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Alexander T. Bradley 1 , David T. Bett1, Paul R. Holland1, C. Rosie Williams 1, Robert J. Arthern1 &
Jan De Rydt 2

The relative contributions of anthropogenic climate change and internal variability in sea level rise from
theWest Antarctic Ice Sheet are yet to be determined. Even theway to address this question is not yet
clear, since these two are linked through ice-ocean feedbacks and probed using ice sheetmodelswith
substantial uncertainty. Here we demonstrate how their relative contributions can be assessed by
simulating the retreat of a synthetic ice sheet setup using an ice sheet model. Using a Bayesian
approach,weconstruct distributions of sea level rise associatedwith this retreat.Wedemonstrate that
it is necessary to account for both uncertainties arising from both a poorly-constrained model
parameter and stochastic variations in climatic forcing, and our distributions of sea level rise include
these two. These sources of uncertainty have only previously been considered in isolation.We identify
characteristic effects of climate change on sea level rise distributions in this setup, most notably that
climate change increases both themedian and theweight in tails of distributions. From these findings,
we construct metrics quantifying the role of climate change on both past and future sea level rise,
suggesting that its attribution is possible even for unstable marine ice sheets.

TheWestAntarctic Ice Sheet (WAIS) has undergonedramatic changes over
the satellite era, characterized by ice acceleration1, thinning2, retreat3, and ice
loss4. TheWAIS currently contributes approximately 10%of global sea level
rise (SLR)5,6 and could add tens of centimeters over the coming decades,
possibly dominating by the end of the century7. However, despite being key
symbols of anthropogenic climate change8,9, Antarctic ice loss, and thus
associated SLR contributions, are yet to be formally attributed to anthro-
pogenic climate change10.

A robust causal relationship betweenWAIS ice loss and anthropogenic
climate change is yet to be established because of strong internal variability
in the region’s climate as well as ice-ocean feedbacks which perpetuate ice
loss10. There are several lines of evidence highlighting their complex inter-
play. While WAIS retreat was initiated in the 1940s11–13, after an approxi-
mately 10,000-year quiescent period14, anthropogenic influence on key
climatological drivers in the region only became significant in the 1960s15.
This suggests that the trigger for retreat would have occurred even without
anthropogenic forcing. Following its initiation, WAIS retreat was likely
sustained by ice-ocean feedbacks16–21 (Fig. 1). Most notably, retreat of this
marine ice sheet across a retrograde bed (upward sloping in the flow
direction) is associated with increased ice flux across the grounding line

(where the ice transitions from sitting on bedrock to a floating ice shelf),
which promotes further retreat22,23 (Fig. 1). Thus, one possibility is that the
ongoing ice loss was triggered naturally in the 1940s and retreat is domi-
nated by self-perpetuating feedbacks, playing out on the long timescales on
which ice-sheets evolve11,13,15,24. However, this retreat cannot be purely self-
sustaining, independent of external forcing, because ice discharge remains
responsive to ocean variability25–27. This picture is further complicated by a
proposed centennial scalewarmingof theAmundsenSea24,28, which is partly
attributed to anthropogenic changes in large-scale climate systems15,28–30.
While all of these processes may contribute to the ongoing ice loss, the
relative contributions of a historical trigger, ice-ocean feedbacks, and
changes in climatic forcing are still unknown.

Determining the role of anthropogenic climate change in SLR from the
WAIS is important for providing causal evidence to support recourse for the
myriad social (e.g., ref. 31), economic (e.g., ref. 32), and ecological (e.g.,
ref. 33) impacts of SLR, which are borne primarily by poorer and low-lying
island nations34. This is particularly pertinent in light of the recent outcomes
of the COP27 conference, in which a loss and damage fund was established
to compensate countries for the harm inflicted by anthropogenic climate
change. In addition, attribution (or lack thereof) has implications for the
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future of theWAIS: if the observed ice loss is due solely to internal variability
and ice-ocean feedbacks, SLR is likely already committed and irreversible;
whereas, a significant anthropogenic component might suggest that ongo-
ing contributions strongly depend on future greenhouse gas emissions.

Despite the importance of this question, an outline of how to address it
is not yet clear. Progress has been made towards such by ref. 35, who
considered how ice sheet retreat from a local topographic high under variable
forcing may be attributed, using a one dimensional ice sheet model. Using a
set retreat threshold as the event to be detected, they showed that while an
observation of large retreat under a single realization of stochastic climatic
forcing does not necessarily indicate that anthropogenic climate change was
present in the forcing (Fig. 1), even modest anthropogenic trends in forcing
make retreat more likely when averaged over multiple realizations. They
conclude that a probabilistic approach, with multiple realizations of forcing,
must be taken if robust attribution statements are to be made. Additionally,
they showed that model parameter choices have a large impact on the
likelihood of retreat, and thus the attribution statement; this suggests that
multiple model parameters should be considered simultaneously in the
attribution assessment, particularly when these are poorly constrained.

Here, we consider how the anthropogenic component of SLR con-
tributions fromWAISmay be determined, which uses a Bayesian approach
integrating multiple realizations of forcing; we build upon ref. 35 in two
mainways: firstly, we consider SLR contributions, rather than retreat, as the
metric to be attributed. By using SLR as the attributionmetric, we are able to
quantify the role of anthropogenic climate change for observed SLR within
any interval, rather than only exceedance of a single, predefined retreat
threshold. This alleviates the common event definition problem which
commonly impacts attribution studies36. Secondly, we explicitly account for
the role of variable model parameters in the attribution assessment. Baye-
sian approaches naturally permit the joint probability density of multiple
model parameters, which may be poorly constrained in general, to be
represented within a projection of SLR37. This avoids the need to specify the
precise values of model parameters at the outset, which yield very different
attribution results depending on the particular choice of parameters in the
framework of ref. 35.

More specifically, we consider parameter variability in the para-
metrization of ice shelf basal melting, which is calibrated by comparing the
resulting ice shelf basal melt rate fields with output from a more detailed
oceanmodel. This procedure represents a hybrid approach that sits between
parametrizations of basal melting and coupled ice-ocean models, and cali-
brates melting directly, rather than only indirectly via its effect on ice flow.
We demonstrate how the anthropogenic component of SLR contributions
may be determined by considering the retreat of a synthetic marine-
terminating ice sheet, which is highly susceptible to ice-ocean feedbacks and
subject to forcing with strong internal variability, the characteristic features

that are thought to obscure signals of anthropogenic climate change in SLR
contributions from the WAIS. We demonstrate how uncertainties asso-
ciatedwith poorly constrainedmodel parameters interactwithuncertainties
associated with stochastic climate forcing, identifying that it is necessary to
consider both, a feature that is lacking in current SLRprojections.To thebest
of our knowledge, this is the first time such uncertainties have been con-
sidered simultaneously in an ice sheet modeling exercise.

We explicitly construct distributions of SLR which simultaneously
account for parametric uncertainty (that arising from poorly constrained
model parameters) and aleatory uncertainty (that arising from an ice sheet’s
variable response to different realizations of stochastic forcing). These dis-
tributions also reveal characteristic signatures of anthropogenic forcing on
distributions of SLR frommarine ice sheets, whichwe describe, and allowus
to construct a metric describing the influence of anthropogenic forcing on
SLR in this system. We conclude that even in highly unstable marine ice
sheets, the impact of anthropogenic forcing is detectible in principle, given
sufficiently large simulation ensembles as well as a full treatment of model
parameter uncertainty. We finish with a brief discussion of the challenges
associated with determining the role of anthropogenic forcing on SLR
contributions from the WAIS, which are avoided in our use of a synthetic
configuration. These include uncertainty in other model parameters,
uncertainty in the initial state, and uncertainties in climatic forcing.

Results
Interactions between aleatory and parametric uncertainties in
sea level rise projections
We adopt a Bayesian approach in which parametric and aleatory uncer-
tainties are simultaneously accounted for. As is standard, parametric
uncertainty is accounted for by performing multiple simulations with dif-
ferentmodel parameters spanning the parameter space (for each realization
of forcing), with the resulting SLR contributions weighted according to the
level of agreement between a simulated quantity and its ground truth e.g.,
refs. 38–43. It is straightforward to incorporate aleatory uncertainty into
such an approach (see methods) by placing no preference on the specific
realization of forcing. Although accounting for parametric uncertainty in
this way is now standard, no study has yet probed the interaction between
parametric and aleatory forcing uncertainties, primarily because of the
computational expense of doing so40, since multiple simulations with dif-
ferent model parameters must be run for each additional realization of
forcing.

To illustrate the approach, we focus on parametric uncertainty arising
from the use of a parametrisation of ice shelf basal melting. Parameteriza-
tions of basal melting are often used instead of coupled-ice oceanmodels to
reduce computational expense (in coupled ice-ocean models, the ocean
component typically represents the vastmajority of the expense44). Coupled

counterfactual (no climate change)anthropogenic
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ice-ocean feedbacks 
sustain retreat
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Fig. 1 | Sea level rise from marine ice sheets is not necessarily an indicator of
climate change. Schematic diagram demonstrating how an ice sheet configuration
that remains stable under a realization of forcing including anthropogenic climate
change (orange) may experience runaway retreat under a different, counterfactual

realization of forcing with no anthropogenic climate change (green). As a result,
grounding line retreat (filled dots in ice shelf configurations) and SLR are much
higher in the counterfactual case. Once initiated (say, at the star), retreat from a
topographic high is sustained by ice-ocean feedbacks.
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ice-ocean models remain computationally intractable for the large ensem-
bles of simulations44 required to incorporate both aleatory and parametric
uncertainty. However, parameterizations of melting neglect processes that
have been shown to be important in determining basal melting (e.g.,
refs. 16,45,46), and simulations employing parameterizations have been
shown to yield basal melt rates which result in poor skill at reproducing
observed grounding line retreat47 and ice loss48–50, compared to coupled ice-
ocean models. Our approach can be considered a hybrid between a para-
metrisation of melting and a coupled ice-ocean model: we use a para-
meterization of basal melting for computational efficiency and adopt a
Bayesian approach to the model parameters within: simulations are
weighted by comparing their predictions of basalmelt rates with those from
an offline oceanmodel at different snapshot times throughout a simulation
(methods); the oceanmodel thus plays a role analogous to a ground-truth in
a traditional Bayesian update, i.e., it is the information assimilated into the
model. It should be noted that this is a slightly different philosophy to a
typical Bayesian update in ice sheet modeling, in which agreement with
satellite observations, rather than with results of more detailed models, are
typically used to update probabilities. We employ a common melt rate

parameterization in which melting has a quadratic dependence on ocean
temperature and scales linearly with a dimensionless parameterM, which is
independent of the ocean temperature (methods). Themelt rate calibration
procedure is only capable of calibrating the melting aspects of the flow
model; other parameters, such as those related to basal sliding and ice
viscosity, which are important in determining ice flow (and thus SLR) are
not calibrated. Other studies (e.g., refs. 38–43) have established procedures
for calibrating many such aspects of ice-sheet models using observational
data; the novelty of our calibration method is that it permits precise cali-
bration of basal melt rates, which have, to the best of our knowledge, only
previously been indirectly calibrated via the effect of melting on ice flow. In
practice, all parameters with an important effect on ice dynamics should be
calibrated (see ‘Discussion’), but our use of a generic ice sheet configuration
(described below) allows us to neglect them, and focus on errors arising
purely from poor melt rate parametrisation skill.

Our example configuration features a prominent seabed ridge (Fig. 2a)
on which the ice shelf is stably grounded (Fig. 2b) during an initialization
stage with temporally constant ocean forcing, corresponding to typical
conditions in the Amundsen Sea offshore of the WAIS (methods). This
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Fig. 2 | Strong dependence of simulated marine ice sheet sea level rise on both
forcing andmodel parameters. a Bathymetry (given by equation (7)) of the marine
ice sheet configuration. b Initial ice thickness along the dashed centerline in (a) for
M = 1. The gray line indicates sea level. Ambient temperature Ta (c) and salinity Sa
(d) used in the parameterization of melting and as restoring boundary conditions in
the ocean model (methods). Pc denotes the pycnocline center, which parameterizes
the piecewise linear forcing profiles and is oscillated to mimic variability. e Time
evolution of a single realization of forcing and (f) corresponding SLR contributions
for different values of M 2 0:5; 0:75; 1:0; 1:25; 1:5f g (the arrow indicates the
direction of increasingM). Blue and red regions in (e) indicate whether the forcing is
warmer (shallower pycnocline) or colder (deeper pycnocline) than during the
calibration phase, where Pc = -500 m (black horizontal line), and shaded red regions
indicate two prominent warm periods. The black dashed line indicates the 100 m/
century anthropogenic trend in the pycnocline depth. g Time evolution of

pycnocline centersPc in all realizations of forcing. Here, orange curves correspond to
forcing scenarios with an anthropogenic trend of a 100 m/century shallowing of the
pycnocline, while green curves correspond to a counterfactual scenario, with no
trend in the forcing (methods). In both cases, faint curves indicate individual
ensemble members, while solid curves indicate ensemble means, and dashed lines
indicate the externally imposed trend (the TðF Þ term in equation (13)), i.e., 100m/
century and 0m/century shallowing of the pycnocline in the anthropogenic and
counterfactual cases, respectively. h SLR after 100 years as a function of M for a
subset of the different realizations of forcing. Each line corresponds to an individual
realization of forcing, and colors indicate whether the forcing is drawn from the
anthropogenic (orange) or counterfactual (green) ensemble. Blue hue points cor-
respond to the points shown in (f). The arrow indicates the curve referred to as the
“highlighted” curve in the main text.
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grounding line position, located at a topographic high, is reminiscent of the
WAIS configuration prior to the 1940s11 and renders the system highly
sensitive to ice-ocean feedbacks once grounding line retreat has been
initiated49. We consider evolution from this steady state under variable
ocean forcing, which is imposed by varying the depth of the pycnocline in
the ambient ocean conditions (Fig. 2c, d). The ocean forcing includes a
stochastic internal variability component, which mimics the observed
amplitude51,52 and persistence35 of internal variability in ocean conditions in
the Amundsen Sea on decadal and interdecadal timescales. Superimposed
on this forcing is either an anthropogenic trend—a 100 m/century linear
shallowing of the pycnocline, illustrating a plausible historical anthro-
pogenically driven trend in Amundsen Sea conditions28,53—or no trend,
representing the counterfactual scenario inwhich no anthropogenic climate
change has taken place (Fig. 2g). For both of these scenarios (referred to as
anthropogenic and counterfactual, respectively), we perform simulations
with 40 independent realizations of forcing (the realizations in each of the
two ensembles are also independent). Although accumulation rates also
feature notable interdecadal internal variability, and are projected to display
an anthropogenic trend in the future7, this variability is smaller than in the
ocean forcing for WAIS. In addition, changes in melting, rather than
accumulation, are understood to have been the dominant driver of recent
WAIS retreat54,55, and having multiple forcings, each with a unique
anthropogenic trend complicates the attribution task somewhat.

For each realization of forcing, we perform simulations sampling the
parameter space ofM. Requiring that the ice shelf remains stably grounded
at the ridge crest during the initialization phase, and retreats under forcing
corresponding to the warmest observed conditions applied constantly,
restricts us to considering the range 0.5 <M < 1.5 (methods); we sample this
range by takingM 2 0:5; 0:75; 1:0; 1:25; 1:5f g. Thus, the total number of
simulations is 400 (2 ensembles × 40 members × 5M values).

Examining the response to a single illustrative realization of forcing
(Fig. 2e), for different melt parametersM, highlights the interplay between
stochastic forcing and parameter variability, elucidating the inextricable
relationship between aleatory and parametric uncertainty. On the cen-
tennial scale, this realization of forcing features two prominent warm per-
iods (Fig. 2e). During the first warm period (between approximately t = 20
and t = 40 years), retreat is triggered in those simulations with the largest
values ofM (M = 1, 1.25, 1.5; Fig. 2f). These retreats are initiated towards the
end of the first warm period (Fig. 2f), when the time-integrated melt
anomaly has caused enough ice shelf thinning to reduce ice shelf buttressing
to the level at which retreat is initiated. Accordingly, retreat is initiated
soonest in the simulation with the largest melt parameterM (Fig. 2f), which
has the highest melt rates and thus accumulates the time-integrated melt
anomaly most rapidly. Once initiated, retreat proceeds at a rate approxi-
mately independent of forcing (Fig. 2f), suggesting that, once triggered,
retreat is set primarily by ice-ocean feedbacks, although it remains weakly
responsive to changes in forcing. Simulations with smallerM (lower melt-
ing) remain groundedat the ridge crest during thefirstwarmperiod. Retreat
is initiated in theM = 0.75 simulation during the secondwarmperiod, again
towards the end of the period. A simulation with the same realization of
forcing but with the anthropogenic trend removed, andM = 0.75, does not
retreat during this period (note that this simulation is outside the ensemble
structure outlined above, for which anthropogenic and counterfactual
ensembles are independent): the integrated melt anomaly required to
initiate retreat is achieved more easily during a given time period if there is
an anthropogenic trend in the forcing, than if not.

Under the same realization of forcing, SLRmay be highly non-linear in
M (Fig. 2h). For example, SLR contributions in the highlighted curve in
Fig. 2h increase by 1800% (from 0.15mm to 2.91mmafter 100 years) when
the melt rate parameter is increased from M = 1 to M = 1.25. This strong
sensitivity demonstrates the necessity of considering a range of parameter
values in determining SLR contributions, particularly when the system is
susceptible to ice-ocean feedbacks, or so-called tipping points may be pas-
sed. Furthermore, there are simulations in the anthropogenic ensemble
which yield lower SLR than simulations in the counterfactual ensemble

(Fig. 2h), and this behavior is strongly influencedby the value ofM. Thus, an
observation of high SLR under a single realization of forcing is not neces-
sarily an indicator of strong anthropogenic influence (Fig. 1). Taken toge-
ther, these results—a strong sensitivity to the parameter M and to the
specific realization of forcing—demonstrate that parametric and aleatory
uncertaintymust be simultaneously accounted for in SLR distributions, and
thus any framework attempting to determine the role of anthropogenic
trends in forcing in them.

The non-linearity of SLR in M also demonstrates how single-point
parameter calibration (where the set of model parameters are specified
based on agreement with a singlemetric, say the total melt flux out of an ice
shelf cavity) may be problematic. Such single-point calibrations are often
applied when tuningmelt rate parameterizations (e.g., refs. 50,56,57). In the
example presented here, themeanmelt rate at the start of the simulation (at
the end of the initialization stage,which is performed separately for different
values of M) is only weakly dependent on the melt rate parameter M
(Supplementary Fig. 3d), owing to a feedback between melting and ice
geometry (methods). As a result, a small change in the single targetmetric to
be matched would result in a large change in the selected value of M
(Supplementary Fig. 3d), which would ultimately result in a large change in
the simulated SLRat the endof the simulation (Fig. 2h). In other caseswhere
the targetmetric ismore sensitive to parameters, a small change in the target
metric would be expected to result in a small change in the selected para-
meter, but this may also ultimately result in a large change in the simulated
SLR at the end of the simulation, owing to the non-linearity of SLR inM.

Influence of anthropogenic forcing on sea level rise probability
distributions
Applying the Bayesianmelt rate calibration procedure (methods), yields, for
each time in each simulation, a distribution of SLR associated with the
particular realization of forcing applied (Supplementary Fig. 4). Then, by
marginalizing over the realizations of forcing (methods), we obtain cali-
brated probability distributions of SLR for both anthropogenic and coun-
terfactual ensembles, at each time (Fig. 3a).

The time evolution of both ensembles display qualitatively similar
behavior. The evolution of the distributions can be categorized into two
temporal parts: ‘tail emergence’ and ‘shift towards tails’ (Fig. 3c). At early
times, the distributions are symmetric (Fig. 3a), with low skewness (Fig. 3c)
reflecting retreat having not been triggered in any simulations. As retreat
begins to be triggered in individual simulations, the ‘tail emergence’ period
begins: a tail emerges (skewness increases, Fig. 3c), supported by increasing
SLR contributions from those already retreating simulations, and kurtosis
increases (Fig. 3d), indicating that the relative weight in the tails is reducing
(kurtosis quantifies the proportion of weight placed in the tails, with low
kurtosis corresponding to heavy tails). The timescale on which the tails
emerge depends on the forcing (see below). Median SLR remains small in
the tail emergence period (Fig. 3b).

As retreat is triggered in an increasing number of ensemble members,
weight begins to shift to the tails; the ‘shift towards tails’ period begins when
skewness and kurtosis reach a maximum (Fig. 3c, d). Beyond this max-
imum, weight moves towards the tails (kurtosis reduces, Fig. 3d) and, in
response to this, themedian increases (Fig. 3a), continuing to the end of the
simulation. (The median is a more appropriate metric than the mean given
the skewed data.) Both medians display a non-linear evolution, reflecting
non-linear SLR contributions in individual simulations once retreat has
been initiated. Although the precise details of the evolution of the dis-
tributions depends on both the system and the forcing (see below), we
expect that this qualitative behavior is generic in marine ice sheets with
tipping points under high variability stochastic forcing.

Despite these qualitative similarities between the anthropogenic and
counterfactual distributions, there are clear quantitative differences, which
highlight the importance of the anthropogenic trend in forcing. Firstly, the
tail emerges sooner in the anthropogenic ensemble (Fig. 3c), because retreats
are initiated sooner when a trend in forcing is imposed (Supplementary
Fig. 1). This is despite the anthropogenic additional forcing being zero at the
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start of the simulation (Fig. 2g), highlighting the role played by increases in
forcing during the time period in which the destabilizing integrated melt
anomaly is accumulating: if forcingdidnot changeover this period (or, if the
changes did notmatter), the first retreats would take place at approximately
the same time in both ensembles. This is consistent with ref. 15, who suggest
that the current retreat of WAIS was triggered naturally in the 1940s, but
may have subsequently failed to recover due to increasing influence of
anthropogenic forcing towards the start of the 1960s. Secondly, the max-
imum skewness is lower, and achieved sooner, in the anthropogenic case
(Fig. 3c). In a given time period, retreat is triggered in a greater proportion of
simulations in the anthropogenic ensemble than in the counterfactual
ensemble (Supplementary Fig. 1), resulting in probability distributions
shifting more quickly towards the heavy-tailed regime. This difference in
retreat rate triggering is because, as time proceeds, melt anomalies under
anthropogenic forcing become increasingly large, so a shorter positive
anomaly duration is required to initiate retreat. More specifically, with a
linear anthropogenic trend, the time-integrated melt anomaly scales with
the square of time, which rapidly outweighs any time-integrated negative
internal component: the system ismore vulnerable to long-lasting trends in
melting than to short term variability. Finally, andmost importantly, on the
centennial timescale, both the median is larger, and the kurtosis smaller, in
the anthropogenic ensemble than in the counterfactual ensemble; i.e., not
only does anthropogenic forcing increase the median of the distribution, it
also results in greater weight in the tails: extreme events, with high SLR
contributions, have relatively large probabilities in the anthropogenic
ensemble. This emphasizes the need to consider the shape, as well as the
spread (e.g., the variance), when communicating how emissions pathways
affect future SLR scenarios with policymakers.

Figure 3b–d also indicate how summary statistics differ between the
calibrated and uncalibrated distributions, with the latter obtained by setting
the posterior probability equal to the prior probability (methods), i.e., all
values ofM are weighted equally. In both ensembles, parametric calibration
ofM has an important effect on the median, evidencing the need to apply
parametric calibration in projections of SLR from ice sheets. Reduced
uncertainty in projections is often (perhaps implicitly) cited as a key benefit
of parametric calibration (e.g., refs. 38,40); whilst our simulations provide
evidence to support this, displaying increased kurtosis (reduced weight in
the tails; Fig. 3d) in the calibrated case, there remain large uncertainties in
calibrated distributions (Fig. 3a). This suggests that aleatory uncertainty is

an unavoidably large part of uncertainty in projections of SLR from ice
sheets, particularly those highly susceptible to ice-ocean feedbacks, and
cannot be neglected: parametric calibration alone is not sufficient, and there
is irreducible uncertainty in SLR from marine ice sheets.

Quantifying signals of anthropogenic trends in forcing
The role of anthropogenic climate change in individual weather events is
often framed as an anthropogenic enhancement36: how many times more
(or less) likelywas the eventmadeby anthropogenic climate change?Having
constructed distributions of SLR in both anthropogenic and counterfactual
cases, the ratio of these—the anthropogenic enhancement ratio (AER)—
naturally emerges as a metric to quantify how many times more likely an
observed SLR was made by the presence of an anthropogenic trend in
forcing, and go beyond the qualitative comparisons of the previous section.
An AER of 2, for example, indicates that anthropogenic forcing made a
given SLR contribution 100% more likely (or, equivalently, twice as likely).
TheAER for our ensembles is shown in Fig. 4a, where values along each line
of constant time represent the ratio between the anthropogenic and coun-
terfactual probability distributions (as shown for specific times in Fig. 3a).
Note that, because the AER can be constructed for any time throughout the
simulation, past and future SLR are equally applicable—the present has no
special status. Therefore, attribution statementsmay bemade for either past
or future SLR contributions (or both).

There is a band inwhich theAER is infinite, which is caused by the tails
of the anthropogenic distribution extending to higher SLR values than those
in the counterfactual distribution (Fig. 4a). An observation of SLR in this
band would have been impossible without anthropogenic climate
change–no counterfactual simulations produce this value. Theband spreads
out in time from an area close to the origin (recall that the tail of the
anthropogenic distribution emerges soon after the start of the simulation) at
a rate that is set by the retreat of the individual simulation with the high-
est SLR.

The AER is generally increasing in SLR, indicating that a higher SLR
over many realizations of forcing is a stronger indicator of anthropogenic
climate change. This demonstrates the importance, and value, of accounting
for aleatory uncertainty: under a single realization of forcing, higher SLR
does not necessarily indicate a strong influence of anthropogenic climate
change (Fig. 1), but it does when appropriately averaged over many reali-
zations of forcing. This also highlights the shift from a binary yes-no
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tail emergence shift towards tails

increasing  
weight in tails

Fig. 3 | Influence of anthropogenic forcing on distributions of sea level rise.
a Time evolution (running bottom to top) of distributions of SLR from ensembles
with an anthropogenic trend in forcing (orange) andwith a counterfactual trend (i.e.,
no-trend) in forcing (green). Filled markers indicate the median of the distributions

at the corresponding time. b–d Summary statistics of the distributions in (a) as
follows: (b) median, (c) skewness and (d) kurtosis. In each, the dashed lines indicate
the corresponding summary statistics for distributions obtained without parametric
calibration, obtained by assigning equal likelihood to each value of M.
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question, to a probabilistic approach, that necessarily takes place when
accounting for aleatory uncertainty35. The AER has a slightly banded
structure (Fig. 4a), which results from the finite size of our ensembles (in the
limit of infinite ensemble members, the proportion of retreats initiated
would be smooth, whereas because of the finite size of our ensemble, the
proportion of retreats initiated oscillates around the trend in this quantity,
with periods when relativelymore, and periods when relatively few, retreats
are initiated compared to the background trend, see supplementary Fig. 1).
While we expect that the banding would disappear as the number of rea-
lizations of forcing goes to infinity, we note that increasing this number is
particularly computationally expensive when accounting for aleatory and
parametric uncertainty simultaneously.

In practice, observed SLR follows a single trajectory through this AER
space, such as the selected simulations shown inFig. 4b–d, inwhich retreat is
triggered after approximately 20, 40, and 60 years, respectively (Fig. 4a).
Their values are indicative of the clear signal of anthropogenic climate
change: at the end of the simulation, AER is approximately 2.5, 3.9 and 2.2,
respectively, corresponding to increases in probability of 150%, 290%, and
120%.Once retreat has been triggered, theAER remains fairly constant. It is
worthnoting that these valuesare perhapsmodest compared to glaciological
attribution studies applied to mountain glaciers (e.g., refs. 58,59). This is a
direct consequence of our choice of setup: we consider a scenario in which
internal variability is relatively large compared to the anthropogenic trend
and the system is highly susceptible to ice-ocean feedbacks (and these
selected trajectories don’t enter the tail band, for which AER→∞).

From a policy perspective, a third useful question, beyond how to
address and how to quantify the role of anthropogenic trends in forcing, is:
what is the uncertainty in this quantification? Having constructed dis-
tributions associated with each realization of forcing (which the distribu-
tions shown in Fig. 3a are themean over), such uncertainties can be probed.
To do so, we bootstrap values of the distributions from individual realiza-
tions of forcing todetermine a confidence interval (methods)—ameasure of
the likely spread in AER—around our central estimates (Fig. 4b–d).
Uncertainty in AER is generally smaller along contours corresponding to
later retreat (Fig. 4b–d).This is commensuratewith relatively fewsimulation
trajectories entering the region in and around the tail band, leading to
increased uncertainty: although the central estimate of anthropogenic
enhancement is itself largest in the tails, that is where the uncertainty in the
value is greatest. We expect that this error bound would reduce with
increasing numbers of realizations of forcing. Thus, we expect that real
world attribution studies will have to grapple with the limitation that

increasing ensemble size is required to reduce uncertainty in the role of
anthropogenic forcing, but to do so requires substantial additional com-
putational resources.

Discussion
The example presented here provides a path towards assessing the role of
anthropogenic climate change in SLR contributions from the West Ant-
arctic Ice Sheet, including both quantifying the strength of the anthro-
pogenic signal and its uncertainty. Our use of a Bayesian framework allows
us to treat parametric uncertaintywithin attribution assessments and avoids
the need to specify a single event to be detected. By abstracting and con-
sidering a generic ice sheet,we are able to focus on errors inmelting,with the
hope that themelt calibration approachmay help to bridge the considerable
gap in fidelity to observations between parameterizations of melting and
coupled ice-ocean simulations.

Determining the precise influence of anthropogenic climate change on
SLR contributions from the WAIS requires simulations to be performed
using geometries and parameters that represent real world conditions. Here
we identify three key classes of problems whichmust be overcome in doing
so: computational challenges, initial state challenges, and challenges arising
from uncertainty in climatic forcing. Computational challenges arise from
the large number of simulations required to appropriately account for
parametric and aleatory uncertainty. In considering a generic marine ice
sheet, we are able to neglect uncertainty arising from model parameters
governing basal sliding and ice viscosity, aswell as processes such as damage
(e.g., refs. 19,60), calving (e.g., refs. 46,61,62), sliding law (e.g., ref. 63), and ice
rheology (e.g., ref. 64) whichmight obscure (or amplify) long-term climatic
trends in the forcing, but should be included in assessments of SLR and thus
its attribution to anthropogenic climate change. Additional parametric
uncertainties can be succinctly integrated into the Bayesian approach taken
here37, and should be calibrated with observations. The computational
challenge is particularly pertinent given that a high spatial resolution must
be used to ensure correct representation of ice sheet key processes (e.g.,
ref. 65). In addition, the effect of parameters which control the strength of
Bayesian updates must be explored; although we find that varying these
parameters within reasonable ranges does not qualitatively change the
results (methods), they may influence the precise values of anthropogenic
enhancement. It should also be noted that, ideally, multiple different ice
sheet models should be used in order to assess structural uncertainties
arising from those processes not represented in some ice sheet models37,
further adding to the computational challenge.
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AER

Fig. 4 | Signals of anthropogenic climate change in sea level rise from a synthetic
marine ice sheet. a Contour plot of anthropogenic enhancement ratio (AER) as a
function of time and space, with colors as indicated by the colorbar. The hatched
region indicates the area where AER→∞. b–d Time evolution of AER (solid lines)

along selected simulation trajectories of SLR, corresponding to labeled lines in (a).
The shaded region indicates the uncertainty in this metric, obtained by boot-
strapping values of distributions that result from individual realizations of forcing
(methods). Data are shown only for times where SLR > 0.1 mm for clarity.
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Determining the initial state—the configurationof the ice sheet prior to
the era of anthropogenic influence—also represents an crucial challenge.
Projections of ice sheet evolution are sensitive to their initial states, similar to
numerical weather forecasts66, but relatively little is known about the con-
figuration of theWAIS prior to the satellite record beyond broad bounds on
grounding line locations11. One particular challenge in this regard is
determining the ice front position, which typically remains fixed in ice sheet
models, but may have a strong impact on ice shelf buttressing and thus
retreat potential. Additionally, ice sheet memory of Holocene conditions
must be considered: here, we have assumed that the ice sheet is in steady
state at the onset of a trend in forcing; in practice, however, there is evidence
of a slow retreat of theWAIS over theHolocene14. Given the long timescales
on which ice sheets fully respond to changes in forcing, knowledge of this
statemaybe retainedby the ice sheet, and thus affect the likelihoodof retreat.

Finally, challenges associated with uncertainties in climatic forcing
must be overcome. Here, we assumed that the anthropogenic trend is
known and well characteristed, but in practice this must itself be inferred
from observations and models of climate, representing an attribution
challenge in itself. ForWAIS, this is complicatedby the compounddrivers of
changes: ocean warming drives retreat, but trends in ocean warming are
primarily drivenby trends inwinds24. Additionally, anthropogenic trends in
accumulation, not considered in this study, must be considered simulta-
neouslywith trends in oceanwarming; in the future, trends in accumulation
are expected to partly offset ice loss fromWAIS7, potentially obscuring the
anthropogenic signal.

The work presented here can be considered as a framework for pro-
ducing calibrated distributions of SLR, in addition to their application to
attribution statements. We have demonstrated that both aleatory and
parametric uncertainty are important components of ice sheet SLR pro-
jections, and suggest that future assessments of SLR from ice sheets must
account for these sources of uncertainty. As we have shown, parametric
calibration reduces uncertainty, but the susceptibility to ice-ocean feedbacks
renders broad distributions inevitable67: much like other aspects of the cli-
mate system68, ice sheets have irreducible uncertainty. The glaciological
communitymust becomemore comfortablewith these fundamental aspects
of uncertainty and appropriately communicate them to policy-makers and
stakeholders.

By constructing calibrated distributions of SLR contributions, we
showed that anthropogenic climate change increases both the median of
distributions, and the relative weight of their tails: much like many other
weather events69, even modest anthropogenic climate change can make
extreme scenarios many times more likely. Using these distributions, we
constructed a metric to quantify the role of anthropogenic forcing,
concluding that even in highly unstable marine ice sheets, the impact of
anthropogenic forcing is detectable in principle, given sufficiently large
simulation ensembles forced by profiles with and without an anthro-
pogenic trend, as well as a full treatment of model parameter uncertainty.
In other words, attribution studies are tractable for the WAIS. The
implications of attributing ice loss from the WAIS, both for the harms
caused by SLR and for the future of theWAIS, provide strong motivation
to pursue such studies.

Methods
Sea level rise contributions accounting for parametric and alea-
tory uncertainty
For a given trend in forcing, denoted F , (i.e., after specifying whether the
trend is anthropogenic or counterfactual), the probability of a given SLR,
ΔSLR, accounting for aleatory andparametric uncertaintymay be expressed
as37

PðΔSLRjF ; I 0Þ ¼
1
n

Xn
i¼1

Z
PðΔSLRjF ;N ;Ri; I 0ÞPðN jRi;F ; I 0Þ dN :

ð1Þ

Here, N is the space of model parameters, n is the total number of
realizations of forcing, Ri is the specific realization of forcing (with i a
dummy index), and I0 represents the initial conditions. The expression
(1) follows from a first-principles probabilistic expression of SLR37, after
assuming that each specific realization of forcing has equal probability,
PðRiÞ ¼ 1=n, and that the initial state I0 is known. For our specific
application of (1), N is the space of melt rate parameters, 0.5 <M < 1.5.
Note that the expression (1) does not include any account of model
structural uncertainty, which arises from the approximations that ice
sheet models make, as well as their incomplete representation or
omission of physical processes37. Such uncertainties can only be
accurately probed by performing the same numerical experiments with
an ensemble of different ice sheet models, typically in a model
intercomparison exercise (e.g., ref. 70) and is therefore beyond the scope
of this work. (It should be noted that the WAVI ice sheet model used
herein demonstrates good agreement with other state-of-the-art ice sheet
models in the most recent ice sheet model intercomparison exercise70).
Note that constructing distributions of SLR using the calibration
procedure outlined below requires values of SLR to be known for all
parameter values, but simulations provide only a finite amount of
observations. Here, we obtain SLR as a function of M by linearly
interpolating between individual M (see Supplementary Fig. 4e).

Melt rate calibration
The calibration of model parametersM enters distributions of SLR through
the probability PðMjRi;F ; I 0Þ, which appears in (1) (here we use the
specific parameter nameM, rather than the generic nameN ). Following a
standard Bayesian approach, we assume a prior distribution on the para-
meters M (with hyperparameter μ), which is then updated as new infor-
mation is assimilated through the likelihood. In our case, this assimilated
information is melt rates from an offline oceanmodel (see below); denoting
this information byO, Bayes’ rule states that

PðMjO; μÞ ¼ PðOjM; μÞ PðMjμÞ
PðOjμÞ ð2Þ

The first term in the numerator on the right-hand side of (2) represents a
likelihood function, describing how the prior distribution (second term in
the numerator on the right-hand side) is updated to assimilate oceanmodel
results. The prior distribution describes the state of belief in model
parametersN prior to comparisonwith the oceanmodel. The left-hand side
of (2) represents the posterior distribution—the distribution of parameters
M following assimilation of ocean model information. The denominator of
the right-hand side of (2) simply acts to normalize the probability
distribution.

Here, we assume a Gaussian prior, which maximizes the relative
entropy when only estimates of the prior mean μ and standard deviation σP
are available71,72:

PðMjμÞ ¼ αffiffiffiffiffiffiffiffiffiffi
2πσ2P

p exp � jM � μj2
2σ2P

� �
: ð3Þ

Here α is a normalization constant, which ensures that the distribution (3)
integrates to unity when initialization bounds on M are imposed (see ‘Ice
Sheet Model Initialization’ below). σP can be thought of as describing the
strength of confidence in the initial estimate ofM, which is centered about
the hyperparameter μ: a low (high, respectively) σP corresponds to high
(low) confidence that the hyperparameter μ represents the true value ofM.
In the results contained herein, we use μ = 1.25, based on agreement in the
meanmelt rate after the initialization stage (in this case, a meanmelt rate of
23 m year−1, which can be thought of as an arbitrary piece of prior infor-
mation). We use σP = 0.2 (Supplementary Fig. 4), representing somewhat
weak confidence that the valueM = μ represents the true value ofM. Sup-
plementary Fig. 6b shows a plot of the Gaussian prior (3) as a function ofM
for different values of σP with μ = 1.25.
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To determine the likelihood PðOjM; μÞ, we first specify calibration
timeslices τ ¼ τ1; . . . τn

� �
and, for each timeslice, run the ocean model in

the geometry set by the ice-onlymodel.Afterdoing so,wehave twomelt rate
fields,

_mk
param ¼ _mparamðx; y; t ¼ τkjMÞ; ð4Þ

_mk
ocean�model ¼ _mocean�modelðx; y; t ¼ τkjMÞ ð5Þ

from the parameterization of melting and from the ocean model, respec-
tively, and for each timeslice k = 1,…, n. (Note that the ocean model
depends on the melt rate parameterM via the ice-shelf cavity geometry.) A
melt error functional Dj is determined by comparing these two fields. The
particular choice of the form of the Dj is subjective, reflecting how melting
should be penalized. Here, we take Dj to be the mean absolute error in the
two melt fields on grid cells below 500 m depth. This reflects the fact that
deep areas, typically close to grounding lines, have disproportionately large
impacts on the dynamics of the grounded ice73–75.

From the timeslice errors Dj, we determine an average error
D ¼ ð1=nÞPn

j¼1 Dj. The likelihood is thendetermined fromanexponential
error model,

PðOjM; μÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2L

p exp � D2

2σ2L

� �
: ð6Þ

Here σL is amelt error covariance,which describes howharshly errors in the
melt rate from the parameterization are penalized (with respect to the ocean
model): for low σL, errors are penalized more harshly, whereas for high σL,
errors are penalized less harshly. In the limit σL→∞, each parameter value
M is assigned equal weight, and the posterior distribution is identical to the
prior (Supplementary Fig. 4f). Supplementary Fig. 6b shows a plot of the
exponential error model (6) as a function of D for different values of σL. In
the results presentedhere,weuseσL = 10m/year. In general, theσL shouldbe
on the same order of magnitude as errors in melting; in our simulations,
melt errors are typically on the order of 10s of meters per year (Supple-
mentary Fig. 4a).

To assimilate timeslice errors into the Bayesian update, we require
PðOjM; μÞ as a function of M, but the simulation only provides sparse
points (Supplementary Fig. 4b). To overcome this, we interpolate between
the data points using a smoothing spline fit, via the FIT function in
MATLAB.

Supplementary Fig. 6c shows the AER as a function of SLR and time
(i.e., as inFig. 4of themain text) fordifferent values of thepriorparameter σP
and melt error covariance σL within reasonable ranges. We see that, while
varying these parameters adjusts the precise value of the AER, the overall
picture—that higher observed SLR are concomitant with stronger anthro-
pogenic influence—remains. The small exception to this is for large σP and
small σL, for which the anthropogenic signal is most obscured (see below)
and abandofAER < 1 emerges close to the tail. This is afinite size effect, and
would disappear in the limit of a large number of simulations, emphasizing
the need for large ensembles of simulations.

For smaller σL, errors in melting are penalized more harshly; in this
study, smaller σL tends to shift weight towards smaller M, which typically
display smaller errors in melting (see Supplementary Fig. 4a, b for an
example from one realization of forcing). Simulations using a smaller value
ofM require a larger time-integrated forcing anomaly to achieve the same
integrated melt anomaly required to initiate retreat. Simulations in which
this is achieved in the anthropogenic case and not in the counterfactual case,
tend, therefore, to be observed later on average, when the ensemble mean
difference in forcing is greater. Thus, for a given time, the ratio of ensemble
members which have retreated in the anthropogenic ensemble to those
which have retreated in the counterfactual ensemble is closer to unity for
smallerM, leading to a dampened anthropogenic effect. Conversely, smaller
σP shifts weight towards M = μ = 1.25 (in this case), which is at the higher
end of theM range considered here, enhancing the anthropogenic effect.

Details of ice sheet configuration
The setup of the genericmarine ice sheet configuration is very similar to that
of ref. 49,who interrogatedhow ice-ocean feedbacks perpetuate retreat of an
ice sheet from a seabed ridge using a coupled ice-ocean model under con-
stant forcing scenarios. In this setup, the bathymetry (Fig. 2a) can be
expressed as the sum of along-flow and cross-flow components:

Bðx; yÞ ¼ BxðxÞ þ ByðyÞ; ð7Þ

where

BxðxÞ ¼ 400 exp � x � 265× 103
� �

2σ2b

	 

m; ð8Þ

ByðyÞ ¼ � 500þ 600 sin
π

2
þ πy

5× 104
� �h i

m: ð9Þ

Here, x and y are co-ordinates in the along- and cross-flow directions,
respectively (the ridge is aligned along the cross-flow direction, see Fig. 2a).
The cross-flow bathymetry contribution, By(y), corresponds to a symmetric
valley-like configuration, whose margins are located 500 m below sea level
and whose center is 1100m below sea level; the along-flow bathymetry
contribution, Bx(x), corresponds to a Gaussian ridge with height 400m and
lengthscale σb = 1.1 × 104 m, which is superimposed on the valley at a
position centered on x = 265 km.

Following49, ice rheology is described byGlen’s lawwith flow exponent
n = 3. A constant rate factor A = 2.94 × 10−9 a− 1 kPa− 3 is applied every-
where, except for within 5 km of the ice margins (i.e., for y <−20 km and
y > 20 km),where the rate factor is set toA = 5.04 × 10−9 a− 1 kPa− 3; this is to
mimic the narrow, low viscosity, shear margins which are characteristic of
WAIS outlet glaciers, particularly Pine Island Glacier76. The sliding coeffi-
cient is set to 20m a−1 kPa−1 everywhere. Surface accumulation varies lin-
early from15ma− 1 at the icedivide (x = 0km) to1ma− 1 at x = 150kmand
is set to a constant value of 1 m a− 1 between x = 150 km and the ice front
(x = 300) km. The resulting total surface accumulation, 67.5 Gt a− 1, closely
matches observations77, while the spatial pattern respects reduced accu-
mulation with reducing altitude.

WAVI ice sheet model
SLR contributions are determined from simulations using the Wavelet-
based Adaptive-grid Vertically-integrated Ice-sheet model (WAVI)72,78, a
finite volume ice sheet model including a treatment of bothmembrane and
simplified vertical shear stresses79.WAVI uses a regular solution grid (here 1
km in both directions), which is refined dynamically during the solution
procedure to facilitate solution speed and accuracy. WAVI assumes a fixed
ice front position,which is set tox = 300 km(this is equivalent to prescribing
a calving law that the calving flux is equal to the normal ice velocity at the
ice front).

Melt rate parameterization
Melting in the ice sheet model is parameterized according to a quadratic
temperature law80,

_m ¼ MΓ Ta � Tf

� �2
: ð10Þ

Here,M is a (variable) dimensionlessmelt rate parameter,Ta is the ambient
temperature far from the ice shelf base (see below), Tf is the local freezing
temperature and Γ = 0.56 m yr−1 °C−2 plays the role of an exchange coeffi-
cient between temperature and melt rate. (Using the nomenclature of 50,81,
Γ ¼ γT ½ρwcp=ðρiLÞ�2,whereγT is an exchangevelocity,ρw iswater density,ρi
is the ice density, cp is the specific heat capacity ofwater,L is the latent heat of
fusion.) The formulation (10) essentially encodes two mechanisms which
strongly affect ice shelf basalmelting: (1) ice shelfmelting is governed by the
turbulent heatflux from the ocean to the ice, which varies like the product of
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ocean temperature and velocity; (2) ocean velocity increases with the local
thermal forcing ðTa � Tf Þ asmeltwater is released, increasing the buoyancy
forcing and thus circulation strength. This parameterization has been used
in numerous ice sheet modeling studies see ref. 44, and references therein,
including the latest ISMIP assessments81.

As is standard, we assume that the local freezing point depends linearly
on pressure and salinity, Tf = λ1Sa+ λ2+ λ3zb, where λ1 =− 5.73 × 10−2 °C
is the liquidus salinity slope, λ2 = 8.32 × 10−2 °C is the liquidus intercept,
λ3 = 7.61 × 10−4 °Cm−1 is the liquidus depth slope, Sa is the ambient salinity
(see below), and zb is the depth of the ice shelf base.

We take a layered structure for the ambient temperature and salinity
(Fig. 2c, d), parameterized solely via the depth of the pycnocline center, Pc
(which is in general time-dependent), and the pycnocline half-width w:

Taðz; Pc;wÞ ¼
1:2 z < Pc � w

1:2� 2:2 z�ðPc�wÞ
2w Pc � w≤ z ≤ Pc þ w

�1 z > Pc þ w

8><
>: ð11Þ

Saðz; Pc;wÞ ¼
34:6 z < Pc � w

34:6� 0:6 z�ðPc�wÞ
2w Pc � w≤ z ≤ Pc þ w

34:0 z > Pc þ w

8><
>: ð12Þ

The profiles (11) and (12) are piecewise linear functions of depth (Fig. 2c, d):
they are constant in both an upper (temperature −1 °C, salinity 34 PSU,
corresponding to Winter Water) and lower layer (temperature 1.2 °C,
salinity 34.6 PSU, corresponding to Circumpolar Deep Water), which are
separated by a pycnocline of 2wm thickness, across which the temperature
and salinity vary linearly. These piecewise linear profiles are approximations
to typical conditions in the Amundsen Sea26,52. Here, we take w = 200 m,
corresponding to a pycnocline width of 400m, which is consistent with
observations51,52. Time varying stochastic forcing is applied by varying the
pycnocline center (see ‘Stochastic forcing’ below).

MITgcm ocean model
Ocean model melt rates used as calibration data are calculated by resolving
the ice shelf cavity circulation using the Massachusetts Institute of Tech-
nology General Circulation Model (MITgcm)82. The procedure applied to
determine ocean model melt rates at timeslices τ1,…, τn under a given
forcing Pc(t) is as follows: (1) run the ice sheet model (with parameterized
melting) under this forcing profile; (2) use the output of this todetermine ice
shelf geometries at timeslices t = τ1,…, τn; (3) for each of these geometries,
run the ocean model in this geometry, with forcing applied via a restoring
boundary condition corresponding to the profiles Pc(τk). The restoring
boundary condition is applied at the downstream end of the domain at
x = 360 km (Fig. 2a), where the temperature and salinity are restored to
vertical profiles Ta and Sa over a distance of five horizontal grid cells with a
restoring timescale of 12 h. An example of melt rates fields _mk

param and
_mk
ocean�model produced by this procedure is shown in Supplementary Fig. 2.

The oceanmodel grid has 55 layerswith a vertical spacing of dz = 20m,
and ahorizontal resolutionof dx = 1km.Weuse theMITgcm inhydrostatic
mode with an implicit nonlinear free surface scheme, a third-order direct
space-time flux limited advection scheme, and a non-linear equation of
state83. The Pacanowski–Philander84 scheme parameterizes vertical mixing.
Constant values of 15 and 2.5m2 s−1 are used for the horizontal Laplacian
viscosity andhorizontal diffusivity, respectively.The equations are solvedon
an f-plane with f =− 1.4 × 10−4s−1. For each geometry, the MITgcm is run
for threemonths, using a timestep of 30 s, after which the configuration is in
quasi-steady state. The ocean model melt rate is taken as the melt rate after
three months of the simulation. The drag coefficient in the three-equation
formulation of melting85 used in the MITgcm is taken to be 9 × 10−3; this
value ensures that the ocean model melt rate in the post-initialization
geometries (see ‘Ice sheet model initialization’) closely matches observed
total meltwater flux values (e.g., ref. 52) from Pine Island Glacier.

Ice sheet model initialization
Following49, we apply a two-stage initialization procedure, outlined in
Supplementary Fig. 3a. In the first initialization stage, the ice geometry is
timestepped from an initial configuration in which the ice-surface is 150m
above sea level for 50 years (note that WAVI uses a hydrostatic flotation
condition, so specifying the ice surface and bed elevation prescribes the ice
thickness everywhere). Following this, the ice is approximately in steady
state, with ice shelf geometry shown in Supplementary Fig. 3c.

In the second stage of the initialization procedure,melting is turned on
(Supplementary Fig. 3). The ice geometry is then timestepped from that at
the end of the first initialization stage for fifty years using a constant ocean
forcing with Pc =−500m. This pycnocline depth corresponds to typical
conditions offshore of the WAIS (i.e., neither warm not cold)51,52. In the
following, we refer to warm forcing as constant forcing with Pc =−400m,
corresponding approximately to the shallowest recorded pycnocline
depth51. Similarly, we refer to cold forcing as constant forcing with
Pc =− 600m, corresponding approximately to the deepest recorded pyc-
nocline depth51. The second initialization stage is performed independently
for each value of M. The (M-dependent) state at the end of the second
initialization stage (Supplementary Fig. 3c) is then used as the initial con-
dition in the following retreat simulations (Supplementary Fig. 3).

Note that for a consistent estimate of SLR contributions from
simulations with different values of M, we require similar initial condi-
tions, chosen to be a grounding line at or near the seabed ridge crest. For
M≳ 1.5, the ice retreats irreversibly down the ridge during the second
initialization stage. We therefore consider only M values smaller than
this. In addition, we impose that a constant warm forcing applied to the
shelf should initiate retreat (WAIS retreat was, in practice, hypothesized
to be initiated with forcing oscillating between warm and cold11); we
found that for M≲ 0.5, no ice sheet retreat was initiated under warm
forcing. Therefore, we restrict ourselves to the range 0.5 ≤M ≤ 1.5. Note
that this restriction is consistent with our Bayesian framework: it is
equivalent to setting the prior density to zero outside the range
0.5 ≤M ≤ 1.5, based on observational constraints.

During the second initialization stage, the ice shelf thins in response to
applied melting, but the grounding line does not retreat (Supplemen-
tary Fig. 3c). The mean melt rate after the second initialization stage is only
weakly dependent on M (Supplementary Fig. 3b). If the geometries at the
end of the second initialization were identical for different values ofM, the
mean melt rate in the simulation withM = 1.5 would be 3 times as large as
that with M = 0.5 (black dashed line in Supplementary Fig. 3b); however,
owing to temperature-depth effects, this value is only approximately 1.1
times (approximately 23.5m year−1 in the M = 1.5 case versus approxi-
mately 21.3m year−1 in theM = 0.5 case, see Supplementary Fig. 3b). As the
ice shelf thins in response tomelting, it shallows, exposing it to colder ocean
conditions, reducingmelt rates sharply and restricting further thinning (the
melt rate is proportional to ðTa � Tf Þ2, which varies sharply with depth,
particularly in the depth range occupied by the ice shelf in the second
calibration phase, see Supplementary Fig. 3d).

Stochastic forcing
Following the two stage initialization proceedure outlined above, stochastic
forcing is applied via ambient ocean conditions:

Pcðt;F Þ ¼ Pc;0 þ TðF Þ þ ARðtÞ ð13Þ

where Pc,0 =− 500 m is the pycnocline depth in the second stage of the
initialization procedure, TðF Þ is a forcing-scenario-dependent (i.e.,
anthropogenic or counterfactual) trend (see below), A is the amplitude of
random forcing, andRðtÞ is a first-order autoregressive process, containing
the stochastic part of the forcing. In the results shown here, we use A = 100
m,which agreeswithobserved internal variability in theAmundsen Sea52. In
a first-order autoregressive time-series, the following value is decomposed
into a component proportional to the current entry, whose constant of
proportionality describes the persistence timescale of the variability, and an
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additive white-noise term. We take the same autocorrelation function as
ref. 35, with interdecadal-to-decadal timescales well represented.

Anthropogenic and counterfactual ensembles are distinguished via the
trend TðF Þ: realizations of forcing from the counterfactual ensemble have
no trend added to them, T = 0 m; realizations of forcing in the anthro-
pogenic ensemble have a linear trend,T =A0(t/100yrs), whereA0 = 100m is
the per-century shallowing trend of the pycnocline (Fig. 2g).

Bootstrapping distributions of sea level rise
Each of the n realizations of forcing yields a parametrically-calibrated dis-
tribution of SLR for each time in the simulation. Thus, for any time and any
SLR, we have n values of the distributions from both anthropogenic and
counterfactual ensembles (Supplementary Fig. 5). An uncertainty estimate
in the anthropogenic enhancement ratio is constructed by bootstrapping
these values—resampling from these n values with replacement (here, we
sample 1000 times); the resulting set yields a standard deviation λ =
λ(SLR, t) for both anthropogenic and counterfactual ensembles (Supple-
mentary Fig. 5). Using subscripts to denote the ensemble (that is, coun-
terfactual or anthropogenic), the upper bound shown in Fig. 4b–d is then
computed as

AERupper ¼
‘anthro þ λanthro
‘counter � λcounter

ð14Þ

where ℓ = ℓ(SLR, t) is the probability density. Similarly, the lower bound is
computed as

AERlower ¼
‘anthro � λanthro
‘counter þ λcounter

: ð15Þ

Data availability
Data used to generate figures contained herein is contained in an open
GitHub repository at https://github.com/alextbradley/WAISAttribution-
figures, which is held in permanent Zenodo repository at https://doi.org/10.
5281/zenodo.10514080. Processed ice sheet and ocean model data is con-
tained in apermanentZenodo repository athttps://doi.org/10.5281/zenodo.
7900762.

Code availability
Code to analyze data is contained in an open GitHub repository at https://
github.com/alextbradley/WAISAttribution-figures, which is held in per-
manent Zenodo repository at https://doi.org/10.5281/zenodo.10514080.
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