK(CHk) and equals 7. In Fig. 3-(b), the normal-
ized CHk for K ∈ {8, 16} is computed over the full EMISAR
Foulum dataset. In this case, the K = 8 provides a much better
match.

6. CONCLUSIONS

We have applied the Riemannian metric in the development
of a sample gradient algorithm based on the Sobel kernels.
It was used for spatial change evaluation with Hermitian
and unitary barycenters. In a distinct contribution, we have
adapted the Calinski-Harabasz criterion to the Riemannian
geometry context.
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Fig. 2: Brétigny Dataset. (a) Angles obtained from the normalized unitary barycenter matrices [degrees]. (b) Phase values obtained from the
normalized unitary barycenter matrices [degrees].
Following statistics are computed excluding white-masked values: (c) Histogram of angles from (a). (d) Histogram of absolute phases from
(b). (e) Notches boxplot with mean and median values for angles in (a). (f) Notches boxplot with mean and median values for absolute phase
values in (b).
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Fig. 3: Foulum Dataset - AIRM Calinski-Harabasz index (normalized display) evaluation. (a) For the data selection in [1]. (b) For the entire
Foulum image, if K = 8 and K = 16.
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