
HAL Id: hal-04672573
https://hal.science/hal-04672573

Submitted on 19 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Model-Driven Test Case Concretization for
End-to-end Combinatorial Testing

Léna Bamouh, Erwan Bousse

To cite this version:
Léna Bamouh, Erwan Bousse. Towards Model-Driven Test Case Concretization for End-to-end Combi-
natorial Testing. 21st Workshop on Model Driven Engineering, Verification and Validation (MoDeVVa
2024), Sep 2024, Linz, Austria. �10.1145/3652620.3687823�. �hal-04672573�

https://hal.science/hal-04672573
https://hal.archives-ouvertes.fr

Towards Model-Driven Test Case Concretization for
End-to-end Combinatorial Testing

Léna BAMOUH
lena.bamouh@etu.univ-nantes.fr

Nantes Université, École Centrale Nantes, CNRS, LS2N,
UMR 6004

Nantes, France

Erwan BOUSSE
erwan.bousse@univ-nantes.fr

Nantes Université, École Centrale Nantes, CNRS, LS2N,
UMR 6004

Nantes, France

Abstract
Combinatorial testing can be used to automatically generate rele-
vant sets of combinations of abstract test data for a System Under
Test (SUT). It requires defining a combinatorial model with possible
abstract values for the SUT input parameters, from which relevant
abstract test cases can be generated to reach a chosen coverage
criterion. However, concretizing abstract test cases into concrete
test cases, and writing corresponding test scripts, is a tedious and
error-prone manual process. With a focus on Java unit testing, we
present in this paper a first end-to-end approach where combinato-
rial testing is supplemented with a model-driven concretization step
for abstract test cases. To produce concrete test cases out of abstract
test cases, the process requires a context-specific data generator
provided by the test engineer, which can be implemented using
constraint solving techniques. A code generator is used to produce
the working JUnit test script for each concrete test case. The ap-
proach is implemented and integrated with the PICT combinatorial
testing tool, the Choco-Solver Java library for data generation, and
the Eclipse Modeling Framework (EMF) for model management.
While the approach is currently limited to primitive data types, an
initial evaluation on five Java methods shows that the testing effort
can be greatly reduced when the combinatorial complexity is high.

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging; Model-driven software engineering; • General and reference
→ Verification; • Theory of computation → Constraint and
logic programming.

Keywords
Combinatorial testing, Unit testing, Automatic test generation, Test
case concretization
ACM Reference Format:
Léna BAMOUH and Erwan BOUSSE. 2024. Towards Model-Driven Test Case
Concretization for End-to-end Combinatorial Testing. In ACM/IEEE 27th
International Conference on Model Driven Engineering Languages and Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3687823

(MODELS Companion ’24), September 22–27, 2024, Linz, Austria. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3652620.3687823

1 Introduction
In the field of software testing, combinatorial testing [8] stands
as a systematic approach to efficiently explore a subset of possi-
ble input combinations of a given System Under Test (SUT). First,
through a careful analysis of the specification of the SUT, a com-
binatorial model is defined as an abstraction of the different input
parameters of the SUT. This model is composed of a set of abstract
parameters and values that reflect interesting cases of input param-
eters (e.g., given an input parameter 𝑙 ∈ List, an abstract parameter
𝑥 ∈ {"l is empty", "l is not empty"} puts the emphasis on the ab-
sence or presence of values in 𝑙). Then, using an algorithm such as
IPOG[9], a set of abstract test cases can be automatically generated
from a combinatorial model using a target coverage criterion (e.g.,
covering each pair of possible abstract values, commonly known
as pairwise coverage). This results in an abstract test suite that effi-
ciently covers a subset of possibilities defined in the combinatorial
model, and can thus satisfyingly cover the SUT specification.

However, while abstract test cases can be automatically gener-
ated, two remaining ensuing steps are commonly performed manu-
ally. First, each abstract test case must be translated into a concrete
test case, where a concrete value is assigned to each SUT input
parameter. This step is not trivial, as not only must the chosen
inputs satisfy constraints of the abstract test case (e.g., given an
abstract value 𝑥 = "l is not empty", a possible concrete value for
𝑙 is [1, 3, 5]), but an oracle consistent with the SUT specification
must be manually defined and added to the concrete test case. Sec-
ond, a test script must be implemented with a testing framework
(e.g., JUnit1) for each concrete test case. These two steps represent
costly, tedious and error-prone manual work, especially given an
important amount of test cases.

To cope with this problem, we present in this paper a first end-
to-end approach where combinatorial testing is supplemented with
a model-driven concretization step for abstract test cases. The pro-
posed solution focuses on Java unit testing, i.e., the SUT is assumed
to be a Java method. First, an abstract test suite model is generated
from the output of an existing combinatorial testing tool named
PICT2. Then, the abstract test suite model is transformed into a
concrete test suite model using a data generator provided by the test
engineer. This data generator is specific to the considered tested
Java method, and can be implemented using constraint solving
tools. A code generator is finally used to transform the concrete

1https://junit.org/
2https://github.com/microsoft/pict

https://orcid.org/0009-0009-5601-5571
https://orcid.org/0000-0003-0000-9219
https://doi.org/10.1145/3652620.3687823
https://doi.org/10.1145/3652620.3687823
https://junit.org/

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Léna BAMOUH and Erwan BOUSSE

test suite model into a set of working Java JUnit test scripts. In ad-
dition, we propose a way to specify simple oracles directly within
the combinatorial model, thus allowing such oracles to be automat-
ically generated in the abstract test suite. These oracles are then
eventually propagated in the concrete test suite and test scripts.

We implemented a prototype using the Eclipse Modeling Frame-
work (EMF) for model management and JavaPoet for code gener-
ation. We performed an initial evaluation with five Java methods,
for which data generators were developed using the Choco-Solver
library [11]. Results show that when the combinatorial complexity
is important, the reduction of the concretization effort outweighs
the overhead of writing a data generator.

The remainder of the paper is structured as follows. Section 2
provides the required background. Section 3 details our contribu-
tion, an i.e., a model-driven approach to concretize abstract test
cases. The approach is evaluated using our prototype in Section 4.
Section 5 lists previous works related to our research topic. Finally,
Section 6 concludes the paper by summarizing its contributions
and suggesting avenues for future research.

2 Background
In this section, we present an overview of combinatorial testing
and constraint programming, along with a running example.

2.1 Combinatorial Testing
2.1.1 Principles. Combinatorial testing [8] aims at efficiently iden-
tifying relevant combinations of input arguments for a given System
Under Test (SUT), which can then be used to define test cases for
the SUT. The main idea is to create a simpler but well-founded
abstraction of the input domain of the SUT, and to derive from this
abstraction a reasonable amount of test cases that cover the SUT
specification satisfactorily. A combinatorial testing process usually
unfolds as follows:

(1) A careful analysis of the specification of the SUT is performed,
in order to identify in which ways the SUT input parameters
may influence the outcome of the execution.

(2) The result of this analysis is reified as an explicit combinatorial
model composed of a set of abstract parameters. An abstract
parameter describes an interesting characteristic of the SUT
input parameters, and is associated with a domain of possible
abstract values. Abstract parameters are expected to have much
smaller domains of values than input parameters, thus reduc-
ing the complexity of the testing problem. Note that abstract
parameters can arbitrarily differ from input parameters, both
in numbers and in nature, as the running example will show.

(3) Optionally, a set of constraints is defined, to allow/forbid specific
abstract values under specific conditions.

(4) A target coverage criterion is chosen, which specifies how ab-
stract values should be covered by the test suite to be generated.
The idea is both to limit the amount of test cases to generate,
and to ensure a certain level of quality for generated test cases.
A common family of criteria are called n-wise coverage, which
are satisfied if the test suite covers each possible group of 𝑛
abstract values of the combinatorial model. With 𝑛 = 2, the
criterion is commonly known as pairwise coverage.

1 /**
2 * Check whether a word is a palindrome.
3 *
4 * @param word The word to check.
5 * @return true if word is a palindrome, false otherwise.
6 * @throws IllegalArgumentException if word is either null, empty,
7 * contains a special character,
8 * or contains a digit
9 **/
10 static boolean isPalindrome(String word)
11 throws IllegalArgumentException

Listing 1: Specification and signature of isPalindrome

(5) An algorithm such as IPOG[9] is used to automatically generate
an abstract test suite composed of a set of abstract test cases
(ATC). Each abstract test case is composed of a set of exactly
one abstract value per abstract parameter of the combinatorial
model.

(6) Each abstract test case is manually translated into a concrete test
case (CTC) composed of two parts: (a) test data, with a value
assigned to each input parameter; (b) an oracle that specifies
whether a resulting execution is a success.
To better illustrate this process, an example is given below in

Section 2.1.3. Also, note that while defining a combinatorial model
can be an intricate endeavor (especially given the SUT specification),
we assume in this paper that the combinatorial model is always
valid and well-defined, and we consider the prior task of defining
this model outside the scope of the proposed approach.

2.1.2 PICT. Pairwise Independent Combinatorial Testing (PICT),
is an open-source command-line tool developed by Microsoft. It
provides a small textual language to define combinatorial models,
and a command-line tool to generate abstract test cases from a
given PICT combinatorial model. Any 𝑛-wise coverage criteria
can be used, with pairwise being the default. Abstract test cases
can either be printed as raw text, or can be exported as JSON for
better integration with other processes. An example of a PICT
combinatorial model is given below in Section 2.1.3.

2.1.3 Combinatorial Testing Applied to Unit Testing. While combi-
natorial testing can be applied to any sort of well-specified SUT,
one possibility is to use it for unit testing, where the SUT takes the
form of a software function or method. While the process remains
identical, an additional step is then required : for each concrete
test case, an executable test script must be manually implemented,
i.e., a small program that calls the tested method with the test data
specified in the test case, and that checks whether the execution is
a success as defined in the oracle.

Example. Listing 1 shows the signature and specification of a
Java method named isPalindrome, which verifies whether a given
word is a palindrome. The specification states that (1) true should
be returned if the input string is a palindrome, and false otherwise,
and (2) an IllegalArgumentException should be thrown if the
word is null, empty, contains digits or special characters.

Listing 2 shows a PICT combinatorial model to test isPalindrome.
Given that the outcome of the method is entirely based on the con-
tents of the input string, five abstract parameters are defined, each

Towards Model-Driven Test Case Concretization for End-to-end Combinatorial Testing MODELS Companion ’24, September 22–27, 2024, Linz, Austria

1 # Abstract parameters and values
2 WordIsNull: yes, no
3 WordIsEmpty: yes, no, _
4 WordHasSpecialCharacter: yes, no, _
5 WordHasDigit: yes, no, _
6 WordIsPalindrome: yes, no, _
7

8 # Constraints
9 IF [WordIsNull] = "yes"
10 THEN [WordIsEmpty] = "_"
11 ELSE [WordIsEmpty] <> "_";
12

13 IF [WordIsEmpty] <> "no"
14 THEN [WordHasSpecialCharacter] = "_"
15 AND [WordHasDigit] = "_"
16 AND [WordIsPalindrome] = "_"
17 ELSE [WordHasSpecialCharacter] <> "_"
18 AND [WordHasDigit] <> "_"
19 AND [WordIsPalindrome] <> "_";

Listing 2: PICT combinatorial model for isPalindrome, man-
ually derived from the specification shown in Listing 1

Word-
Is-
Null

Word-
Is-
Empty

WordHas-
Special-
Character

Word-
Has-
Digit

WordIs-
Palindrome

ATC1 yes _ _ _ _
ATC2 no yes _ _ _
ATC3 no no no no no
ATC4 no no no yes yes
ATC5 no no yes no yes
ATC6 no no yes yes no

Table 1: Abstract test suite generated with PICT using the
combinatorial model from Listing 2, shown in tabular form.

describing a specific important characteristic of said string. As each
abstract parameter is defined as a closed question, their domains
always include abstract values labeled yes and no. In addition, an
abstract value with the underscore symbol _ is part of the domain
of all parameters but WordIsNull. In this model, this symbol de-
notes the case where no meaningful value can be assigned to the
parameter. Lastly, a set of constraints are defined in order to force
or forbid specific abstract values in specific circumstances. The first
constraint states that if WordIsNull equals yes, then the only pos-
sible value for WordIsEmpty is _, as the "emptiness" of the string is
not meaningful in this case. Similarly, the second constraint states
that if WordIsEmpty is not false (i.e., it is either yes or _), then all
other parameters take the value _, as constituents of the string are
not relevant if it is empty or null.

Table 1 shows an abstract test suite obtained after running PICT
on the combinatorial model using the pairwise coverage criterion
as a target. Six abstract test cases are yielded: ATC1 corresponds
to a null input; ATC2 to an empty input; ATC3 to an input that is
not null, not empty, without a special character, without a digit,

and that is not a palindrome; and so on. From there, each ATC has
yet to be translated first into a concrete test case (i.e., with test data
and an oracle), then into an executable test script.

2.2 Constraint Programming
Constraint Programming (CP)[4] is an alternative to traditional
programming, focusing on defining constraints over variables and
domains rather than using step-by-step algorithms. CP uses con-
straints to specify acceptable combinations of values from variable
domains, framing problems through a series of constraints and
then identifying values that satisfy all constraints. This latter task
is performed by a constraint solver by efficiently navigating the
domains to identify feasible assignments.

Different libraries and tools can be used for CP, such as Choco-
Solver[11], a robust Java-based framework for modeling and solving
constraint satisfaction problems. It allows the definition of problems
using decision variables, domains, and constraints through its API.

A possible use of CP is for data generation tasks requiring spe-
cific formats or values[6]. In the approach presented thereafter, we
demonstrate how CP can be used to generate the test data necessary
to translate abstract test cases into concrete test cases.

3 Model-driven Test Case Concretization
In this section, we present a model-driven approach to concretize
abstract test cases obtained with combinatorial testing. We first
give an overview of the proposed solution, then we present in detail
the process to import abstract test cases, before explaining how
they are concretized and transformed into executable test scripts.
Finally, we describe the implemented prototype.

3.1 Overview
Figure 1 shows an overview of our proposed approach. In the bot-
tom right corner, we assume the software developer prepared a
Java method that should be tested. In this first version of this work,
we assume the Java method to be static and to only rely on primi-
tive types (integers, strings, booleans, enumerations) for its input
parameters and return value.

On the left, we assume the software tester decides to rely on
combinatorial testing for this task, and to rely on the proposed
approach to automatically obtain a JUnit test script at the end of
the process. The Abstract Test Case Generation stage starts with
a PICT combinatorial model realized by the software tester, and
extended to include a definition of simple test oracles when possible.
Then, PICT is executed (1) with a given coverage criterion in order
to produce a set of PICT abstract test cases in JSON format. In
parallel, the PICT combinatorial model is imported (2) in the form
of a tool-independent combinatorial model conforming to an Ecore
combinatorial metamodel. Finally, the PICT abstract test cases are
also imported (3) in the form of an abstract test case (ATC) model
conforming to an Ecore ATC metamodel. This ATC model includes
cross-references to the combinatorial model imported in (2).

On the right, the Test Case Concretization and Test Code Gener-
ation stage includes the two core steps of the proposed approach.
First, the concretization step (4) aims at transforming theATCmodel
into a concrete test case (CTC) model conforming to an Ecore ATC
metamodel. This step requires the software tester to implement

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Léna BAMOUH and Erwan BOUSSE

Figure 1: Overview of the proposed approach

and provide a data generator specific to the tested Java method.
This data generator, typically implemented using constraint pro-
gramming, is used to automatically produce valid test data for each
source ATC. Finally, a code generator (5) is used to automatically
produce a JUnit test script containing all test cases defined in the
CTC model. If some oracles could not be handled by the automated
process, some manual work may be required to finish the test script.

Figure 2 shows all the three metamodels defined for the proposed
approach: the combinatorial metamodel (CombinatorialMM), the
abstract test case metamodel (ATCMM), and the concrete test case
metamodel (CTCMM). Elements of these metamodels are presented
in later sections when they are required.

3.2 Abstract Test Case Generation
The first stage of the proposed process is dedicated to defining an
extended PICT combinatorial model, followed by generating and
importing abstract test cases into a proper model.

3.2.1 Extended PICT combinatorial model definition. As already
presented in Section 2.1.2, we assume the combinatorial model to
be defined using PICT. Such a model is composed of a set of abstract
parameters, each capturing an important facet of the SUT input
domain. From there, each generated abstract test case will assign
an abstract value to each abstract parameter.

As abstract test cases do not work with concrete test data, a
consequence is that they do not include the definition of an oracle
that would specify conditions the concrete output data should fulfill.
This explains why the translation of an abstract test case into a
concrete test case requires some additional work to manually define
the yet missing oracle. To address this limitation, our approach
offers the possibility to define simple oracles directly within the
combinatorial model, when relevant for the considered SUT. This

enables the generation of abstract test cases with oracles, which
can then be used to generate complete test cases in later stages.

The required extra abstract parameter in the PICT combinatorial
model must be named Oracle. Possible values for this parameter
must follow the following textual syntax:
• return(Java expression) specifies an oracle that checks that
the returned value is equal to an arbitrary Java expression.
• throws(Java exception type) specifies an oracle that checks
that an exception of a specific Java type was thrown.
• undefined specifies that the oracle cannot be defined in this case.
This should for instance be used when the expected return value
is variable and not constant.
In addition, to specify in which cases a specific oracle should be

used, a set of strict constraints must be added to the model. Alto-
gether, these constraints should enforce that only a single possible
oracle value may be generated for a given set of abstract values.

Listing 3 shows an example of oracle definition for the PICT
combinatorial model prepared for isPalindrome previously shown
in Listing 2. An Oracle abstract test parameter is defined with three
possible values assessing that the returned value should be true or
false, or that an IllegalArgumentException should be thrown.
Next, three constraints are defined enforcing in which cases each
of these values should be used.

Next, PICT can be executed on the extended combinatorial model
with a target coverage criterion to produce an abstract test suite,
which we eventually import as a proper model, as explained below.

3.2.2 ATC and Combinatorial Model Import. The left of Figure 2
shows the two metamodels used in this stage. In the top-left corner,
CombinatorialMM is used to represent a combinatorial model as a
set of AbstractParameters, eachwith a domain of AbstractValues.
Constraints are not considered as they are not required in later
stages. This metamodel is used as a target format when importing

Towards Model-Driven Test Case Concretization for End-to-end Combinatorial Testing MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Figure 2: Metamodels used in the approach: at the top-right, the combinatorial metamodel; at the bottom-left, the abstract test
case metamodel; on the right, the concrete test case metamodel

1 Oracle: return(true), return(false),
throws(IllegalArgumentException)

2

3 IF [WordIsNull] = "yes"
4 OR [WordHasSpecialCharacter] = "yes"
5 OR [WordHasDigit] = "yes"
6 OR [WordIsEmpty] = "yes"
7 THEN [Oracle] = "throws(IllegalArgumentException)"
8 ELSE [Oracle] <> "throws(IllegalArgumentException)";
9

10 IF [WordIsPalindrome] = "yes"
11 AND [WordHasSpecialCharacter] = "no"
12 AND [WordHasDigit] = "no"
13 THEN [Oracle] = "return(true)"
14 ELSE [Oracle] <> "return(true)";
15

16 IF [WordIsPalindrome] = "no"
17 AND [WordHasSpecialCharacter] = "no"
18 AND [WordHasDigit] = "no"
19 THEN [Oracle] = "return(false)"
20 ELSE [Oracle] <> "return(false)";

Listing 3: Definition of the Oracle abstract parameter and
associated constraints for isPalindrome, extending the com-
binatorial model from Listing 2

the PICT textual combinatorial model into a proper model. Due to
the very simple textual syntax for declaring abstract parameters in
PICT, this can be accomplished using simple regular expressions.

In the bottom-left corner, ATCMM is the metamodel used to rep-
resent abstract test cases. An AbstractTestCase is composed of
AbstractParameterBindings, each assigning an AbstractValue

Oracle

ATC1 throw(IllegalArgumentException)
ATC2 throw(IllegalArgumentException)
ATC3 return(false)
ATC4 throw(IllegalArgumentException)
ATC5 throw(IllegalArgumentException)
ATC6 throw(IllegalArgumentException)

Table 2: Extension of Table 1, adding one extra Oracle abstract
parameter due to the model extension shown in Listing 3.

to an AbstractParameter. This assignment relies on cross-references
with the CombinatorialMM, i.e., each ATCMM model instance re-
quires a corresponding CombinatorialMM instance. This second
metamodel is used as a target format when importing the abstract
test cases, that PICT generates in JSON format, into a proper model.

For example, when importing abstract test cases generated by
PICT using the isPalindrome combinatorial model shown in List-
ing 2, an AbstractTestSuite model is obtained. This model is
composed of a set of AbstractTestCase elements, each contain-
ing the same information as one line of Table 1 (i.e., each column
contains all AbstractParameterBindings of a specific Abstract-
Parameter). If the combinatorial model is extended with the con-
tents shown in Listing 3, abstract values are also generated for the
Oracle parameter, as shown in Table 2 (which extends Table 1).

3.3 Concretization of Abstract Test Cases
The second stage of the approach focuses on the concretization of
the ATCmodel through test data generation, CTCmodel generation,
and code generation.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Léna BAMOUH and Erwan BOUSSE

1 public class PalindromeDataGenerator {
2 public static String generateData(String nullWord,
3 String emptyWord, String specialCharWord,
4 String digitCharWord, String generatePalindrome) { ... }
5 }

Listing 4: Data generator’s signature for isPalindrome. Each
parameter of the generator corresponds to an abstract pa-
rameter of the combinatorial model shown in Listing 2.

3.3.1 Data generator interface. By definition, an abstract test case
only defines the characteristics that input values should present,
but does not define concrete input values that would allow the SUT
to be executed. In the proposed approach, we propose to accomplish
this concretization step in a systematic fashion by automatically
generating test data that satisfies the constraints of a given ATC.
This requires the software tester to provide a data generator specific
to the tested method. The data generator must comply with an
interface (i.e., a set of contracts) specified as follows:
• It must be defined in a Java public class as a public and static Java
method.
• There must be one parameter of type String per abstract param-
eter of the combinatorial model, defined in the same order.
• The return type must match the input parameters of the tested
Java method. If the tested method has a single input parameter,
then the return type of the data generator must have the same
type. If the tested method has multiple input parameters, then
the return type must be of type List<Object>.
Listing 4 shows an example of data generator class and static

method declarations for isPalindrome. Each parameter corresponds
to one abstract parameter shown in the combinatorial model from
Listing 1. Since isPalindrome only has one string input parameter,
the return type is of type String.

Then, for each ATC, the data generator will be called using the
ATC abstract values, in order to produce input parameters. The
concretization step is explained in more details in Section 3.3.3.

3.3.2 CP-based Data Generator Implementation. Although the im-
plementation of the data generator is rather open—as long as the
above requirements are fulfilled—our initial work focused on the
use of constraint programming (CP) to generate test data. More
specifically, we investigated the use of the Choco-Solver Java li-
brary, which provides facilities to explicit constraints over variables
and domains, and to generate values satisfying said constraints.

We consider that a CP-based data generator can be defined using
the following design guidelines:
• Specify one CP variable per SUT input parameter. CP constraints
will be applied on the variable, then a solver will be used to iden-
tify candidate values for the variable that satisfy said constraint.
• Define a CP constraint for each abstract value of a combinatorial
model that implies a restriction on one or multiple SUT input
parameter—e.g., if the abstract value is "the list 𝑙 is not empty",
then the constraint must be applicable to 𝑙 and must ask the CP
solver that 𝑙 .size should be above zero.
• When the Java method that generates data is called, it should
go over each abstract value and apply the corresponding CP

1 private static void addPalindromeConstraint(Model model,
2 IntVar[] word) {
3 for (int i = 0; i < (word.length + 1) / 2; i++)
4 model.arithm(word[i], "=", word[word.length - 1 - i])
5 .post();
6 }

Listing 5: CP constraint defined in the isPalindrome data
generator ensuring that the generated word is a palindrome

1 private static void addASCIIConstraints(Model model,
2 List<IntVar> constraints, IntVar[] word,
3 int lower, int upper, int start, int end) {
4 for (int i = start; i < end; i++) {
5 if (!constraints.contains(word[i])) {
6 model.arithm(word[i], ">=", lower).post();
7 model.arithm(word[i], "<=", upper).post();
8 constraints.add(word[i]);
9 }
10 }
11 }

Listing 6: CP helper method in the isPalindrome data gener-
ator ensuring that certain letters of a string correspond to a
specific range of ASCII codes

1 private static void addDigitsConstraint(Model model,
2 List<IntVar> constraints, IntVar[] word) {
3 addASCIIConstraints(model, constraints, word,
4 48, 57, word.length/4, word.length/2);
5 }

Listing 7: CP constraint defined in the isPalindrome data
generator to generate a word containing digits

constraint on the CP variable of each involved input parameter.
Then, the CP solver should find a solution for each CP variable,
and return the produced test data.
For example, applying these guidelines to define a data generator

for isPalindrome requires defining one CP variable for the word
input parameter, and six CP constraints (one per yes abstract value
and one for no abstract value for the WordIsPalindrome abstract
parameter). Because Choco-Solver is not able to directly manipulate
string variables, the CP variable for word is actually defined as
an array of CP integer variables (IntVar[]), where each variable
corresponds to a letter represented with its corresponding ASCII
code3. For this example, we arbitrarily fixed the size of the array to
five letters (i.e., five CP integer variables). Once integer values have
been generated by the CP solver, each integer can be transformed
into a character, and thus the array can become an actual string.

Listing 5 shows a CP constraint corresponding to the yes abstract
value of the WordIsPalindrome abstract parameter. It specifies a
set of CP constraints stating that each CP integer variable must be
equal to its symmetrical counterpart.

Listing 7 shows a CP constraint corresponding to the yes ab-
stract value of the WordHasDigit abstract parameter. It relies on a

3https://en.wikipedia.org/wiki/ASCII

https://en.wikipedia.org/wiki/ASCII

Towards Model-Driven Test Case Concretization for End-to-end Combinatorial Testing MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Algorithm 1: Transformation of an AbstractTestSuite into a ConcreteTestSuite

Inputs :
abstractTestSuite: instance of AbstractTestSuite, from ATCMM
dataGenerator: data generator for the Java method under test
begin

CTS← createEmptyConcreteTestSuite()
foreach abstractTestCase ∈ abstractTestSuite.abstractTestCases do

CTC← createEmptyConcreteTestCase()
CTC.abstractTestCase← abstractTestCase
generatedData← getDataForTestCase(dataGenerator,
abstractTestCase)

CTC.callArguments.addAll(generatedData)
CTC.oracle← createOracleFrom(abstractTestCase)
CTS.concreteTestCases.add(CTC)

end
return CTS

end

Input Oracle
word Return Exception

: string

CTC1 null _ IllegalArgumentException
CTC2 "" _ IllegalArgumentException
CTC3 "baaaa" false _
CTC4 "a0a0a" _ IllegalArgumentException
CTC5 "!aaa!" _ IllegalArgumentException
CTC6 "!0a0#" _ IllegalArgumentException

Table 3: ConcreteTestSuite model generated from the
AbstractTestSuite corresponding to Tables 1 and 2. Each row
represents a ConcreteTestCase, and each column gives either
the input parameter or the oracle.

helper method shown in Listing 6 that is able to restrict a specific
range of CP variables to a specific range of ASCII codes. Given
that characters corresponding to integers (i.e., 0,1,2,. . .) are found
between codes 48 and 57 of the ASCII standard, the presence of a
digit in the word is achieved by constraining between CP variables
these two bounds.

3.3.3 Concrete Test Suite Model Construction. Using a data gener-
ator, the next step is to translate a given abstract test suite model
into a concrete test suite model. The right part of Figure 2 de-
picts the CTCMM metamodel used for this purpose. It specifies a
ConcreteTestSuite as a set of ConcreteTestCases, each contain-
ing a set of inputParameters and an Oracle. Aligned with the
combinatorial model extension proposed previously, two types of
oracles are supported: a ReturnOracle corresponds to checking
that the method returns a specific value, and an ExceptionOracle
specifies that a specific exception must be thrown by the method.

Algorithm 1 describes the transformation from an Abstract-
TestSuitemodel to a ConcreteTestSuitemodel. In a nutshell, the
process calls the provided data generator for each provided ATC,
and produces a corresponding ConcreteTestCase that includes
the generated test data. An operation labeled createOracleFrom
denotes the translation of an Oracle abstract value into a proper
ReturnOracle or ExceptionOracle depending on the value textual
content. If the abstract value of the Oracle parameter is undefined,
createOracleFrom simply produces no value.

1 private static CodeBlock generateEqualCode(ReturnOracle oracle,
2 Method testMethod, Object callArguments) {
3 return CodeBlock.builder()
4 .addStatement("actualValue = $L($L)", testMethod.getName(),
5 printGeneratedTestData(callArguments))
6 .addStatement("assertEquals($L, actualValue)",
7 oracle.getExpectedValueAsJavaCode())
8 .build();
9 }

Listing 8: Excerpt of the test script code generator, where
a test method’s body for a concrete test case with a return
oracle is generated

Table 3 shows an example of ConcreteTestSuite obtained for
isPalindrome using the AbstractTestSuite corresponding to Ta-
bles 1 and 2 as input, and using the CP-based data generator partially
presented above. Through the application of constraints based on
the abstract values of the ATCs, the solver automatically discovers
satisfying values for the word parameter. For instance, CTC6 corre-
sponds to ATC6, which specifies that the input word should contain
both a special character and a digit, while not being a palindrome,
thus yielding the value "!0a0#". Oracles are directly instantiated
based on the contents of Table 2, e.g., for CTC6 this means expecting
a IllegalArgumentException due to having an invalid input.

3.4 Test Scripts Code Generation
Once we have a concrete test suite model, the next and last step
is to transform it into executable test scripts. We consider JUnit
as a target testing framework for the generated scripts. In essence,
each concrete test case must be turned into a JUnit method where
the tested method is called with the corresponding input data, and
with an assertion corresponding to the specified oracle.

We rely on JavaPoet4 to implement the required code generator.
JavaPoet simplifies the creation of common JUnit structures, such as
test methods, through a directly manipulation of Java constructs as
first-class elements, while still being able to insert fragments of Java
programs as raw code. The library also allows for the integration
of annotations, ensuring proper configuration of JUnit methods
and test files, and supports static imports, reducing verbosity by
incorporating frequently used assertion methods directly.

Listing 8 shows an excerpt of our code generator. The shown
operation produces the code that calls the tested method, and that
asserts the correctness of the returned value (i.e., this is when
the CTC model includes a ReturnOracle). The JavaPoet operation
addStatement is first used to create the method call, and then used
to create the assertEquals assertion. printGeneratedTestData—
not shown due to space limitation—is dedicated to transforming
raw input data into valid Java expression that can be passed as
arguments. Similarly, getExpectedValueAsJavaCode is dedicated
to transforming the expected value of a ReturnOracle into a Java
expression for the assertion.

Based on the oracle of the CTC, there are three main cases man-
aged by the code generator:
(1) In the case of a ReturnOracle, the assertEquals assertion is

used to verify that the returned valued is correct. As an example,
4https://github.com/square/javapoet

https://github.com/square/javapoet

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Léna BAMOUH and Erwan BOUSSE

1 @Test
2 @DisplayName("[(WordIsNull, false), (WordIsEmpty, false),
3 (WordHasSpecialCharacter, false), (WordHasDigit, false),
4 (WordIsPalindrome, true)]")
5 void testIsPalindrome1() throws IllegalArgumentException {
6 actualValue = isPalindrome("baaaa");
7 assertEquals(false, actualValue);
8 }

Listing 9: Generated test script for CTC3, i.e., valid word that
is not a palindrome (case with a ReturnOracle)

1 @Test
2 @DisplayName("[(WordIsNull, false), (WordIsEmpty, false),
3 (WordHasSpecialCharacter, false), (WordHasDigit, true),
4 (WordIsPalindrome, true)]")
5 void testIsPalindrome2() {
6 assertThrows(IllegalArgumentException.class,
7 () -> isPalindrome("a0a0a"));
8 }

Listing 10: Generated test script for CTC4, i.e., invalid palin-
drome due to digits (case with an ExceptionOracle)

Listing 9 shows the test method produced for CTC3, where a
word that is not a palindrome should produce the value false.

(2) In the case of a ExceptionOracle, the assertThrows asser-
tion is used to verify that the correct exception is thrown. As
an example, Listing 10 shows the test method produced for
CTC4, where a palindrome word with digits should trigger an
IllegalArgumentException.

(3) In cases where the CTC lacks an oracle, the generated test
script requires manual definition of the oracle. In this case the
comment "// TODO: add oracle here" is produced, and the
software tester should provide an oracle manually.
Once all the concrete test cases are converted into JUnit scripts

test, they are consolidated into a Java file. This file is automatically
generated and placed in the designated location within the SUT.

3.5 Implementation
We implemented in Java a prototype of the presented approach in
the form of a Maven plugin named LNS-TestCrafter5. This plugin
is centered around a custom annotation named @GenerateTest,
which must be placed on the Java method to be tested. This anno-
tation signals the plugin to generate tests for the specified method,
provided the following list of arguments:
• PICTInputName: Path of the PICT combinatorial model.
• PICTPath: Path of the PICT executable. Default is empty, and the
executable is found in the system PATH.
• PICTAdditionalArgs: Additional arguments for PICT, e.g., to
select a coverage criterion. Default is empty.
• generatorPackage: Name of the Java package containing the
data generator.
• generatorMethod: Name of the static Javamethod in the generator-
Package to use for data generation.

5https://gitlab.univ-nantes.fr/E19B907G/lns-testcrafter

1 @GenerateTest(
2 PICTInputName = "palindrome_model.pict",
3 generatorPackage =
4 "data.generation.PalindromeDataGenerator",
5 generatorMethod = "generateData")
6 public static boolean isPalindrome(String word)
7 throws IllegalArgumentException {
8 // ...
9 }

Listing 11: @GenerateTest annotation applied to isPalindrome

• dirOut: Path in the SUT folder for outputting generated test files.
Default is src/test/java.
Listing 11 shows an example of annotation use for isPalindrome.

When the plugin is called, it discovers all annotated methods, and
for each found method applies automatically the complete process
described in the paper, starting with calling the PICT executable to
produce abstract test cases, and ending with generated test scripts.
The Eclipse Modeling Framework (EMF) is used for model manage-
ment and, as already mentioned, JavaPoet is used for code gener-
ation. The provided data generator is called using Java reflexive
features.

4 Experiments and Results
This section presents our initial evaluation of the proposed ap-
proach on a set of five different Java methods.

4.1 Research question
Two requirements of the proposed approach are the implementation
of a data generator for each Java method under test, and extending
each combinatorial model with an oracle definition, both of which
coming with a certain cost. Yet, if the combinatorial complexity of
the test problem is high—and thus if the amount of test cases that
are necessary to cover the specification is high—, the "return on
investment" of a data generator may exceed its cost. Therefore, this
evaluation is centered on the following research question:

RQ: Given a Java method, a combinatorial model, and a target
coverage criterion, how does the combined effort of implementing
a data generator and extending the combinatorial model with an
oracle definition compare to the effort of implementing test scripts
manually? And how does this comparison vary with combinatorial
complexity, e.g., when changing the target coverage criterion?

4.2 Experimental setup
The presented approach is compatible with static Java methods
with primitive input parameters and return values (i.e., strings,
integers, booleans and enumerations). Accordingly, in addition to
the isPalindrome Java method already introduced in Section 2 and
studied thoroughly throughout the paper, we selected, adapted and
implemented four existing case studies from the field of software
testing that fit these requirements:
• getTriangleType determines the type of a triangle based on
the lengths of its sides. It accepts three integer arguments, and
returns either EQUILATERAL, ISOSCELES or SCALENE. An Invalid
TriangleException is thrown for negative lengths or lengths

https://gitlab.univ-nantes.fr/E19B907G/lns-testcrafter

Towards Model-Driven Test Case Concretization for End-to-end Combinatorial Testing MODELS Companion ’24, September 22–27, 2024, Linz, Austria

that construct an invalid triangle. This method is inspired by an
example used in Section 6.1 of the software testing book from
Ammann and Offutt [1].
• getDaysInMonth returns the number of days in a given month.
It takes two integer arguments month and year, and returns the
number of days or -1 for invalid input (i.e., month outside the
1–12 range, or month outside the 2000–2100 range). The method
is inspired by lengthOfMonth from the Java standard library6.
• findCommand finds occurrences of a string in a text from a given
position in the text. It takes five arguments: the text (string),
the string to search (string), whether to match case (boolean),
whether to search forward or backward (boolean) and the start
position (integer). It returns a list of positions where the string is
found. The method is taken from an example used in Section 5.3
of the book of Kuhn et al. [8],
• validatePasswordStrength evaluates the strength of a pass-
word, based on the amount of upper/lower case characters, spe-
cial characters, digits, length, and so on. It takes a candidate
password as argument (string), and returns either WEAK, MEDIUM,
or STRONG. An IllegalArgumentException is thrown for null
or empty passwords. The method is inspired by the Section 2.3.2
of the work of Yazdi et al. [13].
Then, for each considered Java Method:

(1) A PICT combinatorial model was manually realized based on
the specification of the method. This model was then extended
with an oracle definition.

(2) A data generator was manually implemented for the method
using the Choco-Solver constraint solving library.

(3) The prototype implementing the presented approach was used
two times on the method, first using the pairwise coverage
criteria, then the 3-wise coverage criteria. Each run yielded a
JUnit test script for the method, with a different amount of test
cases depending on the coverage criteria.
We used the Lines of Code (LOC) metric to measure the amount

of effort required for a given task7, i.e., we measured the amount
of lines of code found in the program obtained from said task. To
measure these LOC, we used the tool cloc8, which is able to count
so-called physical lines (i.e., excluding blank lines and comment
lines) of source code in many programming languages.

To answer the stated RQ, for each considered experimental case,
we measured the LOC for the oracle definition in the combinatorial
model, the LOC of the data generator, and the LOC of the generated
test scripts. This last measurement is used both to know how much
was automatically generated by the approach, and to estimate the
effort that would have been necessary to manually implement these
test cases without relying on the proposed approach.

4.3 Results
Table 4 presents the obtained results, and Figure 3 shows a bar plot
representation to better visualize and compare amounts of LOC.
For the three simpler methods—isPalindrome, getTriangleType,

6https://docs.oracle.com/en/java/javase/17/docs//api/java.base/java/time/
YearMonth.html#lengthOfMonth()

7While LOC is not perfect as a metric for measuring effort, as two programs of
the same size may require very different amounts of development time, we consider
this metric a useful and valuable estimate for an initial evaluation.

8https://github.com/AlDanial/cloc

and getDaysInMonth—we observe that the combined effort of both
defining the oracle in the combinatorial model (1) and implementing
a data generator (2) is higher than the test scripts LOC, both when
targeting the pairwise and the 3-wise coverage criteria. In other
words, effort-wise, the proposed approach is not "breaking even" as
compared to manual work in these very simple cases, most likely
because their combinatorial complexity remains low even when
targeting 3-wise coverage (maximum of 10 test cases).

For the findCommandmethod, the effort required for using the ap-
proach is quite important (161 LOC) due to the rather complex data
generator required. The consequence is that this effort is slightly
higher than the effort to directly write test scripts when targeting
pairwise coverage (149 LOC). However, when targeting 3-wise cov-
erage, the effort required to implement test cases is much more
important (436 LOC), making the approach significantly more cost-
effective. Yet, note that due to a complex return value, the oracle
definition for this case is limited to "undefined", which means
oracles must be manually implemented in all generated test scripts.

Finally, the validatePasswordStrengthmethod requires a sim-
pler data generator than findCommand, but has a much higher com-
binatorial complexity. This results in the amount of effort required
for the approach (81 LOC) being lower both than the effort required
to write test scripts in the pairwise case (140 LOC) and in the 3-wise
case (608 LOC). Moreover, oracles can be automatically generated
and require no manual changes in the generated test scripts.

Analysis and discussion. These results reveal nuanced insights.
While simpler cases can achieve satisfactory coverage through au-
tomated generation, the overhead of extending PICT combinatorial
models and data generators can be higher than manual creation
in simpler cases. However, for complex cases requiring a substan-
tial volume of tests, automation proves cost-efficient in achieving
comprehensive coverage. In summary, an answer the investigated
research question is that the proposed approach requires less effort
than manual test scripts implementation when the combinatorial
complexity is high enough, i.e., when it is worth the effort.

Yet, it can be noted that if the combinatorial model evolves, or
even, to some extent, the specification, then it is possible that most
changes would need to be made in the combinatorial model, with
few changes required in the data generator. Thus, this approach
can become interesting even for problems like isPalindrome or
getTriangleType, due to this generative aspect. It can also be
argued that the techniques and libraries used for implementing
data generators is crucial for the cost-effectiveness of the approach,
and that improvements may be possible in that regard.

5 Related Work
To our knowledge, there is little work on how to achieve automated
abstract test case concretization in combinatorial testing. It is an ex-
plicit step in the combinatorial testing process proposed by Grindal
et al. [5] (under the name translation table), and vaguely mentioned
a few times in the seminal work of Kuhn et al. [8], but without any
provided method or automatization in either case. The problem has
also been formalized in different contributions [2, 7, 12], but again
without any concrete way to generate input data nor test scripts.

Other approaches and tools aim at generating concrete test cases
without relying on combinatorial testing at all. Two well-known

https://docs.oracle.com/en/java/javase/17/docs//api/java.base/java/time/YearMonth.html#lengthOfMonth()
https://docs.oracle.com/en/java/javase/17/docs//api/java.base/java/time/YearMonth.html#lengthOfMonth()
https://github.com/AlDanial/cloc

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Léna BAMOUH and Erwan BOUSSE

Generated Tests
Oracle Definition LOC Choco-Solver Data Pairwise 3-Wise

Case Study in the PICT Model Generator LOC (1) + (2) Test Test Test Test
(1) (2) Cases Scripts Cases Scripts

Count LOC (3) Count LOC (4)
isPalindrome 10 66 76 6 41 10 56
getTriangleType 5 63 68 7 48 10 63
getDaysInMonth 10 62 72 10 68 10 68
findCommand 1 160 161 20 149 61 436
validatePasswordStrength 13 68 81 22 140 100 608

Table 4: Detailed evaluation results for the considered case studies, in the form of amounts of lines of code (LOC) for combina-
torial models, data generators, and generated test scripts for both a pairwise and a 3-wise test suites

Figure 3: Bar plot of the results shown in Table 4

tools are Randoop[10], which produces unit test scripts by randomly
finding valid sequences of statements, and Evosuite[3], which relies
on evolutionary algorithms targeting structural coverage criteria
(e.g., branch coverage). While this category of approaches can auto-
matically generate concrete unit test scripts with little effort, these
approaches do not aim at defining test cases that cover the SUT
specification, contrary to combinatorial testing approaches.

6 Conclusion
Concretizing abstract test cases is a required step in combinatorial
testing. In this paper, we propose a novel model-driven approach
to automate this process. Starting with an extended combinatorial
model, abstract test cases are generated and can be concretized
using an SUT-specific data generator, Then the resulting concrete
test cases can be transformed into executable test scripts using a
code generator, making the approach truly end-to-end.

Future research directions include extending evaluation with
more sophisticated models and complex input data, such as non-
primitive types and nested objects. Additionally, experimenting
with AI-based data generators could broaden domain coverage and
improve software flexibility.

Acknowledgments
The initial version of this work was accomplished with the conse-
quential help of Naila TINSALHI and Sabrina BENBOUDJEMAA.

References
[1] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing, Second Edition.

Cambridge University Press.
[2] M. Balcer, W. Hasling, and T. Ostrand. 1989. Automatic generation of test scripts

from formal test specifications. In Proceedings of the ACM SIGSOFT ’89 third
symposium on Software testing, analysis, and verification - TAV3 (TAV3). ACM
Press. https://doi.org/10.1145/75308.75332

[3] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of software engineering
(ESEC/FSE’11). ACM. https://doi.org/10.1145/2025113.2025179

[4] Thom Frühwirth and Slim Abdennadher. 2003. Essentials of Constraint Program-
ming. Springer Science & Business Media.

[5] Mats Grindal and Jeff Offutt. 2007. Input Parameter Modeling for Combination
Strategies. In Proceedings of the 25th Conference on IASTED International Multi-
Conference: Software Engineering. ACTA Press, 255–260.

[6] Sebastian Krings, Joshua Schmidt, Patrick Skowronek, Jannik Dunkelau, and
Dierk Ehmke. 2020. Towards Constraint Logic Programming over Strings for
Test Data Generation. In Declarative Programming and Knowledge Management,
Petra Hofstedt, Salvador Abreu, Ulrich John, Herbert Kuchen, and Dietmar Seipel
(Eds.). Springer International Publishing, Cham, 139–159.

[7] Peter M. Kruse. 2016. Test Oracles and Test Script Generation in Combinatorial
Testing. In 2016 IEEE Ninth International Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW). https://doi.org/10.1109/ICSTW.2016.11

[8] D Richard Kuhn, Raghu N Kacker, and Yu Lei. 2013. Introduction to combinatorial
testing. CRC press.

[9] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James Lawrence. 2007.
IPOG: A General Strategy for T-Way Software Testing. In 14th Annual IEEE
International Conference and Workshops on the Engineering of Computer-Based
Systems (ECBS’07). 549–556. https://doi.org/10.1109/ECBS.2007.47

[10] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: feedback-directed random
testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion (OOPSLA07). ACM.
https://doi.org/10.1145/1297846.1297902

[11] Charles Prud’homme and Jean-Guillaume Fages. 2022. Choco-solver: A Java
Library for Constraint Programming. Journal of Open Source Software 7, 78 (2022),
4708. https://doi.org/10.21105/joss.04708

[12] Maria Spichkova and Anna Zamansky. 2016. A Human-Centred Framework for
Combinatorial Test Design. In International Conference on Evaluation of Novel
Approaches to Software Engineering, Vol. 2. SCITEPRESS, 228–233.

[13] Shiva Houshmand Yazdi. 2011. Analyzing Password Strength & Efficient Password
Cracking. Ph. D. Dissertation. Florida State University.

https://doi.org/10.1145/75308.75332
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/ICSTW.2016.11
https://doi.org/10.1109/ECBS.2007.47
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.21105/joss.04708

	Abstract
	1 Introduction
	2 Background
	2.1 Combinatorial Testing
	2.2 Constraint Programming

	3 Model-driven Test Case Concretization
	3.1 Overview
	3.2 Abstract Test Case Generation
	3.3 Concretization of Abstract Test Cases
	3.4 Test Scripts Code Generation
	3.5 Implementation

	4 Experiments and Results
	4.1 Research question
	4.2 Experimental setup
	4.3 Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

